Ph.D. research journey

Junlee Kim

August 26, 2023 Heavy-Ion Meeting Jeonbuk National University & Inha University

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Research activities during Ph.D.

- KOTO experiment at the J-PARC
- Searching for clean and rare kaon decay of $K_L \rightarrow \pi^0 \nu \bar{\nu}$
- Contributions to innermost sampling calorimeter

- ALICE experiment at the LHC
- Relativistic Heavy-Ion physics
- A wide range of experiences over PWGLF, PWGCF, PWGMM, PWGJE

Operating voltages of MPPCs for the KOTO experiment (2018. 06.)

I/V and fit: I=α(V-V_)²/[1-β(V-V_)²]

- Measurement of operating voltages for about 3,000 MPPCs
- Test successfully conducted

(日) (個) (目) (日) (日) (の)

$K_L \rightarrow 5\gamma + \gamma$ reconstruction with the sampling calorimeter (2018. 07.)

- Attenuation length measurement with cosmic-ray
- $K_L \rightarrow 5\gamma$ (CsI) + $\gamma_{\rm B}$ (Barrel) reconstruction
- Timing resolution using reconstructed $\gamma_{\rm B}$
- ICHEP 2018 3rd best poster awarded

Junlee Kim

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Angular reconstruction with the sampling calorimeter (2023. 04.)

- Measurement of incident photon directions identifies the decay vertex of 2 photons.
- Optimization of XGBoost hyperparameters
- Performance dependence of the number of inputs and training events
- NIM A 1052 (2023) 168261

R&D for the ongoing mass production (ongoing from 2022. 11.)

- Initial R&D for bundling 5 × 14 fibers (1 mm² square) with 5 tungsten plates using optical cement
- Study on polishment effect

・日本・「「」・「」・「」・(」・(」・

R&D for the ongoing mass production (ongoing from 2022. 11.)

- Mass production ongoing at KEK
- JBNU + PNU + KU contributing to mass production
- Plan for electron beam (500 MeV) test at Tohoku university

$p_{\rm T}$ -integrated yield ratio to charged pions (Collab. Rev. R1)

- Decreasing particle yield ratio of $f_0(980)$ to the charged pion with increasing multiplicity.
 - Dominant rescattering effects
- CSM overestimates yield ratio of the K^{*0} to charged pion due to the no consideration of interactions between the hadron gas and the decay products of K^{*0}.
- CSM calculations overestimate the ratio of $f_0(980)$ to the charged pion yields because of no rescattering effects.

$p_{\rm T}$ -integrated yield ratio of $f_0(980)$ to $K^{*0}(892)$

- Both particle yields are expected to be largely affected by the rescattering effects.
- Decreasing ratio with increasing multiplicity.
- CSM estimates the ratio to be increasing with the |S| = 2 assumption because the strangeness enhancement is more significantly there for f₀(980) than K^{*0}.
- The decreasing trend is qualitatively predicted using CSM model with the |S| = 0 assumption.
- Absence of strange quarks in $f_0(980)$ is also contradictory with the tetraquark suggestion for the $f_0(980)$ state.

$p_{\rm T}$ -differential yield ratio of $f_0(980)$ to charged pions

- Suppression of the particle yield ratio at low $p_{\rm T} < 4 \ {\rm GeV}/c$ in high-multiplicity events
- No suppression of the particle yield ratio at high $p_{\rm T} < 4~{\rm GeV}/c$
 - \rightarrow rescattering effects

$p_{\rm T}$ -differential yield ratio of f₀(980) to K^{*0}(892)

 f_0/K^{*0} ALICE $p-Pb, \sqrt{s_{NN}} = 5.02 \text{ TeV}$ -0.5 < y < 0 0-20% 60-100% • Suppression at entire $p_{\rm T}$ in high-multiplicity events 0.5 • Different $p_{\rm T}$ dependence from that of rescattering effects • Absence of the strangeness enhancement for -20%) -100%) $f_0(980)$ 1.5 <u>0</u>00 0.5 2 3 5 6 p_{τ} (GeV/c) 10/21▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ●

Junlee Kim

Nuclear modification factor of $f_0(980)$

2

p_ (GeV/c)

2

p_ (GeV/c)

8

8

Nuclear modification factor of $f_0(980)$

 No Cronin-like enhancement observed for f₀(980)
→ Conventional meson to be favored as the internal structure of f₀(980)

Junlee Kim

Searching for the origin of collectivity (2021. 05.)

- Constraints on the impact parameter in pp collisions with reconstructed jets to engineer the impact parameter
- No significance so far owing to poor statistical uncertainties
 - Will be improved with Run 3 data

b/fm

0

3

String shoving model (2021, 08.)

