

중 성 자

> Heavy Ion Meeting 26 Aug. 2023

Beomkyu Kim Sungkyunkwan Unversity

### **Needs for the Nuclear Data**



Nuclear Data (핵데이터)

이터 확보가 요구됨

- **Not only** in nuclear astrophysics
- 수십 MeV 에너지 영역의 중성자 유도 단면적 핵 데이터 는 불충분하며 불확도가 큼
- 물성변화시험, 국방, 비파괴검사, 반도체 검사 등 다양 한 분야에서 고속 중성자 관련 핵 데이터에 대한 수요가 증가하고 있음





### 사용후 핵연료



### · 경수로 vs 중수로

- 경수로형 핵연료는 U-235(우라늄-235)의 농축도가 3~5% 정도인 농축 우라늄을 사용
- 중수로형 핵연료는 U-235 함유량이 0.7%인 천연 우라 늄 사용
- 경수로형 핵연료는 다발당 우라늄 무게가 450kg 정도 이며 4년 정도 사용
- 중수로형 핵연료는 다발당 우라늄 무게가 19kg 정도이 며 9개월 정도 사용
- 10년 정도 냉각된 중수로형 사용후핵연료의 경우 동일 조건의 경수로 사용후 핵연료 대비 열 발생량은 1/10, 방사능은 1/20 수준임

| 구분                     | 경수로형 핵연료                                       | 중수로형 핵연료                                     |
|------------------------|------------------------------------------------|----------------------------------------------|
| 국 <mark>내</mark> 보유 원전 | 207                                            | 47                                           |
| 개발국가                   | 미 국                                            | 캐나다                                          |
| 냉각재                    | 경수(H <sub>2</sub> 0)                           | 중수(D <sub>2</sub> 0)                         |
| 사용연료                   | 저농축우라늄(U-235 : 3~5%)                           | 천연우라늄(U-235 : 0.7%)                          |
| 연료<br>교체주기             | 18개월마다 1/3씩 교체                                 | 매일 일정량(16다발) 교체                              |
| 연평균<br>사용후핵연료<br>발생량   | 약 400톤<br>(약 20톤/기)                            | 약 350톤<br>(약 90톤/기)                          |
| 원자로<br>형태              | 수직<br>(1개의 원통용기)                               | 수평<br>(380개의 압력관)                            |
| 핵연료 다발<br>모양           | - 길이: 약 400cm<br>- 폭 : 20cm<br>- 무게 : 약 450kgU | - 길이 : 50cm<br>- 직경 : 10cm<br>- 무게 : 약 19kgU |

※ 중수(D20)는 경수(H20)보다 중성자를 덜 흡수하기 때문에 U-235(우라늄-235)의 농축도가 낮아도 됨. https://www.korad.or.kr/





4

- Nuclear Data (핵데이터)
  - 사용후 핵연료 처리를 해결할 수 있는 가속기 구동 핵변환 기술 대두 (고속 임계로, 가속기구동 미임계로



- 단순 저장하는 현재 사용후 연료저장 방법은 1%에 불과한 장반감기 핵종과 마이너 악티나이드 때문
- 악티나이드: Pu 238 (100년) → Am (천년) → Pu (240, 239), Cu (245) → Np (237, 200 만년)
- 원자로 정지후 약 7%, 1시간 후 1.5%. 1주일 0.4%, 1주일 후 0.2%, 사용후연료저장조에서 1년이상 냉각 (발전소에서 20년 이상 보관)

사용후 핵연료



- Nuclear Data (핵데이터)
  - 사용후 핵연료 처리를 해결할 수 있는 가속기 구동 핵변환 기술 대두 (고속 임계로, 가속기구동 미임계로

