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HARD SCATTERING —- PERTURBATION THEORY
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∫ dΦn ( )
“simple” Matrix 

Elements
no exceptional 
configurations

embarrassingly parallel 
problem with simple & 

well-behaved ingredients 
 well suited for 

parallelisation
⇒



HARD SCATTERING —- PERTURBATION THEORY
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∫ dΦn ( ) ∫ dΦn+1 ( )
why does it not extend simply to higher orders? 

  singularities (individually ill-defined)↭



SUBTRACTIONS —- A TOY EXAMPLE

4

V

+ )( R

1
ϵ

+ a ∫
1

0

1 + bx
x1+ϵ

dx

๏ dimensionally regularized:   

‣  

‣ everything up to   

๏ emission “phase space”:  

‣  

‣ no emission    
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SUBTRACTIONS —- A TOY EXAMPLE
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๏ measurement function   

‣ acceptance 
‣ jet algorithm 
‣ isolation 
‣ distributions 
‣ …

𝒥(x)

fiducial

?
Very complicated / impossible(?)  
to do analytically 

flexible numerical 
approach desired 

  2 strategies↪ (notebook: indico “toy-nlo”)



SUBTRACTIONS —- A TOY EXAMPLE:  SUBTRACTION
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Statistical fluctuations at fixed order
• A major source of statistical fluctuations in fixed order differential distributions 

are the 'misbinning' effects 

• At NLO: the real-emission and IR-subtraction terms can end up in 
different bins 

• This depends on the mapping between the n and (n+1)-body phase-
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๏ regulate divergence in the integrand 

‣ can set   

๏ challenge:  numerical cancellations 
‣ floats not exact 
‣ outliers & “misbinning”

ϵ = 0
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fiducialSUBTRACTIONS — A TOY EXAMPLE:  SLICING

need to control the error!

x

dσ
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ln x

1/ϵ ξ

๏ regulate divergence with cutof 

‣ error term   

๏ challenge:  numerical cancellations 

‣  cancels against 2nd term 

‣ higher target precision

𝒪(ξn)

ln ξ

FIG. 2. ⌧ -dependence of NLO coe�cients for the gg, qg and q̄g partonic channels, in the NNLOJET setup.
The plots on the left show the result when T1 is computed in the hadronic c.o.m. and the ones on the right
indicate the corresponding result when evaluating this quantity in the boosted frame. The (blue) solid lines
correspond to the fit form in Eq. (7), with the dot-dashed lines representing the errors on the asymptotic
value of the fit. The exact results, computed in MCFM using dipole subtraction, are shown as the black
dashed lines.
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ξ

H+jet
[Campbell, Ellis, Seth '19]



SUBTRACTIONS — NLO
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indistinguishable:

≃ ≃

Eg → 0 θqg → 0
soft: collinear:

V

+ )( R

• single unresolved• 1/ε2, 1/ε

∼
1

(pa − k1)2
∼

1
pT,1

Infrared cancellation:
๏ subtraction: more complex integrands 

‣ correlated ME & counterterms 
๏ slicing: higher precision target 

‣ non-local cancellations

conceptually solved: 

CS dipoles,  FKS, …

pH
T = pT,1 → 0



SUBTRACTIONS — NNLO
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+( VV RV
+ )RR

single unresolved    H+jet @ NLO≃

• 1/ε2, 1/ε 

• single unresolved

• single unresolved  

• double unresolved

• 1/ε4, 1/ε3, 1/ε2, 1/ε

fully unresolved    H @ NNLO≃



∫
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dx∫

1

0
dy

1 + bx+cy+dxy
x1+ϵ y1+ϵ

𝒥(x, y)

∫
1

0
dx∫

1

0
dy

1
x y [(1 + bx+cy+dxy) 𝒥(x, y)

−(1 + cy) 𝒥(0,y)
−(1 + bx) 𝒥(x,0)

+ 𝒥(0,0)]

