

CMS Overview

Sitian Qian (PKU)

On Behalf of CMS Collaboration

Event generators' and N(n)LO codes' acceleration Workshop 2023/11/13

OUTLINE (PLAN)

- Current CMS Generator status
- Development in progress
 - Algorithmic improvement
 - Workflow improvement
 - Preparation for new computing infrastructure
- Summary

7enerator

Generator (Matrix Element modeling) usage breakdown based on legacy Run2 dataset Pythia8 mostly chosen for *parton shower* and *hadronization*

More events calls for more sophisticated modeling (high order, jet merging...)!

CMS HAS A RICH PHYSICS PROGRAM

Cherry-picked CMS BSM Results

And generator usage is a **crucial** part to all of them!

More than 10 orders of magnitude SM cross section coverage!

/)	
	3 μb ⁻¹ 41 μb ⁻¹ 5 fb ⁻¹
	36 pb ⁻¹ 231 nb ⁻¹ 298 pb ⁻¹ 36 pb ⁻¹ 18 pb ⁻¹ 201 pb ⁻¹ 5 pb ⁻¹ 36 pb ⁻¹ 18 pb ⁻¹ 201 pb ⁻¹ 5 fb ⁻¹
	$\begin{array}{c} 5 \ fb^{-1} \\ 137 \ fb^{-1} \\ 5 \ fb^{-1} \\ 20 \ fb^{-1} \\ 302 \ pb^{-1} \\ 5 \ fb^{-1} \\ 19 \ fb^{-1} \\ 36 \ fb^{-1} \\ 302 \ pb^{-1} \\ 5 \ fb^{-1} \\ 20 \ fb^{-1} \\ 137 \ fb^{-1} \\ 137 \ fb^{-1} \\ 5 \ fb^{-1} \\ 137 \ fb^{-1} \end{array}$
	$\begin{array}{c} 137 \ \mathrm{fb}^{-1} \\ 19 \ \mathrm{fb}^{-1} \\ 138 \ \mathrm{fb}^{-1} \\ 19 \ \mathrm{fb}^{-1} \\ 137 \ \mathrm{fb}^{-1} \\ 137 \ \mathrm{fb}^{-1} \\ 137 \ \mathrm{fb}^{-1} \\ 137 \ \mathrm{fb}^{-1} \end{array}$
	$\begin{array}{c} 19 \ \text{fb}^{-1} \\ 36 \ \text{fb}^{-1} \\ 5 \ \text{fb}^{-1} \\ 20 \ \text{fb}^{-1} \\ 36 \ \text{fb}^{-1} \\ 138 \ \text{fb}^{-1} \\ 20 \ \text{fb}^{-1} \\ 138 \ \text{fb}^{-1} \\ 138 \ \text{fb}^{-1} \\ 138 \ \text{fb}^{-1} \\ 137 \ \text{fb}^{-1} \end{array}$
	$\begin{array}{c} 302 \ pb^{-1} \\ 5 \ fb^{-1} \\ 20 \ fb^{-1} \\ 137 \ fb^{-1} \\ 1 \ fb^{-1} \\ 2 \ fb^{-1} \\ 2 \ fb^{-1} \\ 20 \ fb^{-1} \\ 138 \ fb^{-1} \\ 138 \ fb^{-1} \\ 5 \ fb^{-1} \\ 20 \ fb^{-1} \\ 138 \ fb$
	5 fb ⁻¹ 20 fb ⁻¹ 139 fb ⁻¹ 5 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 20 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹ 138 fb ⁻¹

GENERATOR IS CRUCIAL! TO CMS PHYSICS PROGRAM

CMS Higgs program

GENERATOR IS CRUCIAL! AND CHALLENGES AHEAD

HL-LHC: order of magnitude higher integrated luminosity \rightarrow order of magnitude higher required MC statistics!

- Will discuss here our homework for *today*
 - Algorithmic improvement
 - Negative weight elimination
 - Heavy I/O issue for production
 - Phase space biasing and filtering
 - Workflow reorganization and optimization
 - Automized and centralized gridpack production
 - New infrastructure test
 - MG4GPU test

NEGATIVE WEIGHT: PRICE TO PAY FOR NLO

- High order calculation needed for *today*
 - NLO calculation includes real emission and virtual correction
 - Substraction needed for matching to patron shower
 - \rightarrow Negative weight introduced

Relative cost: Ratio b/w number of events with negative weights to that from positive weights only generation with the <u>same</u> statistical power

The Lower **The Better!**

Rate of nega	tive events <u>Olivi</u>	ier (20
$\star pp \rightarrow e^+e^-$	6.9%	(1.3)
$\bigstar pp \rightarrow e^+ \nu_e$	7.2%	(1.4)
$\bigstar pp \rightarrow H$	10.4%	(1.6)
$\bigstar pp \to H b \bar{b}$	40.3%	(27)
$\not pp \rightarrow W^+ j$	21.7%	(3.1
$\not \to pp \to W^+ t\bar{t}$	16.2%	(2.2)
$\bigstar pp \to t\bar{t}$	23.0%	(3.4)
	Cost In sample	e size
	$c(f) = \frac{1}{(1-2)}$	$2f)^2$
	$c(f) = \frac{1}{(1-2)}$	$(f)^2$

