

ALICE result QM preview

ALICE: total 30 parallel talks & 61 posters

MinJung Kweon Inha University Heavy Ion Meeting, 2023.8.25

Heavy flavour related talks/posters in ALICE for QM

Investigating the early magnetic field of QGP via heavy-flavour polarisatio Probe parton propagation in heavy-ion collisions with ALICE heavy-flavor Latest ALICE results on charm and beauty hadronization mechanisms in Heavy-flavor jet substructure for probing the flavour dependences of QCE First energy-energy correlators measurements for inclusive and heavy-flat Heavy-flavor jet substructure for probing the flavour dependences of QCD First energy-energy correlators measurements for inclusive and heavy-flav

Posters

Measurement of \ \ \ \ \ 20c \ production as a function of multiplicity via hadron -Azimuthal Correlations of Heavy-Flavor Decay Electrons and Charged Ha The measurement of $\Lambda + c/D0$ as a function of multiplicity at 5.02 TeV in pp Measurement of non-prompt D-mesons production in pp collisions at $\sqrt{s} =$ Measurement of Xic0 via semileptonic decay in collisions of pp at 13 TeV Multiplicity dependency of $\Xi + c$ production in pp collisions at $s\sqrt{1} = 13$ TeV v Ω0c production in pp collisions at $s\sqrt{}$ = 13 TeV with ALICE

Multiplicity dependency of $\Xi + c$ production in pp collisions at $s\sqrt{1} = 13$ TeV w

Today for the itopic related to the heavy-flav

772023 Charm production and fragmentation fractions in pp at $\sqrt{s} = 13$ TeV [arXiv:2308.04877]

Study of flavor dependence of the baryon-to-meson ratio in pp at $\sqrt{s} = 13$ TeV [arXiv:2308.04873] Non-prompt D_s-meson Elliptic Flow in Pb–Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV [arXiv:2307.14084]

MinJung Kweon, Inha University, Heavy Ion Meeting

on studies with ALICE	Luca Micheletti		
ir measurements	Ravindra Singh	Ira Singh	
hadronic collisions	Jianhui Zhu	w/ DQ	
) parton showers with ALICE	Nima Zardoshti		
vour tagged jets	Wenqing Fan		
) parton showers with ALICE	Nima Zardoshti	w/ JE	
vour tagged jets	Wenqing Fan	w/ JE	

decay in pp collisions at s $\sqrt{1}$ = 13 TeV with ALICE	Tao Fang			
adrons with the ALICE Detector	Amanda Flores			
and p-Pb collisions in ALICE experiment	Oveis Sheibani			
13 TeV using ML technique with ALICE	Renu Bala			
and p-Pb at 5.02 TeV with ALICE	Chong Kim			
vith ALICE	Jaeyoon Cho			
	Tiantian Cheng			
vith ALICE	Jaeyoon Cho			
your hadronization based on three most recontractorepr				

effects parton spectra dp_T

Heavy flavour production in medium: hadronization

MinJung Kweon, Inha University, Heavy Ion Meeting

Question on the universality

Fragmentation Issues

Fragmentation Function (FF):

provides information about the energy fraction which is transfered from quark to a given meson (the larger m_Q the harder the fragmentation function)

Questions to be answered:

> what's the **proper parametrization** of non-perturbative frag. function?

- Peterson: $f(z) \propto 1/[z(1-\frac{1}{z}-\frac{\varepsilon}{(1-z)})^2]$
- Kartvelishvili: $f(z) \propto z^{\alpha}(1-z)$
- Lund symmetric: $f(z) \propto \frac{1}{z}(1-z)^a \exp(-\frac{bm_t^2}{z})$
- Bowler: $f(z) \propto \frac{1}{z^{1+r_b m_t^2}} (1-z)^a \exp(-\frac{bm_t^2}{z})$

▷ is fragmentation function universal? (i.e. are FF portable from e^+e^- to ep and pp?).