| Isotope           | Decay type | Half-life (yr)      | Radiotoxicity (Sv/g)   |
|-------------------|------------|---------------------|------------------------|
| <sup>79</sup> Se  | $\beta$ –  | $6.5 	imes 10^{42}$ | 8.259                  |
| <sup>90</sup> Sr  | $\beta$ –  | 29                  | $1.269 \times 10^{5}$  |
| <sup>93</sup> Zr  | $\beta$ –  | $1.5 \times 10^{5}$ | 1.045                  |
| <sup>94</sup> Nb  | $\beta$ –  | $2.0 \times 10^{4}$ | $1.410 \times 10^{1}$  |
| <sup>99</sup> Tc  | $\beta$ –  | $2.1 \times 10^{5}$ | $6.056 \times 10^{-1}$ |
| <sup>107</sup> Pd | $\beta$ –  | $6.5 \times 10^{6}$ | $1.048 \times 10^{-3}$ |
| <sup>126</sup> Sn | $\beta$ –  | $1.0 \times 10^{5}$ | 6.306                  |
| <sup>129</sup> I  | $\beta$ –  | $1.6 \times 10^{7}$ | $2.696 \times 10^{-1}$ |
| <sup>135</sup> Cs | $\beta$ –  | $2.3 \times 10^{6}$ | $8.532 \times 10^{-2}$ |
| <sup>137</sup> Cs | $\beta$ –  | 30                  | $4.190 \times 10^4$    |
| <sup>151</sup> Sm | $\beta$ –  | 89                  | $1.281 \times 10^{2}$  |

Radiological properties of Long-lived Fission Products

가속기 구동 미임계로



#### · 가속기구동 미임계로

Accelerator-Driven System



- Sub-critical reactor
- Neutron source using a proton accelerator
- Spallation neutron target system
- Transmutation of long-lived MA and fission product
- Fast-neutron reactor

Transmutation of nuclear waste



- · ADS에서의 Nuclear data의 필요성
  - Essential information to Minor Actinides and Fission products
  - Reactor structure materials
  - Altogether needs fast-neutron induced information (or reactions)

# 핵데이터 당면 과제

- · 핵분열: 1938 발견, 그러나 여전히 많은 연구가 필요
- · 기술적인 문제
  - 과거 에너지가 낮은 열중성자 (eV~keV)에 의한 핵분열이 관심 대상

• 핵분열후 마아너 악티나이드 핵변환(핵연료재순환)에 연구 필요성 대두

• 현재: 고에너지 중성자에 의한 핵분열 데이터가 필요

• 약 1,000개에 이르는 핵분열 후 핵종들의 종류 특정

• 핵분열 underlying dynamics는 여전히 연구가 미비한 상황

• 즉발중성자 중첩도 및 즉발핵분열 중성자 에너지 분포 (PFNS)

- 약 1,000개에 이르는 핵분열 생성물

· NDPS 관측대상

• 사전 및 사후 핵분열 핵종 산출량

• 총 운동에너지 및 감마선 측정

• 물리적인 문제



중성자

<u> 외르는 핵종</u> 2

약 1,000개이





#### Nuclear Data Production System at RAON

- Neutron cross sections are the fundamental quantity not only for basic sciences but also for various application.
- By using neutrons, cross section of (n, f),  $(n, \gamma)$ , (n, xn)
- Nuclear data for fast nuclear reactor systems.
- Nuclear data related to medical isotope production.
- Protons and deuterons up to 82.7 MeV and 97.8 MeV.
- Beam current ~ 10  $\mu$ A Beam repetition rate is < 200 kHz Pulse width is 1 ns (FWHM)
- Li(p,n) for quasi-monoenergetic neutrons C(d,n) for white neutrons











# Nuclear Data Production System

#### Specification of NDPS

| Beam ion                | Proton, deuteron                                                  |   |
|-------------------------|-------------------------------------------------------------------|---|
| Maximum<br>Beam energy  | 49 MeV/u for deuteron<br>83 MeV/u for proton                      |   |
| Maximum<br>Beam current | ~10 μΑ                                                            |   |
| Target                  | <b>C</b> for white neutron<br><b>Li</b> for monoenergetic neutron | - |
| Bunch length            | ~ 1 nsec                                                          | N |
| Repetition rate         | 1 – 200 kHz                                                       |   |
| Flight length           | 5 – 40 m                                                          |   |
| Neutron flux            | ~ 10 <sup>8</sup> cm <sup>-2</sup> sec <sup>-1</sup> at 5 m       |   |



n





#### Specification

| Pole gap            | 80 mm   |
|---------------------|---------|
| Maximum<br>field    | 1.2 T   |
| Effective<br>length | 570 mm  |
| Power               | 17.6 kW |

| Aperture               | 70 mm   |
|------------------------|---------|
| Max.<br>gradient field | 10 T/mm |
| Effective length       | 300 mm  |
| Power                  | 0.6 kW  |

