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Anatomy of precision calculations

• Perturbation theory expansion
• scattering amplitudes for real and virtual corrections
• subtraction scheme to extract and cancel singular configurations
• universal anomalous dimensions for resummation

• DGLAP evolution of parton distributions
• soft-gluon resummation
• resummation of large logarithms: pT, N-jettiness, R, .... 

• Require (ideally analytic) computation of loop and phase space integrals
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Multi-loop integrals

• Calculation of loop or phase space integrals
• phase space: cut loop integral
• expressed in generic loop integrals (here: two-loop)

• Two challenges
• algebraic complexity

• reduce large number of loop integrals to smaller set of master integrals
• analytic complexity

• evaluate master integrals (analytically or numerically)
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Multi-loop integrals

• Reduction to master integrals: integration-by-part (IBP) equations

• yield large system of linear relations among integrals (up to millions of equations)

• Method of solution
• closed form
• iterative with lexicographic ordering (Laporta algorithm: Reduze, FIRE, Kira, LiteRed,...)

• Result
• generic integrals as linear combinations of a small number of master integrals
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Multi-loop integrals
• Evaluation of master integrals

• integrals are typically IR and/or UV divergent

• Direct numerical evaluation: sector decomposition (T.Binoth, G.Heinrich)

• Partition of integration space into sectors of non-overlapping singularities
• Laurent expansion of integrand

• Numerical sector integrals: pySecDec, FIESTA

• Direct analytical evaluation: Mellin-Barnes, Feynman parameters
• Indirect analytical evaluation: differential equations
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Multi-loop integrals

• Differential equations for master integrals (A.Kotikov; E. Remiddi, TG)

• differentiate integrand with respect to masses or momenta
• apply IBP identities

• integrate differential equations and match boundary conditions

Thomas Gehrmann CERN code acceleration workshop 16.11.2023 6

The two remaining ones are master integrals. Written out in terms of propagators, they read:
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Both fulfil inhomogeneous di↵erential equations. For a vertex p123 ! p12 + p3, the appropriate variables
for the di↵erential equations are s123 and s12. To illustrate the structure of the di↵erential equations, we
quote them for (5.9):
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The boundary conditions for s123 = 0 or s12 = 0 are obtained directly from the vertex integrals with one
o↵-shell leg quoted above. Using these, one finds
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The second master integral can be obtained from this by analytic continuation of the hypergeometric
function:
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Vertex integrals with three o↵-shell legs can not appear as subtopologies in two-loop four-point func-

tions with one o↵-shell leg.

5.3 t = 5

The two-loop two-point function with t = 5 is a well known example [3, 4] for the application of IBP
identities:
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Multi-loop integrals
• Systematic solution of DE 

• d-log form (J. Henn)

• alphabet of process (letters = denominators)
• iterated integrals
• solutions: generalized polylogarithms (GPL)

• Requires
• derivation of differential equations: IBPs 
• analytic expression for NxN matrix of differential equations for N masters 
• optimized choice of master integrals: decoupling, diagonalization

Thomas Gehrmann CERN code acceleration workshop 16.11.2023 7

The two remaining ones are master integrals. Written out in terms of propagators, they read:

-

-

-

⇢⇡
�⇠

p123
p12

p3

=

Z
ddk

(2⇡)d
ddl

(2⇡)d
1

k2l2(k � p123)2(k � l � p12)2
, (5.9)

-

-

-⇡⇢⇡
�⇠

p123
p3

p12

=

Z
ddk

(2⇡)d
ddl

(2⇡)d
1

k2l2(l � p12)2(k � l � p3)2
. (5.10)

Both fulfil inhomogeneous di↵erential equations. For a vertex p123 ! p12 + p3, the appropriate variables
for the di↵erential equations are s123 and s12. To illustrate the structure of the di↵erential equations, we
quote them for (5.9):

s123
@

@s123

-

-

-

⇢⇡
�⇠

p123
p12

p3

=
d� 4

2

2s123 � s12

s123 � s12

-

-

-

⇢⇡
�⇠

p123
p12

p3

�3d� 8

2

1

s123 � s12

- ⇢⇡
�⇠

p12
,

s12
@

@s12

-

-

-

⇢⇡
�⇠

p123
p12

p3

= �d� 4

2

s12

s123 � s12

-

-

-

⇢⇡
�⇠

p123
p12

p3

+
3d� 8

2

1

s123 � s12

- ⇢⇡
�⇠

p12
. (5.11)

The boundary conditions for s123 = 0 or s12 = 0 are obtained directly from the vertex integrals with one
o↵-shell leg quoted above. Using these, one finds

-

-

-

⇢⇡
�⇠

p123
p12

p3

= A4 (s12 � s123)
d
2�2 (�s123)

d
2�2� 3d� 8

2(d� 3)
A3

(�s12)
d�3

�s123
2F1

✓
d

2
� 1, 1; d� 2;

s12

s123

◆
.