๏ conceptual challenge  NLO  NNLO:  overlapping singularities⇝

SUBTRACTIONS — NNLO (DOUBLE-REAL)

⇝

local subtraction

(toy double real)

x → 0 y → 0 x, y → 0

spurious limits

Sectors can disentangle 
counterterms but will 

induce large cancellations 
between integrated sectors



๏ impact from outliers:  a subtle but important issue

SUBTRACTIONS — NNLO (DOUBLE-REAL)

NNLO QCD corrections for Z+jet production Thomas Morgan

Figure 3: The integral of the yZ distribution, s(N/k,k ·M) at NNLO as a function of k. The errors on the
individual data points are statistical. The green band denotes the total cross section evaluated at k = 100 with
its statistical uncertainty.
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Figure 4: The ratio of the NNLO against the NLO prediction for individual bins of the rapidity distribution
of the Z boson for different values of k. The grey bands are the unweighted result. The errors on the
individual data points are statistical.

Similar conclusions can be drawn from transverse momentum distribution of the Z boson
shown in Fig. 5. We observe that above the pjet

T cut, the pZ
T distribution is stable as a function of k,

even at low values. This demonstrates that there are fewer outliers in this distribution compared to
the rapidity distribution of the Z boson, as expected, and our errors are more reliable at small k.

Below the pjet
T cut we see a sizeable shift in the central value for small k. This can be under-

stood because this region probes configurations where the extra partonic radiation present at NLO
and NNLO can compensate the transverse momentum of the leading jet, generating a Z-boson
transverse momentum below the pjet

T cut—the well known Sudakov shoulder phenomenon [20].
This unusual configuration is very sensitive to the jet definition and is prone to generating outliers
because we are close to the physical cuts.
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๏         naive combination of raw data 

๏         post-processing (outlier rejection / weighted avg.)

[Gehrmann-De Ridder, Gehrmann, Glover, AH, Morgan '16]



๏ automated one-loop providers: 
‣ MG5, OpenLoops, Recola, Gosam, NLOX, … 

๏ new in context of NNLO (RV)    probe unresolved regions 

‣ numerical instabilities from e.g. spurious  singularities;   

⇝

1/Δ Δ = det(pi ⋅ pj)

SUBTRACTIONS — NNLO (REAL-VIRTUAL)

,  
 

E → 0
cos θ → 1

๏ rescue system  
for numerical stability 

‣ dp (f64)  hp (hybrid):   
–  penalty 

‣ dp (f64)  qp (f128):   
–  penalty

→
× 𝒪(2 10)

→
× 𝒪(10 100)

840�4�8�12�16�20�24�28�32�36

accuracy A

10�1

10�2

10�3

10�4

10�5

10�6

10�7

10�8

10�9

� c
ol
l

intial-state collinear radiation in gg ! tt̄g at O(�4
s)

OL1+CutTools dp

OL1+Collier dp

OL2 hp mode 2

OL2 qp

Figure 6: Relative numerical accuracy A for gg ! tt̄g (upper plot) and uū ! W+W�g (lower
plot) at NLO QCD versus the degree of collinear (⇠coll) or soft singularity (⇠soft) as
defined in (5.2). For each value of ⇠coll/soft the numerical accuracy is estimated with a
sample of 104 randomly distributed underlying 2 ! 2 hard events. The plotted central
points and variation bands correspond, respectively, to the average and 99.9% confidence
interval of A. Quad-precision benchmarks (blue) are compared to OpenLoops 2 with
additional hybrid-precision improvements for IR regions (hp_mode=2, red) and also to
OpenLoops 1 with Collier (yellow) or CutTools (turquoise) in dp.