#### 3.Steering magnet (2 ea)

| Pole gap       | 80 mm   |
|----------------|---------|
| Max.           | 2.518 T |
| field integral | mm      |
| Power          | 22 W    |











#### Detector

**ToF room** 



n

Kwangbok Lee "Detection system for low energy experimental facility" (07.21)



Fission exp. chamber





From D. Moon (SKKU)



Th converter





DAQ rack



#### **Neutron Beam Dump**







Dose calculation with the different hole radius



\* Scattered neutrons: case 1 < case 2

- Concrete thickness = 330 cm \*\*
  - Beam dump = 200 cm
  - Wall thickness behind the dump 130 cm
- \*\* Hole radius = 30 cm
- Dump structure  $\rightarrow$  case 1 \*\*





7.7432-04

5.995E-05

4.6428-06 3.594E-07 2.7832-08

1.2928-11 1.0008-12





8

60

DPS





19



#### Time-of-Flight method in NDPS Neutron beam dump Monitoring detector $t_1$ Flight time, $T = t_1 - t_0$ Neutron production target (or RF signal)

**Neutron energy** 

$$E_n = m_n c^2 \left( \frac{1}{\sqrt{1 - \left(\frac{L/T}{c}\right)^2}} - 1 \right)$$

#### Neutron production target

- Li(p,n) for quasi-monoenergetic neutrons
- C(d,n) for white neutrons







**MICROMEGAS & PPAC** 



Parallel Plate Avalanche Counter

**PS** 

Nuclear Data Production System



Neutron monitoring experiment



#### Liquid scintillator





1500

2000

2500

3000

132281

252.7

0.1679

Integral 1.072e+05

4000

Qlong

3500

402.1

300

200

(Qlong-Qshort) over Qlong vs Qlong

### 고에너지 중성자 핵데이터 필요성 (Multi-chance fission)



Multi-chance fission

FREYA model with multi-chance fission and pre-equilibrium neutron emission



# NDPS 실험주제



- · 무거운 원소들의 핵분열 반응 단면적 측정
  - Pb, Bi, Th 또는 악티나이드 (Np, Am, Cm, etc) → LOI
- · 준중성자에 의한 활성화에너지 (n, xn) 반응 측정
  - ${}^{59}Co(n,xn), {}^{93}Nb(n,xn), {}^{197}Au(n,xn), {}^{209}Bi(n,xn)$
- Activation experiments induced by light or heavy ions
- · Surrogate reactions for  $(d, p\gamma)$  and fission fragment measurement

# 핵분열 단면적 측정





### **Pre-neutron emission fission fragments**



Experimentally, E<sup>post</sup> and v<sup>post</sup> are measured



Measurement of energy and velocity of both products

Product masses are readily obtained

$$m_{1,2}^{post} = \frac{2 \cdot E_{1,2}^{post}}{\left(v_{1,2}^{post}\right)^2}$$

Assuming that, on average, velocities are unchanged by neutron emission, pre neutron-emission masses are obtained (momentum conservation)

$$m_{1,2}^{pre} = m_{CN} \cdot \frac{v_{2,1}^{pre}}{v_1^{pre} + v_2^{pre}}$$

Energy of FF before neutron emission

$$E_{1,2}^{pre} = \frac{1}{2} m_{1,2}^{pre} \left( v_{1,2}^{post} \right)^2$$

### **Pre-neutron emission fission fragments**



#### The Fission-fragment Spectrometer **VERDI**





- Energy (0.5%) and timing (150 ps) resolution
- · Energy losses only in target backing and silicon detector dead layer



Start: Electrons emitted from

Micro Channel Plate (MCP)

target detected by

- Stop: Si detector



Neutron multiplicity measurement

National Array of Neutron Detectors (NAND)





<sup>50</sup> BC501 Organic Liquid Scintillators

Fission fragments were detected by a pair of large area multi-wire proportional counters (MWPCs) (12.7 cm  $\times$  7.62 cm) kept at the fission fragment folding angle at distances of 18.5 and 17.0 cm from the target position.



