暗黒物質の半対消滅から生じるシグナル

藤間崇

阿蘇研究会

参考文献: Phys.Rev.D 105 (2022) 4, 043007, arXiv:2309.00395

共同研究者:青木 真由美 氏

 ■ DM直接検出実験の制限が強い
 ⇒ 速度または運動量依存の散乱断面積 (ex. pNG DM)
 ⇒ 速度の速いDMが生成 されれば検出できるかも

要約

- DM加速機構の一つ 半対消滅 (semi-annihilation) $\chi\chi \rightarrow \chi\phi$
- DUNEで検証できるかも

WIMP (Weakly Interacting Massive Particle)

WIMP is thermalized with SM particles in early universe

- To get $\Omega_{\chi}h^2 = 0.12$, roughly $\sigma \sim 1 \mathrm{pb} \sim 10^{-26} \mathrm{cm}^3/\mathrm{s} \sim 10^{-36} \mathrm{cm}^2$
- Almost independent on DM mass
- Mass range: 10 MeV 100 TeV
 藤間 崇 (金沢大学)

Status of direct detection experiments

Future sensitivity of direct detection experiments

Wayout

- v_{χ} dependent cross section ($v_{\chi} \sim 10^{-3}$) Ex.1 pNGB DM ($i\mathcal{M} \propto v_{\chi}^2$) C. Gross, O. Lebedev, TT, PRL (2017) [arXiv:1708.02253]
 - Ex.2 Fermion DM with Pseudo-scalar int. $\mathcal{L} = a \overline{\chi} \gamma_5 \chi$
 - T. Abe, M. Fujiwara, J. Hisano, JHEP (2019) [arXiv:1810.01039]

 \Rightarrow These could be detected if boosted.

WIMP (thermal dark matter)

Velocity-dependent scattering $\chi p \rightarrow \chi p$

Mechanisms to boost DM

- Semi-annihilations $\chi\chi \to \overline{\chi}\phi \ (v_{\chi} = \mathcal{O}(0.1-1))$
 - \Rightarrow Simple and small uncertanties
- Other processes to boost DM

藤間 崇 (金沢大学)

Decay or annihilations of heavier particles (non-minimal dark sector) $\chi_2\chi_2 \rightarrow \chi_1\chi_1 \ (m_{\chi_2} \gg m_{\chi_1})$

阿蘇研究会

Collision with high energy cosmic-rays

Bringmann and Pospelov, PRL (2019), arXiv:1810.10543

Semi-annihilations

- $\chi_i \chi_j \rightarrow \chi_k \phi$ F. D'Eramo and J. Thaler, JHEP (2010) [arXiv:1003.5912] χ_i : DM particles, ϕ : SM or new unstable particle One DM particle is in final state.
- Simplest case: $\chi \chi \rightarrow \bar{\chi} \phi$ χ : DM, ϕ : SM particle or new unstable particle
- Simple Z₂ parity does not work to stabilize DM. ⇒ DM is a non self-conjugate particle.
- Boltzmann equation

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -\langle \sigma_{\chi\bar{\chi}}v\rangle \left(n_{\chi}^2 - n_{\chi}^{\text{eq}2}\right) \\ -\langle \sigma_{\chi\chi}v\rangle \left(n_{\chi}^2 - n_{\chi}n_{\chi}^{\text{eq}2}\right)$$

1st term: normal ann. 2nd term: semi-ann. Note: normal annihilations also exist.

藤間 崇 (金沢大学)

阿蘇研究会

Example of model building

- \blacksquare Semi-annihilation $\chi\chi\to\nu\overline{\chi}$
 - Ex. \mathbb{Z}_3 symmetric model with radiative neutrino masses

M. Aoki and TT, JCAP (2014) [arXiv:1405.5870]

	χ_L	χ_R	η	φ
SU(2)	1	1	2	1
$U(1)_Y$	0	0	1/2	0
\mathbb{Z}_3	1	1	1	1
L number	1/3	1/3	-2/3	-2/3

New particles

Distinctive signals from semi-annihilations

Specific semi-annihilation process

- We focus on $\chi\chi \to \nu\overline{\chi}$.
 - \cdot Both final state particles are monochromatic
 - \cdot May correlate with generation of small neutrino masses

Energy of the produced particles

$$E_{\bar{\chi}} = \frac{5}{4}m_{\chi} \quad (v_{\chi} = 0.6), \qquad E_{\nu} = \frac{3}{4}m_{\chi}$$

 Possible to detect both particles (monochromatic)

- Energy difference: $\frac{1}{2}m_{\chi}$
- Same flux for $\bar{\chi}$ and $\bar{\nu}$
- If detected, this strongly implies that DM is a Dirac fermion with spin 1/2.