54

[Buccioni, Lang, Lindert, Maierhöfer, Pozzorini, Zhang, Zoller '19]



๏ among most challenging amplitudes so far:    (massless)  

‣ few–  seconds per phase-space point 

๏ pentagon functions  (Feynman integrals)  

2 → 3

𝒪( 100)

SUBTRACTIONS — NNLO (DOUBLE-VIRTUAL)

Precision Correct digits Timing (s)

double 13 2.5
quadruple 29 180
octuple 60 3900

Table 5: Evaluation times of all pentagon functions on a typical phase-space point. Eval-
uation is performed in a single thread.

massless particles 10. We evaluate all pentagon functions in double and quadruple precision
at each phase space point, and we use the latter to compute the accuracy of the former.
We characterize the accuracy of the evaluation ĝi(X) of the i-th pentagon function on a
kinematical point X by the logarithmic relative error (“correct digits”) ri(X) which we
define as

ri(X) = � log10

�����
ĝi(X)� ĝ(q)

i (X)

ĝ(q)
i (X)

����� , (7.4)

where ĝ(q)
i (X) is the numerical evaluation of the same function in quadruple precision. We

define the minimal logarithmic relative error among all pentagon functions at the kinemat-
ical point X as

R(X) = min
i
[ri(X)], i 2 {all pentagon functions}. (7.5)

We display the distribution of R(X) over the phase space in fig. 4. We observe very good
numerical stability in the bulk of the phase space: only 0.1% of the phase-space points
evaluate with less than 8 correct digits.

All 12 kinematical points X(R<6) with R < 6 are from the region of the phase space
with 0 < � ⌧ 1 . As we discussed in section 6, some pentagon functions diverge in the
limit � ! 0. But the divergence is only logarithmic. So, with minX(R<6)

[�] & 10�7, the
absolute values of the divergent pentagon functions still remain relatively small. However,
the condition number  of e.g. the function g(1)2,10 = log( i �) diverges much faster,

(g(1)2,10)
�!0
���! O

✓
1

�2 log2(�)

◆
. (7.6)

In other words, numerical evaluation of the function g(1)2,10 in the regime � ⌧ 1 becomes
dominated by the rounding error of the input data (Mandelstam invariants) much earlier
than the function itself becomes large. Let us mention that it should be possible to cir-
cumvent this issue in applications to numerical evaluation of complete two-loop amplitudes
expressed in terms of the pentagon functions. We leave these considerations for future
studies.

10
More concretely, we use an integration grid, optimized for Monte-Carlo integration of the leading order

qq̄ ! ��� matrix elements over the fiducial phase space defined by the analysis of [85]. We used MATRIX
[86] to obtain the integration grid.

– 38 –

Talks by  
D. Maitre, 
S. Badger, 

T. Gehrmann

[Chicherin, Sotnikov '21]
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+( VV RV
+ )RR

๏ typical runtime for  processes:   CPU core hours 

‣ V+jet, di-jet, …    VV:RV:RR    1:20:100 (CPU hours) 

๏ an extreme  example:   CPU core hours 

‣ tri-jet    VV:RV:RR    1:100:200 (CPU hours) 

2 → 2 𝒪(100k)

↭ ∼

2 → 3 𝒪(100M)

↭ ∼
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double unresolved    H+jet @ NNLO≃

• 1/ε4, 1/ε3, … 

• single unresolved

• 1/ε2, 1/ε 

• single unresolved  

• double unresolved

• 1/ε6, 1/ε5, … • single unresolved  

• double unresolved 

• triple unresolved

fully unresolved  (   )    H @ N3LO ↭ pH
T → 0 ≃

+( VVV RRR
+ )RRV

+
RVV

…two methods for 
“ ”2 → 1

isolate “radiating” part
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+ δσV
N3LO qT>qcut
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+ 𝒪 ((qcut
T /Q)n)

⇝

𝒪(ϵ) %

⇝

99.9… %

analytic V+jet calculation pushed to the limit {
‣ 2-loop amplitudes in 

single-unresolved limit 

‣ 1-loop amplitudes in 
double-unresolved limits

(CPU cost)

[Chen, Gehrmann, Glover, AH, Yang Zhu '21]
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and the beam functions [70–72], using the rapidity reg-
ulator proposed in [73]. These newly available results
provide the key ingredients for applying qT -subtraction
to processes with colorless final states at N3LO. The
perturbative beam functions are expressed in terms of
harmonic polylogarithms [74] up to weight 5, which can
be evaluated numerically with standard tools [75].