Zuzana Rúriková

Charm Fragmentation Function

MinJung Kweon, Inha University, Heavy Ion Meeting

Heavy flavour production in medium: hadronization

• Parametrized on data and assumed to be "universal"

• In A-A collisions:

 \rightarrow Energy-loss of hard-scattered partons while traversing the QGP \rightarrow Modified fragmentation function D(z) by "rescaling" the variable z

Hadronization in medium

Phase space at the hadronization is filled with partons

 → Single parton description may not be valid ar
 → No need to create qq pairs via splitting / stription caking
 → Parlons that arc "close" to each other in phase space simply recombine into hadrons

Greco et al., PRL 90 (2003) 202302 Fries et al., PRL 90 (2003) 202303 Hwa, Yang, PRC 67 (2003) 034902

Recombination vs. fragmentation:

→ Competing mechanisms

٠

→ Recombination naturally enhances baryon/meson ra

Hadronization in vacuum

Hadronization in vacuum

Hadronization in vacuum

•Coalescence:

 \rightarrow recombination of partons in QGP close in phase space

$$\frac{dN_{Hadron}}{d^2 p_T} = g_H \int \prod_{i=1}^n p_i \cdot d\sigma_i \frac{d^3 p_i}{(2\pi)^3} f_q(x_i, p_i) f_W(x_1, \dots, x_n; p_1, \dots, p_n)$$

Have described first AA observations in light sector for the enhanced baryon/meson ratio and elliptic flow splitting

Statistical hadronization

 \rightarrow equilibrium + hadron-resonance gas + freeze-out temperature \rightarrow production depends on hadron masses and degeneracy, and on system properties Require total charm cross section

MinJung Kweon, Inha University, Heavy Ion Meeting

 p_n) $\delta(p_T - \sum_i p_{iT})$

ALICE will show...

Measuring all the way down to p_T,, differentiating, flavour dependences, other characteristics to understand the behavior...

Charm production and fragmentation fractions in pp at $\sqrt{s} = 13$ TeV [arXiv:2308.04877] Non-prompt D_s-meson Elliptic Flow in Pb–Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV [arXiv:2307.14084]

MinJung Kweon, Inha University, Heavy Ion Meeting

Study of flavor dependence of the baryon-to-meson ratio in pp at sqrt(s) = 13 TeV [arXiv:2308.04873]

Charm production in pp

No significant dependence on the pt 1.6 →common fadgerEntation functionsof charma quarks to Finesons at different LHC energies pp s = 5 TeVMinJung Kweon, Inha University, Heavy Ion Meeting 1.2

Charm-quark fragmentation-fraction ratio

Strange to non-strange charm-meson production ratio

doesn't show any significant dependence of the collision system & energy!

MinJung Kweon, Inha University, Heavy Ion Meeting

$\mathrm{d}\sigma/\mathrm{d}y _{ y <0.5}~(\mu\mathrm{b}),~p_\mathrm{T}>0$		
D^0	749 ± 27 (stat.) $^{+48}_{-50}$ (syst.) ± 12 (lumi.) ± 6 (BR)	
D^+	$375 \pm 32 \text{ (stat.)} ^{+35}_{-35} \text{ (syst.)} \pm 6 \text{ (lumi.)} \pm 6 \text{ (BR)}$	
D^+_s	$120 \pm 11 \text{ (stat.)} ^{+12}_{-13} \text{ (syst.)} ^{+25}_{-10} \text{ (extrap.)} \pm 2 \text{ (lumi.)} \pm 3 \text{ (BR)}$	
$\Lambda_{ m c}^+$	329 ± 15 (stat.) $^{+28}_{-29}$ (syst.) ± 5 (lumi.) ± 15 (BR)	
$\Xi_{\rm c}^0$ [52]	$194 \pm 27 \text{ (stat.) } ^{+46}_{-46} \text{ (syst.) } ^{+18}_{-12} \text{ (extrap.) } \pm 3 \text{ (lumi.)}$	
Ξ_{c}^+	$187 \pm 25 \text{ (stat.)} ^{+19}_{-19} \text{ (syst.)} ^{+13}_{-59} \text{ (extrap.)} \pm 3 \text{ (lumi.)} \pm 82 \text{ (BR)}$	
J/ψ [84]	7.29 ± 0.27 (stat.) $^{+0.52}_{-0.52}$ (syst.) $^{+0.04}_{-0.01}$ (extrap.)	
D^{*+}	$306 \pm 26 \text{ (stat.)} ^{+33}_{-34} \text{ (syst.)} ^{+48}_{-17} \text{ (extrap.)} \pm 5 \text{ (lumi.)} \pm 3 \text{ (BR)}$	
$\Sigma_{ m c}^{0,+,++}$	$142 \pm 22 \text{ (stat.)} ^{+24}_{-24} \text{ (syst.)} ^{+24}_{-32} \text{ (extrap.)} \pm 2 \text{ (lumi.)} \pm 6 \text{ (BR)}$	