JKPS 79 (2021) 5, 447-454

- Alternative approach to explain the origin of the collectivity in small collision systems.
- Expanding strings produce transverse pressure in their overlapping region.
- Qualitative reproduction of experimental data after subtraction

Junlee Kim

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ●

Flow coefficients in small systems (Collab. Rev. R2)

- Flow extraction method proven with the ratio of jet fragmentation yields
- v_n as a function of multiplicity in small systems
 - Decreasing trend in pp collisions can be described by "GubsHyd"
 - "GubsHyd": analytical calculation for freeze-out energy density with $\tau T = \text{cte}$

Jet-production-dependent flow (Collab. Rev. R2)

- Constraints on the impact parameter in pp collisions with reconstructed jets to engineer the impact parameter
- No significance so far owing to poor statistical uncertainties
 - $\bullet\,$ Will be improved with Run 3 data

16/21

Junlee Kim

SHINCHON project (2023. 05.)

17/21

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ●

• Energy density (temperature): $R_{\rm pPb} < R_{\rm OO}$

• Interplay of formation time and energy density: crossing point of $R_{\rm pPb}$ and $R_{\rm OO}$

Junlee Kim

Luminosity in Run 3 (2022, 12.)

Length-scale Calibration: comparison of reconstructed vertices and beam separations from LHC.One of main corrections

Research interests - $f_0(980)$ production

- Event plane dependent $f_0(980)$ production in Pb–Pb
 - NCQ-scaling can provide the number of constituent quarks of $f_0(980)$
 - Access to high kinetic energy region thanks to Run 3 statistics
 - Participating in the event plane reconstruction task
- $f_0(980)$ production inside jets
 - Enhanced deuteron coalescence inside jets due to smaller average phase-space distance.
 - Measurement of coalescence probability for $f_0(980)$ from KK to further explore the internal structure of $f_0(980)$

Research interests - Collectivity in small systems

- Improvement of the measurement for the event-scale dependent flow with better statistics in high-multiplicity pp collisions
- Recent observation of enhanced long-range elliptic anisotropies inside high-multiplicity jets in pp collisions.
 - Single jet forming QGP-like state?
 - Measurement with identified particles?

Summary

Publications

- J. Kim, et al. "Model study on $\Upsilon(nS)$ modification in small collision systems", Phys. Rev. C 107 (2023) 5, 054905
- J. Kim, et al. "Simulation of angular resolution of a new electromagnetic sampling calorimeter", Nucl. Instrum. Meth. A 1052 (2023) 168261
- J. Kim, et al. "Exploring the string shoving model in Pythia8 for collective behaviors in pp collisions", J. Korean Phys. Soc. 79 no. 5, (2021) 447-454
- ALICE Collaboration, "Long- and short-range correlations and their event-scale dependence in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV", JHEP 05 (2021) 290

Ongoing projects

- Two manuscripts in internal reviews
- $f_0(980)$ production in Run 2 and Run 3
- Event plane reconstruction in Run 3
- Jet fragmentation shape in pp collisions
- Beam test preparation

Conferences

- Third J-PARC HEF-ex WS, Simulation of angular resolution of a new electromagnetic sampling calorimeter for the KOTO2 experiment, Parallel talk
- ExHIC 2022, Understanding the nature of light scalar meson with ALICE, Parallel talk
- $\bullet~$ INPC 2022, Understanding the nature of $f_0(980)$ with ALICE at the LHC, Parallel talk
- \bullet Confinement 2022, Understanding the nature of $f_0\,(980)$ with ALICE at the LHC, Parallel talk
- $\bullet\,$ SQM 2022, Understanding the nature of $f_0(980)$ with ALICE at the LHC, Parallel talk
- ATHIC 2021, Two-particle long-range correlations in small systems with ALICE, Parallel talk
- Initial Stage 2021, Characterizing system dynamics with shortand long-range correlations in pp, p-Pb, and Pb-Pb collisions at ALICE, Parallel talk
- $\bullet\,$ Hard Probes 2020, $f_0(980)$ resonance production in small collision systems with ALICE, Poster
- EPS-HEP 2019, Measurement of long-range correlations in pp collisions at 13 TeV with ALICE at the LHC, Parallel talk
- Initial Stage 2019, Measurement of long-range correlations in pp collisions at 13 TeV with ALICE at the LHC, Poster
- SQM 2019, Multiplicity dependence of f0(980) resonance production in pp collisions at 13 TeV with ALICE at the LHC, Poster
- ICHEP 2018, Performance of the KOTO Sampling Calorimeter, Poster

21/21

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ∽♀◇

BACKUP

22/21

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Junlee Kim