

NUMERICAL CHALLENGES IN PRECISION CALCULATIONS

Alexander Huss

Workshop on generator & code acceleration — CERN, 14th November 2023

HARD SCATTERING — PERTURBATION THEORY

HARD SCATTERING — PERTURBATION THEORY

next-to-leading order (NLO)

SUBTRACTIONS — A TOY EXAMPLE

inclusive

SUBTRACTIONS — A TOY EXAMPLE

• measurement function $\mathcal{J}(x)$

Very complicated / impossible(?)

SUBTRACTIONS - A TOY EXAMPLE: SLICING $\frac{\mathrm{d}\sigma}{\mathrm{d}x}$ $\infty \ln x$ Sammmm Junning R 1/*€* $-\infty$ $(a+\ln\xi)\mathcal{J}(0) + \int_{\xi}^{1} \frac{1+bx}{x} \mathcal{J}(x) \, \mathrm{d}x + \mathcal{O}(\xi^{n})$ need to control the error! -5.2• regulate divergence with cutoff gg flux, NLO (NNLOJET cuts) • error term $\mathcal{O}(\xi^n)$ $\delta_{\rm NLO} [\rm pb]$ 5.1 H+jet• challenge: numerical cancellations [Campbell, Ellis, Seth '19] 5.0 • $\ln \xi$ cancels against 2nd term higher target precision 10^{-5} 10^{-4} 2 5 2 5 7 ξ

SUBTRACTIONS - NLO

Infrared cancellation:

- subtraction: more complex integrands
 - correlated ME & counterterms
- slicing: higher precision target
 - non-local cancellations

conceptually solved: *CS dipoles, FKS,* ...

SUBTRACTIONS - NNLO

fully unresolved \simeq H @ NNLO

conceptual challenge NLO ->> NNLO: overlapping singularities

$$\int_0^1 \mathrm{d}x \int_0^1 \mathrm{d}y \ \frac{1 + bx + cy + dxy}{x^{1+\epsilon} \ y^{1+\epsilon}} \ \mathcal{J}(x, y)$$

(toy double real)

\$ local subtraction

$$\int_{0}^{1} dx \int_{0}^{1} dy \frac{1}{x y} \left[(1 + bx + cy + dxy) \mathcal{J}(x, y) - (1 + cy) \mathcal{J}(0, y) - (1 + bx) \mathcal{J}(0, y) + \mathcal{J}(0, 0) + \mathcal{J}(0, 0) \right]$$

Sectors can disentangle counterterms but will induce large cancellations between integrated sectors , Manuna

SUBTRACTIONS - NNLO (DOUBLE-REAL)

• impact from outliers: a subtle but important issue

Commune Commune

- naive combination of raw data
- **most-processing (outlier rejection / weighted avg.)**

SUBTRACTIONS - NNLO (REAL-VIRTUAL)

- automated one-loop providers:
 - MG5, OpenLoops, Recola, Gosam, NLOX, ...

· numerical instabilities from e.g. spurious $1/\Delta$ singularities; $\Delta = \det(p_i \cdot p_i)$

- rescue system
 for numerical stability
 - dp (f64) \rightarrow hp (hybrid): $\times \mathcal{O}(2-10)$ penalty

 $E \rightarrow 0$,

 $\cos\theta \rightarrow 1$

• $dp (f64) \rightarrow qp (f128):$ × $\mathcal{O}(10-100)$ penalty

- among most challenging amplitudes so far: $2 \rightarrow 3$ (massless)
 - · 𝒪(few−100) seconds per phase-space point
- pentagon functions (Feynman integrals)

		[Chicherin, Sotnikov '21]
Precision	Correct digits	Timing (s)
double	13	2.5
quadruple	29	180
octuple	60	3900

Talks by D. Maitre, S. Badger, T. Gehrmann

SUBTRACTIONS – NNLO

SUBTRACTIONS – N³LO

- single unresolved single unresolved double unresolved
 - double unresolved triple unresolved

- $1/\varepsilon^6, 1/\varepsilon^5, \dots$ $1/\varepsilon^4, 1/\varepsilon^{3, \dots}$ $1/\varepsilon^2, 1/\varepsilon$ single unresolved

two methods for double unresolved \simeq H+jet @ NNLO isolate "radiating" part

fully unresolved ($\iff p_T^H \to 0$) $\simeq H @ N^3LO$

SUBTRACTIONS - N³LO: SLICING

analytic V+jet calculation pushed to the limit $\frac{1}{2}$.