(5.12)
The second master integral can be obtained from this by analytic continuation of the hypergeometric
function:

-

-

-⇡⇢⇡
�⇠

p123
p3

p12

= �3d� 8

d� 4
A3 (�s12)

d
2�2 (�s123)

d
2�2

2F1

✓
d

2
� 1, 2� d

2
; 3� d

2
;
s123 � s12

s123

◆
.

(5.13)
Vertex integrals with three o↵-shell legs can not appear as subtopologies in two-loop four-point func-

tions with one o↵-shell leg.

5.3 t = 5

The two-loop two-point function with t = 5 is a well known example [3, 4] for the application of IBP
identities:

- ⇢⇡
�⇠

p

=
2(3d� 8)(3d� 10)

(d� 4)2
1

(p2)2
- ⇢⇡

�⇠
p

� 2(d� 3)

d� 4

1

p2
- ⇢⇡

�⇠
⇢⇡
�⇠

p

.

(5.14)

12

G(w1, . . . , wn; z) =

Z z

0

dt

t� w1
G(w2, . . . , wn; t)



Multi-loop integrals in practise
• Main bottleneck: IBP equations

• t: number of different propagators
• r: mass dimension of denominator (r ≥ t)
• s: mass dimension of numerator

• Examples at current frontier: 106..7 integrals to 102..3 master integrals
• three-loop 2 → 2 amplitudes: 4 ≤ t ≤ 10, t ≤ r ≤ 10, s ≤ 6 
• four-loop OME for splitting functions: 5 ≤ t ≤ 15, t ≤ r ≤ 15, s ≤ 6
• differential equations for master integrals: same (t,r), typically s ≤ 2

• Combinatorial explosion of IBP system size

Thomas Gehrmann CERN code acceleration workshop 16.11.2023 8

It,r,s(p1, . . . , pn) =

Z
ddk

(2⇡)d
ddl

(2⇡)d
1

Dm1
1 . . . Dmt

t

Sn1
1 . . . Snq

q



Multi-loop integrals in practise
• Classical approach to IBP solutions: Laporta algorithm

• IBP codes (Reduze, FIRE, Kira, LiteRed,...) use MPI for parallelization
• run typically on multi-core machines with ~TB of RAM
• distribute subsystems on different threads
• limitations: memory usage per thread, interconnection of subsystems

• Algebraic complexity 
• critically depends on number of scales (space-time dimension d, masses, invariants)
• large-scale algebraic simplifications at intermediate stages or as final step (polynomial 

arithmetic, using external tools: Fermat, Ginac, Symbolica)
• size of results (reduction tables, after simplification): can be TBs, insertion time-consuming
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Multi-loop integrals in practise
• Improvement to IBP reduction: syzygy equations (J.Gluza, D.Kosower, K.Larsen)

• taming combinatorial growth: select IBP seed equations to always have r = t
• must derive syzygy equations for each integral topology: poor automation

• Finite field methods (A. von Manteuffel, R.Schabinger; T. Peraro)

• solve IBP system for multiple integer values of d, masses and invariants (or subset)
• perform integer arithmetic modulo some large number
• full workflow can be done on finite field
• reconstruct all rational coefficients in solution (FiniteFlow, Kira, FinRed)

• Challenges with finite field methods
• point of reconstruction: IBP tables, integral coefficients, GPL coefficients
• number of evaluations required for reconstruction and validation 
• inversion of rational matrices as task: could profit from novel computer architectures
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Multi-loop integrals in practise
• Limitation of algebraic approaches: number of mass scales (internal masses)

• Complexity of IBPs and DEs (size of alphabet ~ number of possible kinematical cuts) 
• IBP reduction often not feasible, neither for amplitude nor for differential equation 

• Numerical approach to IBP
• IBP reduction and derivation of DE for each set of fixed numerical masses and kinematics
• repeated for each phase space point (timing)
• for symbolic d, truncated to finite terms in ε = (4-d)/2
• integer arithmetic

• Numerical approach to high-precision solutions to DE
• solution by asymptotic series: DiffExp, SeaSyde

(M.Hidding; T.Armadillo, R. Bonciani, S. Devoto, N. Rana, A. Vicini)

• differential equations in complex mass parameter (Feynman +iδ): AMFlow (X. Lui, Y.Q. Ma)
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Summary
Main bottleneck in calculation of loop amplitudes: solution of IBPs 
• express loop amplitudes as linear combination of master integrals
• prerequisite for computation of master integrals from differential equations
• Task: solve large systems of linear equations with rational coefficients

Approaches
• symbolic solution: Laporta algorithm (+ syzygy) (+ finite field reconstruction)
• numerical solution: IBP and DE solution for each phase space point

Computing challenges
• problem size often memory and storage limited
• hardware solutions for large linear systems
• parallelization at different stages
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