藤間 崇 (金沢大学)

Signals from the Sun

- A number of DM particles are accumulated in the centre of the Sun.
- Semi-annihilation occurs.
- Two kinds of signals can be searched at large volume neutrino detectors (SK, HK, DUNE etc).
- Signals produced at Galactic centre is smaller.

藤間 崇 (金沢大学)

$\nu \, + \, \bar{\chi}$ flux if it is nicely reconstructed

Specific process

Semi-annihilation at the Sun R. Garani et al., JCAP (2014) [arXiv:1702.02768] • Capture rate for const. and Q^2 (momentum transfer) dependent cases $(C_{\odot} = \Gamma_{\text{capt}})$ 10^{32} 10^{30} 10^{28} $C_{\odot} \, \left[\mathrm{s}^{-1} \right]$ 10^{26} 10^{24} $\sigma_{\chi N} = 10^{-40} \text{ cm}^2$ SI (n = 0)SD (n = 0)SI (n = 1) 10^{22} SD (n = 1) $\sigma_{\chi N} \sim \sigma_0 (Q^2/Q_0^2)^n$ 10^{20} 10^{-2} 10^{0} 10^{1} 10^{-1} 10^{2} 10^{3} $m_{\chi} \; [\text{GeV}]$

藤間 崇 (金沢大学)

DUNE (Deep Underground Neutrino Experiment)

Two detectors: near and far detectors.

- Massive liquid argon (fiducial volume: 40kt)
- Precise reconstruction of particle's trajectories with LArTPC

DUNE Coll., [arXiv:2002.03005]

藤間 崇 (金沢大学)

阿蘇研究会

2023年11月13日

16/38

DUNE experiment

DUNE (Deep Underground Neutrino Experiment)

Two detectors: near and far detectors.

- Massive liquid argon (fiducial volume: 40kt)
- Precise reconstruction of particle's trajectories with LArTPC

DUNE Coll., [arXiv:2002.03005]

藤間 崇 (金沢大学)

阿蘇研究会

2023年11月13日

17 / 38

DUNE (Deep Underground Neutrino Experiment)

Timeline of far detector modules

- 2025: DUNE physics deta taking with atmospheric neutrinos (fiducial mass 20kt)
- 2026: DUNE physics deta taking with beam starts (fiducial mass 20kt)
- 2027: add third fiducial module (20kt + 10kt = 30kt)
- 2029: add fourth fiducial module (30kt + 10kt = 40kt)

藤間 崇 (金沢大学)

DUNE experiment

DUNE (Deep Underground Neutrino Experiment)

Timeline of far detector modules \Rightarrow Delayed

DUNE Coll., [arXiv:2002.03005]

More cost is needed than initially expected. (2 billion \Rightarrow 3 billion dollars)

- 2029: slimed version of DUNE will run
- 2035: DUNE full spec (40kt)
- 2027: Hyper-K

⇒ No advantage of DUNE for ν mass ordering, CP violation etc. **k**間 祟 (金沢大学) <u>Mass ordering</u> 2023 年 11 月 13 日

Simulation tool

- GENIE (neutrino event generator) http://www.genie-mc.org/
 - Detailed experimental simulation (DUNE, SK etc) can be done.
 - · Boosted DM can also be implemented.