# NDPS에서의 2E-2V 방법



### **Summary**





- RAON
- 핵물리
- 핵데이터, 핵물질 등 다양한 응용분야
- NDPS: 2024 작동시작
- 다양한 주제
- 초기 실험들에 대한 다양한 토의 진행중

# Backup

#### Nuclear fission and decay processes





#### From Pre- to Post-neutron emission Fission Fragment Yield



#### **Importance of fission for r-process**

abundance of elements and importance of measuring the fission fragment distribution



### 설명 문구?

S. Goriely et al PRL, 111 242502 (2013)

#### **Challenges in fission experiments**

- Precise measurement of fission fragment yields over a large range!
- Thousands of isotopes to identify!
- Measurement of neutrons.
- Dynamics of fission with the neutron energies
- Distribution of kinetic energies



#### □ NAA for monitoring neutron flux at NDPS

- $^{197}Au(n,2n)$  is recommended for neutron dosimetry  $\rightarrow$  IAEA Report (2007)
- <sup>197</sup>Au(n,xn), <sup>209</sup>Bi(n,xn) ... reactions could be used as neutron monitoring reactions

#### □ NAA for Accelerator-Driven System

- Ta, Bi,  $Pb \rightarrow$  spallation target, cooling material of ADS
- Th-U fuel cycle
- Neutron-induced reaction for structural material
- (n,xn) reaction has important role in ADS

#### Experimental reaction cross section

$$\sigma = \frac{A \,\lambda \,(RT/CT)}{N_T \,\varepsilon \, I_\gamma \, \emptyset \,(1 - e^{-\lambda t}) \,e^{-\lambda T} \,(1 - e^{-\lambda RT})}$$





### Summary

- RAON will provide great research opportunities not only in nuclear physics, but also in applied sciences such as nuclear data, material, and bio-medical sciences.
- NDPS is under construction for setting up experimental equipments for TOF.
- NDPS will be prepared for use in 2023.
- Candidates of early stage experiments are under discussion.
- Please join the collaboration groups to make the best use of the facility.

# NDPS 그룹



### • 국내 연구자

- 중이온가속기연구소: 이상진
- 희귀핵연구단: 김융희
- 성균관대학교: Vivec CHAVAN, 문달호, 홍승우
- 경북대학교: 김귀년
- 울산과기원: 정모세
- 한국원자력연구원: 송태영, 양성철, 양승대, 이영욱, 이승현, 이창희, 허민구
- 국제공동연구 기관 및 연구자
  - 중이온가속기연구소: 이상진
  - 일본 큐슈 대학교: Nobuhiro SHINGO, Yukinobu WATANAVE
  - GELINA, JRC: Peter SHCILLEBEECKX
  - 일본 공업대학: Satoshi CHIBA
  - JAEA: Katsuhisa NISHIO