f_x: probability for a charm quark to hadronise with another quark of flavour x \Rightarrow D_s+/D⁰+D+

Production of prompt strange D mesons / prompt non-strange D mesons in e⁺e⁻, ep and pp collisions

Charm production in pp

Cross sections measurement of prompt D⁰, D⁺, D^{*+}, D_s⁺, Λ_c^+ , and Ξ_c^+ charm in pp at $\sqrt{s} = 13$ TeV

MinJung Kweon, Inha University, Heavy Ion Meeting

Significantly larger fraction of charm quarks hadronising to baryons is found compared to e+e-, ep collisions.

How about in Pb-Pb?

MinJung Kweon, Inha University, Heavy Ion Meeting

Charm-quark fragmentation fraction

Moving to B sector

FONNL calculations based on using fragmentation fraction from e^+e^- and $f(b \rightarrow \Lambda_b^0)/f(b \rightarrow B)$ LHCb measurement Non-prompt Λ_c^+ largely from the beauty baryons: good to investigate beauty baryon hadronization via non-prompt Λ_c^+

Similar trend to the prompt charm measurement!

MinJung Kweon, Inha University, Heavy Ion Meeting

arXiv:2308.04873

Study of flavor dependence of the baryon-to-meson ratio in pp at $\sqrt{s} = 13$ TeV

Baryon to meson ratios of different flavors

MinJung Kweon, Inha University, Heavy Ion Meeting

All the measurements for beauty, charm, and strange hadrons show a similar trend as a function of p_T and are compatible within the uncertainties \rightarrow Similar baryon formation mechanism among light, strange, charm and beauty hadrons?

Note: for LHCb, different normalization & should consider decay kinematics (for the other case) * These three tunes are characterized by different constraints on the time dilation and causality

Beauty-quark fragmentation fraction

and in e^+e^- collisions at LEP [68] for prompt and non-prompt production.

	ALICE	LEP average [68]
prompt Λ_c^+/D^0	$0.49 \pm 0.02(\text{stat})^{+0.05}_{-0.04}(\text{syst})^{+0.01}_{-0.03}(\text{syst})$ [60]	0.105 ± 0.013
non-prompt Λ_c^+/D^0	$0.47 \pm 0.06(\text{stat}) \pm 0.04(\text{syst})^{+0.03}_{-0.04}(\text{extrap})$	0.124 ± 0.016

MinJung Kweon, Inha University, Heavy Ion Meeting

Table 2: $p_{\rm T}$ -integrated $\Lambda_{\rm c}^+/{\rm D}^0$ production ratio measured at midrapidity (|y| < 0.5) in pp collisions at $\sqrt{s} = 13$ TeV

Significantly higher than that measured in e⁺e⁻

arXiv:2307.14084 Non-prompt D_s-meson Elliptic Flow in Pb–Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV

Weaker degree of thermalization for b

Λ_c^+/D^0

Charm production and fragmentation fractions in pp at sqrt(s) = 13 TeV