UNIVERSAL NEUTRINO GENERATOR & GLOBAL FIT

Idx	Name	Ist	PDG	Mot	her:	Daugh	iter	Px	Py	Pz	E	m	
0	chi_dm	0	2000010000	-1	-1	4	4	0.000	0.000	37.500	62.500	**1.000	M = 50.000
1	Ar40	0	1000180400	-1	-1	2	3	0.000	0.000	0.000	37.216	37.216	
2	neutron	11	2112	1	-1	5	5	0.156	-0.039	0.178	0.929	**0.940	M = 0.897
3	Ar39	2	1000180390	1	-1	7	7	-0.156	0.039	-0.178	36.287	36.286	
4	chi_dm	1	2000010000	0	- 1	-1	- 1	0.530	0.110	36.892	62.140	**1.000	M = 50.000 P = (0.014,0.003,1.000)
5	neutron	14	2112	2	- 1	6	б	-0.374	-0.149	0.786	1.289	0.940	FSI = 3
6	neutron	1	2112	5	-1	-1	- 1	-0.569	-0.091	0.611	1.261	0.940	
7	HadrBlob	15	2000000002	3	- 1	-1	- 1	0.069	-0.015	-0.035	36.286	**0.000	M = 36.286
8	NucBindE	1	2000000101	-1	-1	-1	- 1	-0.030	-0.005	0.032	0.029	**0.000	M = -0.032
	Fin-Init:							-0.000	0.000	-0.000	0.000		
	Vertex:	chi_	dm @ (x =	0.0000)0 m,	y =	0.000	000 m, z =	0.0000	0 m, t =	0.00000	0e+00 s)	
Err f Err m	lag [bits:15->0 ask [bits:15->0] : 00] : 11	00000000000000 11111111111111	0 1	1st Is u	set: nphysic	al:	NO Ac	cepted:	YES		none	
sig(E	v) = 4.88	517e-3	8 cm^2 dsi	g(02;E)	/dQ2	=	1	.73521e-39	cm^2/GeV^2	Weight	=	1.00000	

20 / 38

Threshold and resolution for DUNE

	Detector threshold	Energy/momentum resolution	Angular resolution
μ^{\pm}	$30 { m MeV}$	5~%	1°
π^{\pm}	100 MeV	5~%	1°
e^{\pm}/γ	$30 { m MeV}$	$2 + 15/\sqrt{E/{ m GeV}}$ %	1°
p	$50 { m MeV}$	p < 400 MeV: 10 % $p > 400 \text{ MeV: } 5 + 30/\sqrt{E/\text{GeV}} \%$	5°
n	50 MeV	$40/\sqrt{E/\text{GeV}}$ %	5°

- Precise angular resolution
 - cf: 3° at SK and HK, 30° at IceCube
- These are taken into account in simulation.

Setup for boosted dark matter

arXiv: 1912.05558, J. Berger et al.

There are 3 processes.

• (Quasi)-elastic scattering is dominant for our case $(\chi \chi \to \nu \overline{\chi})$ $0 \le Q^2 \lesssim \frac{9}{4} m_N^2 \approx (2 \text{ GeV})^2$

Setup for boosted dark matter

We consider the following cross section (parametrization)

$$\frac{d\sigma_{\chi N}}{dQ^2} = \frac{\sigma_0 s}{4m_N^2 |\mathbf{p}_{\chi}|^2} \left(\frac{Q^2}{m_N^2 v_0^2}\right)^n |F(Q^2)|^2$$

Parameters: $|\mathbf{p}_{\chi}| = \frac{5}{4}m_{\chi}$ and σ_0 (reference cross section)

n = 0 (constant)
 n = 1 (Q² dependent)
 n = 2 (Q⁴ dependent)

Setup for boosted dark matter

Number of signal events $(\overline{\chi} + N \rightarrow \overline{\chi} + N)$

$$N_{\chi} = N_N T \int \sigma_{\chi N} \frac{d^2 \Phi_{\chi}}{dE_{\chi} d\Omega} dE_{\chi} d\Omega$$

• Number of nucleons: $N_N = 2.41 \times 10^{34}$

Exposure time:
$$T = 10 \text{ yr}$$

DM flux:
$$\frac{d^2 \Phi_{\chi}}{dE_{\chi} d\Omega} = \frac{\Gamma_{\text{ann}}}{4\pi d_{\odot}^2} \sigma_{\chi N} \bigg|_{E_{\chi} = 5m_{\chi}/4} = \frac{C_{\odot}}{8\pi d_{\odot}^2} \sigma_{\chi N} \bigg|_{E_{\chi} = 5m_{\chi}/4}$$

Distance between the Sun and Earth: $d_{\odot} = 1.5 \times 10^{13}$ cm

Boosted dark matter signal (energy resonctruction)

For elastic scattering $\chi N \rightarrow \chi N$, energy and angle are kinematically fixed.

$$\bullet \cos \theta_N = \frac{E_{\chi} + m_N}{|\boldsymbol{p}_{\chi}|} \sqrt{\frac{E_N - m_N}{E_N + m_N}}$$

Energy reconstruction from observed θ_N and E_N

藤間 崇 (金沢大学)

Setup

Background (atmospheric neutrinos)

$$N_{\rm atm\,\nu} = N_N T \int \sigma_{\nu N} \frac{d^2 \Phi_{\nu}^{\rm atm}}{dE_{\nu} d\Omega} dE_{\nu} d\Omega$$

Expected number of bkg events in 10 years

245 via NC int. for χ signal ($\nu_{\rm atm} + N \rightarrow \nu_{\rm atm} + N$)

510 via CC int. for ν signal $(\nu_{\text{atm}} + N \rightarrow e/\mu + j)$

http://www-rccn.icrr.u-tokyo.ac.jp/mhonda/public/

• We use ν_{atm} HAKKM flux at Homestake (close to DUNE detector).