### NDPS 성과



| 번호 | 논문명                                                                                                                                                              | 학술지명                                                                                                             | 주저자명          |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|
| 1  | A simulation study and its experimental validation for the detection of neutrons with a continuous energy spectrum by using a MICROMEGAS Detector                | Journal of Korean Physical Society                                                                               | Cheolmin Ham  |
| 2  | Analysis on the stop bamd of fourth-order resonance in high-intensity linear accelerators                                                                        | Physics of Plasmas                                                                                               | Yoo Lim Cheon |
| 3  | Effects of transient nonthermal particles on the big bang nucleosynthesis                                                                                        | International Journal of Modern Physics                                                                          | Tae-Sun Park  |
| 4  | Mass Distribution of the Fission Products of Products of Plutonium Isotopes as Calculated by Using a Semi-<br>empirical Model                                    | Journal of the Korean Physical Society                                                                           | Jounghwa LEE  |
| 5  | Shape coexistence in isotopes from Oxygen to Calcium                                                                                                             | Journal of Korean Physical Society                                                                               | Eun Jin In    |
| 6  | Subtraction Method for an Effective Quasi-monoenergetic Neutron Beam by Using Continuous Energy Spectra                                                          | Journal of Korean Physical Society                                                                               | Eun Jin In    |
| 7  | The effects of alpha irradiation on the optical reflectivity of composite polymers                                                                               | Radiation Physics and Chemistry                                                                                  | Vivek Chavan  |
| 8  | Calculation of fission product yields for uranium isotopes by using a semi-empirical model                                                                       | EUROPEAN PHYSICAL JOURNAL A                                                                                      | Jounghwa Lee  |
| 9  | Measurement of cross sections for the formation of Rh-100g in Pd-nat(p,x)Rh-100m,Rh-g reactions up to 42.61MeV                                                   | JOURNAL OF RADIOANALYTICAL AND<br>NUCLEAR CHEMISTRY                                                              | Van Do Nguyen |
| 10 | Mass yield distributions in the Th-232(n, f) reaction with fast neutrons                                                                                         | PHYSICAL REVIEW C                                                                                                | H. Naik       |
| 11 | Measurement of half-lives for Y-87m,Y-g and Au-196m,Au-g,Au-194 produced from the photon and neutron induced reactions of Y-89 and Au-197                        | JOURNAL OF RADIOANALYTICAL AND<br>NUCLEAR CHEMISTRY                                                              | Wooyoung Jang |
| 12 | Isomeric yield ratio of Au-196m, Au- g in the Au-197(n, 2n) reaction with fast neutron based on the Be-9(p, n) reaction                                          | EUROPEAN PHYSICAL JOURNAL A                                                                                      | Wooyoung Jang |
| 13 | Photo-neutron reaction cross-sections of Co-59 in the bremsstrahlung end-point energies of 65 and 75 MeV                                                         | EUROPEAN PHYSICAL JOURNAL A                                                                                      | H. Naik       |
| 14 | Measurement of activation cross-sections of Dy-na(t)(p,x) reactions up to 45 MeV                                                                                 | NUCLEAR INSTRUMENTS & METHODS<br>IN PHYSICS RESEARCH SECTION B-<br>BEAM INTERACTIONS WITH MATERIALS<br>AND ATOMS | M. Shahid     |
| 15 | Measurement of the thermal neutron cross section and resonance integral of the 187Re(n, y)188Re reaction                                                         | The European Physical Journal Plus                                                                               | T. H. Nguyen  |
| 16 | Measurement of natNi(γ, xn)57,56Ni and natNi(γ, pxn)58-55Co reaction cross sections in bremsstrahlung with end-point energies of 65 and 75 MeV                   | Journal of Radioanalytical and Nuclear<br>Chemistry                                                              | H. Naik       |
| 17 | Excitation functions and thick target yields of the natZr(p,x)95ZrnatZr(p,x)95Zr, 95mNb95mNb , 95gNb95gNb reactions                                              | EUROPEAN PHYSICAL JOURNAL A                                                                                      | Van Do Nguyen |
| 18 | Production cross-sections of Mo-isotopes induced by fast neutrons based on the 9Be(p, n) reaction                                                                | The European Physical Journal Plus                                                                               | H. Naik       |
| 19 | Measurements of ^{nat}natCd(γ, x) reaction cross sections and isomer ratio of ^{115m,g}115m,gCd with the<br>bremsstrahlung end-point energies of 50 and 60 MeV * | Chin.Phys.C                                                                                                      | M. Nadeem     |
| 20 | Measurement of 59Co(n, x) reaction cross sections with the fast neutrons based on the 9Be(p, n) reaction                                                         | Chin.Phys.C                                                                                                      | M. Zaman      |
| 21 | Measurement of cross sections of Zr-isotopes with the fast neutrons based on the ^99Be(p, n) reaction                                                            | EUROPEAN PHYSICAL JOURNAL A                                                                                      | H. Naik       |