[Chen, Gehrmann, Glover, AH, Yang Zhu '21]

- 2-loop amplitudes in
- single-unresolved limit 1-loop amplitudes in double-unresolved limits

SUBTRACTIONS – N³LO: SLICING

analytic V+jet calculation pushed to the limit

 $\mathcal{O}(150\,\mathrm{fb}) - \mathcal{O}(150\,\mathrm{fb}) \sim -8\,\mathrm{fb}$

- 2-loop amplitudes in single-unresolved limit
- 1-loop amplitudes in double-unresolved limits

SUBTRACTIONS - N³LO: SLICING

analytic V+jet calculation pushed to the limit

- single-unresolved limit
- 1-loop amplitudes in double-unresolved limits

SUBTRACTIONS - N³LO: SLICING

- investment:
 - $\hookrightarrow \mathcal{O}(5M)$ CPU core hours
- in principle, *fully differential*
- experiments can measure DY *triply-differentially* in O(500) bins!
- in practice, extrapolated
 O(100M) CPU core hours
 is getting problematic

SUBTRACTIONS - N³LO: SUBTRACTION

[Chen, Gehrmann, Glover, AH, Mistlberger, Pelloni '21]

- a local subtraction can significantly improve the performance
- requires inclusive prediction (so far only ggH @ LHC)
- reduce cost to underlying H+jet @ NNLO level:
 ∽ 𝒪(100k) CPU core hours

SUMMARY

- ► Infrared singularities core bottle neck in precision calculations
- \Rightarrow both local & non-local approaches struggle with large numerical cancellations

► higher orders:

- more complex Matrix Elements rescue system (quad?)
- * more complex integrand whole collection of correlated MEs & counterterms each with separate measurement functions (branches) & scales (e.g.: α_s , PDFs), ...

.

- *★* how realistic to put the full thing on e.g. GPUs? *→* in the interim: attack smaller ingredients (ME, LIPS, ...)?
- current paradigm: "embarrassingly parallel" problem tackled using CPUs on large clusters
 - * some NNLO 2 \rightarrow 3 calculations reaching computing limits
 - $\hookrightarrow \textit{ more efficient method @ NNLO needed?}$
 - * N³LO 2 \rightarrow 1 with slicing difficult to extrapolate to high-precision pheno.
 - \hookrightarrow compute power corrections? better observables? ...
 - * N³LO 2 \rightarrow 1 with subtraction good performance but relies on additional TH input

SUMMARY

- ► Infrared singularities core bottle neck in precision calculations
- \Rightarrow both local & non-local approaches struggle with large numerical cancellations

► higher orders:

- more complex Matrix Elements rescue system (quad?)
- * more complex integrand whole collection of correlated MEs & counterterms each with separate measurement functions (branches) & scales (e.g.: α_s , PDFs), ...
- *★* how realistic to put the full thing on e.g. GPUs? *→* in the interim: attack smaller ingredients (ME, LIPS, ...)?
- **current paradigm:** "embarrassingly parallel" problem tackled using CPUs on large clusters
 - * some NNLO 2 \rightarrow 3 calculations reaching computing limits
 - \hookrightarrow more efficient method @ NNLO needed?
 - * N³LO 2 \rightarrow 1 with slicing difficult to extrapolate to high-precision pheno.
 - \hookrightarrow compute power corrections? better observables? ...
 - * N³LO 2 \rightarrow 1 with subtraction good performance but relies on additional TH input