The resolved contribution above the q
cut
T for N3LO

Drell-Yan production contains the same ingredients of
the NNLO calculation with one extra jet. Fully di↵eren-
tial NNLO contributions for Drell-Yan-plus-jet produc-
tion have been computed in [76–78]. The application to
N3LO qT -subtraction further requires stable fixed-order
predictions at small qT [79–81], enabling the cancella-
tion of the q

cut
T between resolved and unresolved contri-

butions to su�cient accuracy. In this Letter, we em-
ploy the antenna subtraction method [82–85] to compute
Drell-Yan production above q

cut
T up to NNLO in pertur-

bation theory, implemented in the parton-level event gen-
erator NNLOJET [76, 79]. To achieve stable and reliable
fixed order predictions down to the qT ⇠ 0.4 GeV re-
gion, NNLOJET has been developing dedicated optimiza-
tions of its phase space generation based on the work
in [68]. This ensures su�cient coverage in the multiply
unresolved regions required for the qT -subtraction.

RESULTS

Applying the qT -subtraction method described above,
we compute Drell-Yan lepton pair production to N3LO
accuracy. For the phenomenological analysis, we restrict
ourselves to the production of a di-lepton pair through a
virtual photon only. We take ECM = 13 TeV as center
of mass collision energy and fix the invariant mass of
the di-lepton pair at Q = 100 GeV. Central scales for
renormalization (µR) and factorization (µF ) are taken at
Q, allowing us to compare with the N3LO total cross
section results from [14]. We use the central member of
PDF4LHC15_nnlo PDFs [86] throughout the calculation.

To establish the cancellation of qcutT -dependent terms
between resolved and unresolved contributions, Fig. 1
displays the qT distribution of virtual photon obtained
with NNLOJET (used for the resolved contribution) and
obtained by expanding the leading-power factorised pre-
diction at small qT using Eq. (2) up to O(↵3

s). The high-
est logarithms at this order are 1/qT ln5(Q/qT ). The
singular qT distribution is expected to match between
NNLOJET and SCET, which is a prerequisite for the
qT -subtraction method. This requirement is fulfilled by
the nonsingular contribution (NNLOJET minus SCET)
demonstrated in the bottom panel of Fig. 1. Remarkably,
the agreement starts for qT at about 2 GeV and extends
down to 0.32 GeV for each perturbative order. Numerical
uncertainties from phase space integrations are displayed
as error bars. We emphasize that the observed agreement

FIG. 1: Perturbative contributions to transverse mo-
mentum distribution of the virtual photon up to ↵

3
s.

The upper panel displays the qT -distribution obtained
from NNLOJET and from expanding SCET to each
order. The bottom panel contains the nonsingular re-

mainder (NNLOJET minus SCET).

FIG. 2: Inclusive N3LO QCD corrections to total
cross section for Drell-Yan production through a vir-

tual photon.

is highly nontrivial, providing very strong support to the
correctness of the NNLOJET and SCET predictions.

In Fig. 2, we display the N3LO QCD corrections to
the total cross section for Drell-Yan production through
a virtual photon, using the qT -subtraction procedure, de-
composed into di↵erent partonic channels. The cross
section is shown as a function of the unphysical cut-
o↵ parameter q

cut
T , which separates resolved and un-

resolved contributions. Integrated over qT , both the

𝒪(150 fb) − 𝒪(150 fb) ∼ − 8 fb

n = 2

[Chen, Gehrmann, Glover, AH, Yang Zhu '21]
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FIG. 2. Dependence of the extracted NkLO fiducial cross
sections shown in Tab. I on the pcutT infrared parameter, both
for the symmetric (2a) and product (2b) cuts. In the latter
case, the NLO correction has been rescaled by a factor 1/4.
The dashed vertical line indicates our default value pcutT =
0.81GeV. The blue band is obtained by combining linearly
the statistical and slicing errors.