### NDPS 성과



| 번호 | 논문명                                                                                                                                                            | 발표자          | 발표학회                                                                                                 |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------|
| 1  | Measurements of secondary neutrons from the collision of 800 MeV/u Si on C                                                                                     | 함철민          | 한국물리학회 봄 학술논문 발표회 및 제 95회 정기총회                                                                       |
| 2  | Neutron TOF Experiments for transmission and Capture of Neutrons on Rh in the Resonance Region                                                                 | Vivek        | 2019 international conference on Nuclearr data for Science and technology                            |
| 3  | Neutron Production Double-differential Cross sections on Carbon bombarded by 800MeV/u                                                                          | 함철민          | 2019 international conference on Nuclearr data for Science and technology                            |
| 4  | Measurements of gamma-ray intensities from the decay of 187W in the reaction 186W(n,g)187W                                                                     | 함철민          | 2019 international conference on Nuclearr data for Science and technology                            |
| 5  | RAON-Rare isotope Accelerator complex for ON-line experiments                                                                                                  | 홍승우          | 762nd ASRC Seminar                                                                                   |
| 6  | Calculation of fission fragment mass distributions by using a semi-empirical method                                                                            | 홍승우          | 13th APCTP-BLTP JINR joint workshop/Modern Problems in Nuclear and Elementary Particle Physics       |
| 7  | Applications of RAON                                                                                                                                           | 홍승우          | Fourth Int Workshop on Technology and Components for<br>Accelerator Driven Systems                   |
| 8  | RAON: Rare isotope Accelerator complex for ON-line experiments                                                                                                 | 홍승우          | 14th Asia-Pacific Physics Conference(APPC 2019)                                                      |
| 9  | Neutron Production Double-differential cross section from Carbon and Niobium targets bombarded with 290 MeV/u 136Xe ions                                       | 문달호          | 2019 Nuclear Data Symposium, Kyushu University                                                       |
| 10 | Construction status and future plan for RAON and its nuclear data production system                                                                            | 정모세          | 2019 Nuclear Data Symposium, Kyushu University                                                       |
| 11 | Overview of Thorium ADS                                                                                                                                        | 홍승우          | 한국원자력학회 온라인 춘계학술발표회                                                                                  |
| 13 | ADS Accelerator: Linac option                                                                                                                                  | 정모세          | Korea Nuclear Society Workshop                                                                       |
| 12 | The detection system of Nuclear Data Production System                                                                                                         | 문달호          | 2020년 한국물리학회 가을 학술논문발표회                                                                              |
| 13 | 고해상도 TOF (Time of Flight) 중성자 실험을 위한 단일 번치 빔 생성 방법 연구                                                                                                          | 문석호          | 2020년 한국물리학회 가을 학술논문발표회                                                                              |
| 14 | Status of construction of NDPS facility                                                                                                                        | 홍승우          | 한국물리학회 2021년 봄 학술논문발표회                                                                               |
| 15 | Neutron detection system status of Nuclear Data Production System                                                                                              | 문달호          | 한국물리학회 2021년 가을 학술논문발표회                                                                              |
| 16 | Fission experiments at the NDPS                                                                                                                                | 홍승우          | 한국물리학회 2021년 가을 학술논문발표회                                                                              |
| 17 | Measurement of the cross sections for the 209Bi(n,4n)206Bi and 232Th(n,6n)227Th reactions by using monoenergetic neutrons generated by the 9Be(p,n)9B reaction | 문달호          | 한국물리학회 2022년 봄 학술논문발표회                                                                               |
| 18 | Monoenergetic neutrons from the 9Be(p,n)9B reaction induced by 35, 40 and 45 MeV protons                                                                       | Vivek        | 한국물리학회 2022년 봄 학술논문발표회                                                                               |
| 19 | Nuclear Data Production System of RAON                                                                                                                         | 홍승우          | 15th International Conference on Nuclear Data for Science and Technology                             |
| 20 | Neutron monitoring detector system for Nuclear Data Production System of RAON                                                                                  | 문달호          | 15th International Conference on Nuclear Data for Science and Technology                             |
| 21 | Neutron production double differential cross section from Carbon, Niobium and Bismuth targets bombarded by 290 MeV/u 136Xe ions                                | 문달호          | 15th International Conference on Nuclear Data for Science and Technology                             |
| 22 | Monoenergetic neutrons from the 9Be(p,n)9B reaction induced by 35, 40 and 45 MeV protons                                                                       | Vivek        | 15th International Conference on Nuclear Data for Science and Technology                             |
| 23 | Measurement of (n, xn) cross sections for the Ta, Au, Bi, and Th by using monoenerge ticneutron sgene rated by the 9Be (p, n) 9B reaction                      | 문달호          | The 15th Asia Pacific Physics Conference                                                             |
| 24 | Monoenergetic neutrons from the 9Be(p,n)9B reaction induced by 35, 40 and 45 MeV protons                                                                       | Vivek        | The 15th Asia Pacific Physics Conference                                                             |
| 25 | Measurement of natHf(a,x) cross sections from E= 29 to 45 MeV                                                                                                  | C. T. Nguyen | The 15th Asia Pacific Physics Conference                                                             |
| 26 | Preliminary beam experiment results of single bunch selection at RAON facility                                                                                 | 문석호          | 19th International Conference on Electromagnetic Isotope Separators<br>and Related Topics (EMIS2022) |
| 27 | Measurement of (n,xn) cross sections for the Ta, Au, Bi, and Th using monoenergetic neutrons                                                                   | 문달호          | 한국물리학회 2022년 가을 학술논문발표회                                                                              |