NEGATIVE WEIGHT: PRICE TO PAY FOR NLO

- High order calculation needed for *today*
 - NLO calculation includes real emission and virtual correction
 - Substraction needed for matching to Parton shower
 - → Negative weight introduced
 - POWHEG has its way of eliminating negative weights!
 - But we still want to leverage the flexible generation from aMC@NLO (and FxFx)

Rate of negat	ive events <u>Olivi</u>	er (20
$\star pp \rightarrow e^+e^-$	6.9%	(1.3)
$\star pp \rightarrow e^+ \nu_e$	7.2%	(1.4)
$\star pp \to H$	10.4%	(1.6)
$\star pp \to H b \bar{b}$	40.3%	(27)
$\star pp \rightarrow W^+ j$	21.7%	(3.1
$\swarrow pp \rightarrow W^+ t\bar{t}$	16.2%	(2.2)
$\bigstar pp \to t\bar{t}$	23.0%	(3.4)
	Jost in sample	e size
	$c(f) = \frac{1}{(1-2)}$	$(f)^2$

 $c(f) = \frac{1}{(1 - 2f)^2}$

aMC@NLO follows MC@NLO matching prescription

 $d\sigma^{(\mathbb{H})} = d\sigma^{(\mathrm{NLO},E)} - d\sigma^{(\mathrm{MC})}$ $d\sigma^{(S)} = d\sigma^{(MC)} + \sum$ $d\sigma^{(ext{NLO},lpha)}$. $\alpha = S, C, SC$

Negative weights originate from both H and S terms

Introducing "Delta" factor to suppress negative weights

MC@NLO-Delta prescription Folding needed for further suppression

Z mass lo/dmz [pb/GeV 111 221 10^{2} 441 Δ-111 ∆-221 10^{1} Ratio 0.6 0.7 0.6 0.5 Ħ 90 100 110 70 80

Next step: CMS integration and further test! 9

- Negative weights are introduced for correct predictions
 - Trustful distribution when considering negative weights
 - Reweighting of events possible!

- Negative weights are introduced for correct predictions
 - Trustful distribution when considering negative weights
 - Reweighting of events possible!
 - #events (for SIM) reduced then from unweighting (resampling)

- Negative weights are introduced for correct predictions
 - Trustful distribution when considering negative weights
 - Reweighting of events possible!
 - #events (for SIM) reduced then from unweighting (resampling) epjc/s10052-020-08548-w
 - Positive resampler: simply using histograms!
- Implemented with CMS workflow, now under validation

NLO W production Reweighted with GENW boson pT

- Negative weights are introduced for correct predictions
 - Trustful distribution when considering negative weights
 - Reweighting of events possible!
 - #events (for SIM) reduced then from unweighting (resampling)
 - A neural network can be used for reweighting \rightarrow predicting per-event weight
 - Done via a special loss function!

$$\mathcal{L}[g] = -\sum_{i=1}^N w_i \log g(x_i) - \sum_{i=1}^N \log \left(1 - g(x_i)\right)$$

Now under validation within CMS!

NLO W production

NN Backbone: I D PCNN (DeepAK8-like)

CMS MC Production Workflow

highly simplified version

"Gridpack" generation with MG5aMC/ POWHEG/... compilation

Production jobs created and run at grid nodes, gridpacks loaded there

Event generated from gridpacks and showered & hadronized ...

CMS MC Production Workflow

highly simplified version

"Gridpack" generation with MG5aMC/ POWHEG/... compilation

Production jobs created and run at grid nodes, gridpacks loaded there

Event generated from gridpacks and showered & hadronized ...

Large cross section SM backgrounds (W/Z/top production): complicated modeling needed

heavy gridpack (usually from MG5aMC) generated

Heavy I/O caused from heavy gridpack loading

Not friendly to the disks!

highly simplified version

Production jobs created and run at grid nodes, gridpacks loaded there

Event generated from gridpacks and showered & hadronized ...

Example from CMS W+012j FxFx Modeling

Condition	Run3	Run2 Legacy	
UFO model	loop_sm-ckm_no_b_mass	loop_sm-ckm_no_b s	
Size (compressed)	774M	762M	
	14G subprocesses	16G x nThreads!	
Size (uncomp.)	104MMG sourceNegligible Negligible Negligibleauxiliary filesNegligible Negligibleauxiliary files	177M Negligible Negligible Negligible Negligible	

O(10 GB) I/O per thread Not friendly to disks!

CMS MC Production Workflow

highly simplified version

"Gridpack" generation with MG5aMC/ POWHEG/... compilation

Production jobs created and run at grid nodes, gridpacks loaded there

Event generated from gridpacks and showered & hadronized ...

More practical workflow: Multithreading via concurrent jobs

Straightforward multicore utilization!

CMS MC Production Workflow

highly simplified version

"Gridpack" generation with MG5aMC/ POWHEG/... compilation

Production jobs created and run at grid nodes, gridpacks loaded there

Event generated from gridpacks and showered & hadronized ...