0.04%, which indicates that the predictions with product
cuts can be computed accurately with fixed-order per-
turbation theory. Nevertheless, we still observe a more
reliable estimate of the theoretical uncertainties when re-
summation is included.

In order to study the stability of our predictions
against variations of the infrared parameter pcutT , in Fig. 2
we show the dependence of the NkLO correction (i.e. the
O(↵k

s ) term in the expansion of the fiducial cross sec-
tion) on pcutT down to pcutT ' 0.4GeV. In the case of
symmetric cuts (2a), we observe that the inclusion of the
linear power corrections is essential to reach a plateau at
small pcutT , achieving the necessary independence of the
result on the slicing parameter. We thus obtain an excel-
lent control over the estimate of the slicing error quoted
in Tab. I. Fig. 2 also clearly shows that the omission of
such linear corrections leads to an incorrect result for the
fiducial cross section computed with the qT -subtraction
method, unless d�NNLO

DY+jet
can be computed precisely down

to pcutT ⌧ 1GeV. Conversely, in the case of the prod-
uct cuts (2b), we observe a much milder dependence of
the NkLO correction on pcutT , and the further inclusion

FIG. 3. Lepton transverse momentum distribution up to
N3LO+N3LL order in the fiducial phase space (2a). The la-
bels indicate the order in the fiducial cross section.

of power corrections does not lead to any visible di↵er-
ence, consistent with the fact that such corrections are
quadratic in most of the phase space [100]. As an addi-
tional sanity check, we have repeated the test of Fig. 2 for
each individual flavour channel contributing to the N3LO
Drell–Yan cross section. The results are collected in the
supplementary material [103], together with a discussion
on alternative approaches to qT subtraction employing a
fitting procedure, and a comparison to the literature.

Finally, the computation presented in this letter al-
lows us to obtain, for the first time, N3LO+N3LL predic-
tions for the kinematical distributions of the final-state
leptons. A particularly relevant distribution is the lep-
tonic transverse momentum, which plays a central role
in the precise extraction of the W -boson mass at the
LHC [2, 6]. Fig. 3 shows the di↵erential distribution of
the negatively charged lepton at three di↵erent orders,
for our default value pcutT = 0.81GeV. Unlike for the
fiducial cross section, the inclusion of p``T resummation in
this observable is crucial to cure local (integrable) diver-
gences in the spectrum due to the presence of a Sudakov
shoulder [119] at p`

�

T ⇠ m``/2. The figure shows an ex-
cellent convergence of the perturbative prediction, with
residual uncertainties at N3LO+N3LL of the order of a
few percent to the right of the shoulder, which grow at
most up to the O(5%) level for p`

�

T . m``/2.

Conclusions.— In this letter, we have presented
state-of-the-art predictions for the fiducial cross section
and di↵erential distributions in the Drell–Yan process at
the LHC, through both N3LO and N3LO+N3LL in QCD.
These new predictions are obtained through the combi-
nation of an accurate NNLO calculation for the produc-
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case, the NLO correction has been rescaled by a factor 1/4.
The dashed vertical line indicates our default value pcutT =
0.81GeV. The blue band is obtained by combining linearly
the statistical and slicing errors.
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cuts can be computed accurately with fixed-order per-
turbation theory. Nevertheless, we still observe a more
reliable estimate of the theoretical uncertainties when re-
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symmetric cuts (2a), we observe that the inclusion of the
linear power corrections is essential to reach a plateau at
small pcutT , achieving the necessary independence of the
result on the slicing parameter. We thus obtain an excel-
lent control over the estimate of the slicing error quoted
in Tab. I. Fig. 2 also clearly shows that the omission of
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fiducial cross section computed with the qT -subtraction
method, unless d�NNLO
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of power corrections does not lead to any visible di↵er-
ence, consistent with the fact that such corrections are
quadratic in most of the phase space [100]. As an addi-
tional sanity check, we have repeated the test of Fig. 2 for
each individual flavour channel contributing to the N3LO
Drell–Yan cross section. The results are collected in the
supplementary material [103], together with a discussion
on alternative approaches to qT subtraction employing a
fitting procedure, and a comparison to the literature.

