

Computer Algebra Challenges for Precision Calculations

Thomas Gehrmann

Universität Zürich

CERN Event Generators' and N(n)LO Codes' Acceleration Workshop

16.11.2023

European Research Council Established by the European Commission

Anatomy of precision calculations

- Perturbation theory expansion
 - scattering amplitudes for real and virtual corrections
 - subtraction scheme to extract and cancel singular configurations
 - universal anomalous dimensions for resummation
 - DGLAP evolution of parton distributions
 - soft-gluon resummation
 - resummation of large logarithms: p_T, N-jettiness, R,

• Require (ideally analytic) computation of loop and phase space integrals

• Calculation of loop or phase space integrals

- phase space: cut loop integral
- expressed in generic loop integrals (here: two-loop)

$$I_{t,r,s}(p_1,\ldots,p_n) = \int \frac{d^d k}{(2\pi)^d} \frac{d^d l}{(2\pi)^d} \frac{1}{D_1^{m_1}\ldots D_t^{m_t}} S_1^{n_1}\ldots S_q^{n_q}$$

- Two challenges
 - algebraic complexity
 - reduce large number of loop integrals to smaller set of master integrals
 - analytic complexity
 - evaluate master integrals (analytically or numerically)

• Reduction to master integrals: integration-by-part (IBP) equations

 $\int \frac{d^d k}{(2\pi)^d} \frac{d^d l}{(2\pi)^d} \frac{\partial}{\partial a^{\mu}} \left[b^{\mu} f(k,l,p_i) \right] = 0 \quad \text{with } a^{\mu} = k^{\mu}, l^{\mu}; b^{\mu} = k^{\mu}, l^{\mu}, p_i^{\mu}$

- yield large system of linear relations among integrals (up to millions of equations)
- Method of solution
 - closed form
 - iterative with lexicographic ordering (Laporta algorithm: Reduze, FIRE, Kira, LiteRed,...)
- Result
 - generic integrals as linear combinations of a small number of master integrals

- Evaluation of master integrals
 - integrals are typically IR and/or UV divergent
- Direct numerical evaluation: sector decomposition (T.Binoth, G.Heinrich)
 - Partition of integration space into sectors of non-overlapping singularities
 - Laurent expansion of integrand

$$(1-z)^{-1-\epsilon} = -\frac{1}{\epsilon} \,\delta(1-z) + \sum_{n} \frac{(-\epsilon)^n}{n!} \left(\frac{\ln^n(1-z)}{1-z}\right)_+$$

- Numerical sector integrals: pySecDec, FIESTA
- Direct analytical evaluation: Mellin-Barnes, Feynman parameters
- Indirect analytical evaluation: differential equations

- Differential equations for master integrals (A.Kotikov; E. Remiddi, TG)
 - differentiate integrand with respect to masses or momenta
 - apply IBP identities

integrate differential equations and match boundary conditions

- Systematic solution of DE
 - d-log form (J. Henn)
 - alphabet of process (letters = denominators)
 - iterated integrals
 - solutions: generalized polylogarithms (GPL)

$$\mathbf{G}(w_1,\ldots,w_n;z) = \int_0^z \frac{dt}{t-w_1} \mathbf{G}(w_2,\ldots,w_n)$$

- Requires
 - derivation of differential equations: IBPs
 - analytic expression for NxN matrix of differential equations for N masters
 - optimized choice of master integrals: decoupling, diagonalization

• Main bottleneck: IBP equations

$$I_{t,r,s}(p_1,\ldots,p_n) = \int \frac{d^d k}{(2\pi)^d} \frac{d^d l}{(2\pi)^d} \frac{1}{D_1^{m_1}\ldots D_t^{m_t}} S_1^{n_1}\ldots S_q^{n_q}$$

- t: number of different propagators
- r: mass dimension of denominator $(r \ge t)$
- s: mass dimension of numerator
- Examples at current frontier: $10^{6..7}$ integrals to $10^{2..3}$ master integrals
 - three-loop 2 \rightarrow 2 amplitudes: 4 \leq t \leq 10, t \leq r \leq 10, s \leq 6
 - four-loop OME for splitting functions: $5 \le t \le 15$, $t \le r \le 15$, $s \le 6$
 - differential equations for master integrals: same (t,r), typically $s \le 2$
- Combinatorial explosion of IBP system size

- Classical approach to IBP solutions: Laporta algorithm
 - IBP codes (Reduze, FIRE, Kira, LiteRed,...) use MPI for parallelization
 - run typically on multi-core machines with ~TB of RAM
 - distribute subsystems on different threads
 - limitations: memory usage per thread, interconnection of subsystems

Algebraic complexity

- critically depends on number of scales (space-time dimension *d*, masses, invariants)
- large-scale algebraic simplifications at intermediate stages or as final step (polynomial arithmetic, using external tools: Fermat, Ginac, Symbolica)
- size of results (reduction tables, after simplification): can be TBs, insertion time-consuming

- Improvement to IBP reduction: syzygy equations (J.Gluza, D.Kosower, K.Larsen)
 - taming combinatorial growth: select IBP seed equations to always have r = t
 - must derive syzygy equations for each integral topology: poor automation
- Finite field methods (A. von Manteuffel, R.Schabinger; T. Peraro)
 - solve IBP system for multiple integer values of *d*, masses and invariants (or subset)
 - perform integer arithmetic modulo some large number
 - full workflow can be done on finite field
 - reconstruct all rational coefficients in solution (FiniteFlow, Kira, FinRed)
- Challenges with finite field methods
 - point of reconstruction: IBP tables, integral coefficients, GPL coefficients
 - number of evaluations required for reconstruction and validation
 - inversion of rational matrices as task: could profit from novel computer architectures

- Limitation of algebraic approaches: number of mass scales (internal masses)
 - Complexity of IBPs and DEs (size of alphabet ~ number of possible kinematical cuts)
 - IBP reduction often not feasible, neither for amplitude nor for differential equation
- Numerical approach to IBP
 - IBP reduction and derivation of DE for each set of fixed numerical masses and kinematics
 - repeated for each phase space point (timing)
 - for symbolic *d*, truncated to finite terms in $\varepsilon = (4-d)/2$
 - integer arithmetic
- Numerical approach to high-precision solutions to DE
 - solution by asymptotic series: DiffExp, SeaSyde (M.Hidding; T.Armadillo, R. Bonciani, S. Devoto, N. Rana, A. Vicini)
 - differential equations in complex mass parameter (Feynman +i δ): AMFlow (X. Lui, Y.Q. Ma)

Summary

Main bottleneck in calculation of loop amplitudes: solution of IBPs

- express loop amplitudes as linear combination of master integrals
- prerequisite for computation of master integrals from differential equations
- Task: solve large systems of linear equations with rational coefficients

Approaches

- symbolic solution: Laporta algorithm (+ syzygy) (+ finite field reconstruction)
- numerical solution: IBP and DE solution for each phase space point

Computing challenges

- problem size often memory and storage limited
- hardware solutions for large linear systems
- parallelization at different stages