More practical workflow: Multithreading via concurrent jobs

Straightforward multicore utilization! Not I/O friendly

Straightforward multicore utilization! Not I/O friendly

gridpack $I/O \rightarrow$ better!

- How to maximize *#jobs* per untarred gridpack I/O?
 - Have it host on sites and **uncompressed**, then directly load it without I/O on disks
 - Broadcasting through cvmfs: one time cache, multiple times of utilization!
- Prerequisite: Read-Only gridpack
- No NLO gridpacks from MG5aMC in the past!
- CMS has worked with MG5aMC authors (many thanks!) for a solution

Source codes implemented. Ongoing validation with W+012j FxFx

Dramatic improvement on disk usages!

- How to maximize #jobs per untarred gridpack I/O?
 - Have it host on sites and uncompressed, then directly load it without I/O on disks
 - Broadcasting through cvmfs: one time cache, multiple times of utilization!
- Prerequisite: Read-Only gridpack
- No NLO gridpacks from MG5aMC in the past!
- CMS has worked with MG5aMC authors (many thanks!) for a solution

Source codes implemented. Ongoing validation with W+012j FxFx

Selecting phase-space of interest: biasing & filtering

- Conventional approach for high energy scale biasing \rightarrow binned production (pT(V), HT, etc)
 - Actively iterating with generator authors modeling improvements

Right: Two set of cuts, one on N-body kinematics for generation,, the other on recorded LHE events

Selecting phase-space of interest: biasing & filtering

• Conventional approach for high energy scale biasing \rightarrow binned production (pT(V), HT, etc)

- Alternative approach: produce weighted events with generator bias module
 - Smooth distribution by construction
 - Only one gridpack needed

AUTOMIZED & CENTRALIZED GRIDPACK PRODUCTION

- CMS moves to centralized and automized gridpack production for robust common SM background modeling
- Automized and centralized production helps improving computing efficiency as well:
 - Minimizing human intervention helps reducing computing via *avoiding*
 - reproduction for correcting mistakes
 - repeated production from miscommunication

e.g. heavy flavor filter for V+jets Signal:Vh(bb/ Background: V+jets CC) Signature:V + particles from 2 heavy flavored partons Heavy flavor filter

> The heavy flavor **filter** could be implemented on top of a normal gridpack by **filtering** events from it

AUTOMIZED & CENTRALIZED GRIDPACK PRODUCTION

- CMS moves to centralized and automized gridpack production for robust common SM background modeling
- Automized and centralized production helps improving computing efficiency as well:
 - Minimizing human intervention helps reducing computing via *avoiding*
 - **reproduction** for correcting mistakes
 - **repeated** production from miscommunication
 - Dedicated production platform with a huge bunch of jobs :)
 - Maximized CPU occupancy
 - Dedicated optimization could be carried out
 - E.g. process specific CPU consumption *

- E.g. process specific CPU *consumption
 - No suitable CPU configuration suits all process
 - Quite empirical task!
 - e.g. V+0j should consume much less than V+4j!
 - Now #CPU cores to use is configurable to maximize CPU efficiency

GPU Computing

CPU Vectorization

Parallelizaiton is a major topic of modern high performance computing

CMS HLT GPU Farm

https://cms.cern/news/first-collisions-reconstructed-gpus-cms

Parallelizaiton is a major topic of modern high performance computing And extensively employed in HEP!

Columnar analysis

Generators can benefit from GPU/CPU vectorization as well!

Parallelizaiton is a major topic of modern high performance computing And extensively employed in HEP! Generator should not be absent!

Significant improvement with GPU for gridpack generation!

process	Cross section [pb]	Error [pb]	#diagram (#process
TT+0j	504.4	12	8(6)
TT+lj	575.7	0.25	9(16)
TT+2j	426	0.16	1473(96)

CPU Vectorization also helps!

process	Cross section [pb]	Error [pb]	#diagram (#process
DY+0j	5711	I.054	30(15)
DY+Ij	3535	I.263	180(45)
DY+2j	2236	0.5005	3120(285)

Time value reported here include uncompressing

Generators can benefit from GPU/CPU vectorization as well!

SUMMARY:

Overview of CMS efforts in generator acceleration and optimization

- Progresses includes various levels/aspects
 - Algorithmically improving generators: negative weight elimination, efficient phase space biasing & filtering, tackling the heavy gridpack I/O issue
 - Systematically improving the workflow: automized and centralized gridpack production
 - Preparing for new computing infrastructures: testing MG4GPU

Look forward to a fruitful discussion here!

BACKUP: AUTOMIZED & CENTRALIZED GRIDPACK PRODUCTION

	SM backgrounds with large cross section	Signal Processes
Number of events to produce	Large	Not too large per process
Phase space coverage	Large	Signal specified region
Sophisticated modeling (e.g. jet merging, high order simulation)	Yes	Not necessary for going too far
Complexity for gridpack production	High	Not quite
Production workflow	Standardized	Might be novel and/or flexible
CMS policy	From Run3: automatically and centrally produced	Not centrally produced