Finally, the computation presented in this letter al-
lows us to obtain, for the first time, N3LO+N3LL predic-
tions for the kinematical distributions of the final-state
leptons. A particularly relevant distribution is the lep-
tonic transverse momentum, which plays a central role
in the precise extraction of the W -boson mass at the
LHC [2, 6]. Fig. 3 shows the di↵erential distribution of
the negatively charged lepton at three di↵erent orders,
for our default value pcutT = 0.81GeV. Unlike for the
fiducial cross section, the inclusion of p``T resummation in
this observable is crucial to cure local (integrable) diver-
gences in the spectrum due to the presence of a Sudakov
shoulder [119] at p`

�

T ⇠ m``/2. The figure shows an ex-
cellent convergence of the perturbative prediction, with
residual uncertainties at N3LO+N3LL of the order of a
few percent to the right of the shoulder, which grow at
most up to the O(5%) level for p`

�

T . m``/2.

Conclusions.— In this letter, we have presented
state-of-the-art predictions for the fiducial cross section
and di↵erential distributions in the Drell–Yan process at
the LHC, through both N3LO and N3LO+N3LL in QCD.
These new predictions are obtained through the combi-
nation of an accurate NNLO calculation for the produc-

n = 1

n = 2

impact of the error term

(CPU cost)

[Chen, Gehrmann, Glover, AH, Yang Zhu '21]
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4

Fixed order �pp!�⇤(fb)

LO 339.62+34.06
�37.48

NLO 391.25+10.84
�16.62

NNLO 390.09+3.06
�4.11

N3LO 382.08+2.64
�3.09 [14]

N3LO only qcutT = 0.63 GeV qcutT ! 0 fit [14]

qg �15.32(32) �15.34(54) �15.29

qq̄ + qQ̄ +5.06(12) +5.05(12) +4.97

gg +2.17(6) +2.19(6) +2.12

qq + qQ +0.09(13) +0.09(17) +0.17

Total �7.98(36) �8.01(58) �8.03

TABLE I: Inclusive cross sections with up to N3LO
QCD corrections to Drell-Yan production through
a virtual photon. N3LO results are from the qT -
subtraction method and from the analytic calculation
in [14]. Cross sections at central scale of Q = 100 GeV
are presented together with 7-point scale variation.
Numerical integration errors from qT -subtraction are

indicated in brackets.

NNLOJET and SCET predictions involve logarithms up
to ln6(Q/q

cut
T ), which become explicit in the SCET cal-

culation. The NNLOJET calculation produces the same
large logarithms but with opposite sign, as well as power
suppressed logarithms (qcutT )m lnn(Q/q

cut
T ), where m � 2

and n  6. The physical N3LO total cross section con-
tribution must not depend on the unphysical cuto↵ q

cut
T ;

therefore it is important to choose a su�ciently small qcutT
to suppress such power corrections.

Figure 2 demonstrates the dependence on q
cut
T of the

SCET+NNLOJET predictions is negligible for values be-
low 1 GeV. In fact, for all partonic channels except qg,
the cross section predictions become flat and therefore
reliable already at qcutT ⇠ 5 GeV. It is only the qg chan-
nel that requires a much smaller q

cut
T , indicating more

sizeable power corrections than in other channels.

Also shown in Fig. 2 in dashed lines are the inclusive
predictions from [14], decomposed into di↵erent partonic
channels. We observe an excellent agreement at small-qT
region with a detailed comparison given in Table I. We
present total cross sections at small qcutT value (0.63 GeV)
and results from fitting the next-to-leading power sup-
pressed logarithms with q

cut
T extrapolated to zero. This

agreement provides a fully independent confirmation of
the analytic calculation [14], and lends strong support to
the correctness for our qT -subtraction-based calculation.
We observe large cancellations between qg channel (blue)
and qq̄ channel (orange). While the inclusive N3LO cor-
rection is about �8 fb, the qg channel alone can be as
large as �15.3 fb. Similar cancellations between qg and
qq̄ channel can already be observed at NLO and NNLO.
The numerical smallness of the NNLO corrections (and
of its associated scale uncertainty) is due to these cancel-

FIG. 3: Di-lepton rapidity distribution from LO to
N3LO. The colored bands represent theory uncer-
tainties from scale variations. The bottom panel is
the ratio of the N3LO prediction to NNLO, with dif-

ferent cuto↵ q
cut
T .

lations, which may potentially lead to an underestimate
of theory uncertainties at NNLO.
In Fig. 3, we show for the first time the N3LO pre-

dictions for the Drell-Yan di-lepton rapidity distribution,
which constitutes the main new result of this Letter. Pre-
dictions of increasing perturbative orders up to N3LO
are displayed. We estimate the theory uncertainty band
on our predictions by independently varying µR and µF

around 100 GeV with factors of 1/2 and 2 while elimi-
nating the two extreme combinations (7-point scale vari-
ation). With large QCD corrections from LO to NLO,
the NNLO corrections are only modest and come with
scale uncertainties that are significantly reduced [5, 7, 8].
However, as has been observed for the total cross sec-
tion, the smallness of NNLO corrections is due to cancel-
lations between the qg and qq̄ channels. Indeed, Fig. 3
shows clearly that the N3LO correction is large compared
with NNLO, and that the NNLO scale uncertainty band
fails to overlap with N3LO over the full rapidity range.
It should however be noted that the uncertainties from
PDFs, especially from the missing N3LO e↵ects in their
evolution, can be at the percent level [14], which high-
lights the necessity for a consistent PDF evolution and
extraction at N3LO in the future.
In the bottom panel of Fig. 3, we show the ratio of

the N3LO rapidity distribution to the previously known
NNLO result [7, 8]. As can be seen, the corrections are
about �2% of the NNLO results, and are flat over a
large rapidity range. There is minimal overlap between
the scale uncertainty bands only at large y�⇤ . To test the
numerical stability at N3LO, three values of qcutT are ex-
amined in the bottom panel. We observe the qcutT depen-

|yγ* |

๏ investment:  
   CPU core hours 

๏ in principle,  
fully differential 

๏ experiments can measure 
DY triply-differentially in 

 bins! 

๏ in practice, extrapolated 
 CPU core hours 

is getting problematic

↪ 𝒪(5M)

𝒪(500)

𝒪(100M)
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[Chen, Gehrmann, Glover, AH, Yang Zhu '21]
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๏ a local subtraction can 
significantly improve the 
performance 

๏ requires inclusive prediction  
(so far only ggH @ LHC) 

๏ reduce cost to underlying 
H+jet @ NNLO level:  

   CPU core hours↪ 𝒪(100k)

|yH |

[Chen, Gehrmann, Glover, AH, Mistlberger, Pelloni ’21] 
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SUMMARY

➤ Infrared singularities — core bottle neck in precision calculations 

⇒   both local & non-local approaches struggle with large numerical cancellations 

➤ higher orders: 

❖ more complex Matrix Elements — rescue system (quad?) 

❖ more complex integrand — whole collection of correlated MEs & counterterms each with separate measurement 
functions (branches) & scales (e.g.: , PDFs), … 

❖ how realistic to put the full thing on e.g. GPUs?  
  in the interim: attack smaller ingredients (ME, LIPS, …)? 

➤ current paradigm:   “embarrassingly parallel” problem tackled using CPUs on large clusters 

❖ some NNLO  calculations reaching computing limits 
    more efficient method @ NNLO needed? 

❖ N3LO  with slicing — difficult to extrapolate to high-precision pheno. 
    compute power corrections? better observables? … 

❖ N3LO  with subtraction — good performance but relies on additional TH input
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