藤間 崇 (金沢大学)

阿蘇研究会

Setup

Neutrino cross section

Default implementation in GENIE

In the energy range from MeV to $\mathcal{O}(100)$ GeV, many physical processes (non-perturbative QCD, nuclear models, hadronization etc) are important.

Accompanied neutrinos

Accompanied neutrinos can also be searched by DUNE, SK/HK and IceCube etc.

Hyper-Kamiokande Collaboration

The boosted DM ($v_{\chi} = 0.6$) is difficult to produce Cherenkov light. $v_p > 0.75$ is required to produce Cherenkov radiation.

Setup

Neutrino energy reconstruction arXiv: 1903.04175, C. Rott et al.

Benchmark point: n = 2, $m_{\chi} = 20$ GeV, $\sigma_0 = 7 \times 10^{-50}$ cm²

Benchmark parameter sets

	model	$m_{\chi} \; [\text{GeV}]$	$\sigma_0 \; [{ m cm}^2]$	# of ν events	# of χ events
BP1	SD $(n=1)$	10	3.0×10^{-43}	$\begin{array}{c} N_{{\rm atm}\nu}^{{\rm CC}} = 510/510 \\ N_{\nu}^{{\rm CC}} = 56/56 \end{array}$	$N_{ m atm}^{ m NC} = 35/245$ $N_{\chi} = 14/40$
BP2	SI $(n=2)$	20	$7.0 imes 10^{-50}$	$N_{\mathrm{atm}\nu}^{\mathrm{CC}} = 510/510$ $N_{\nu}^{\mathrm{CC}} = 20/20$	$\begin{array}{l} N_{\rm atm\nu}^{\rm NC} = 46/245 \\ N_{\chi} = 774/2396 \end{array}$

- Assumption: 40kton liquid argon, 10 years exposure
- 4th and 5th columns: Observed events / Expected events (detector threshold and resolutions)
- A large number of BDM signal events for BP2

Energy distribution 1

Energy reconstruction for BP1

Atmospheric neutrino bkg at low energy

Energy distribution 2

Energy reconstruction for BP2

- Atmospheric neutrino bkg at low energy
- A large number of BDM events on the left plot

Parameter space 1

- DUNE sensitivity for constant $\sigma_{\chi N}$ (n = 0)
- Significance: $S = \frac{N_{\text{sig}}}{\sqrt{N_{\text{bkg}} + N_{\text{sig}}}}$

Completely excluded by direct detection experiments as expected.

Parameter space 2

DUNE sensitivity for Q^2 dependent $\sigma_{\chi N}$ (n = 1)

- No substantial direct detection constraints.
- Sensitivities can be comparable if DM mass is lower.

Parameter space 3

• DUNE sensitivity for Q^4 dependent $\sigma_{\chi N}$ (n = 2)

Sensitivity for BDM can be much higher.

Summary

- Direct detection experiments impose the strong bound on (minimal) thermal dark matter scenarios.
- 2 Non-minimal extension of dark sector may induce semi-annihilations.
- 3 $\chi\chi \rightarrow \bar{\chi}\nu$ induces distinctive signals, which can be searched by DUNE, but not by SK/HK and IceCube.
- 4 Q^2 (or v_{χ}^2) suppressed cross sections are needed for BDM detection.

Future works

- Concrete model building
- 2 Application to multi-component DM, $3 \rightarrow 2$ or $4 \rightarrow 2$ processes Dark matter paricles are boosted: $E_{\chi} = \frac{3}{2}m_{\chi}$, or $2m_{\chi}$

Future works 2

Consider very dense compact object (dark star)

B. Kamenetskaia, A. Brenner, A. Ibarra and C. Kouvaris, arXiv:2211.05845

 \Rightarrow enhancement of point source of boosted dark matter

■ This can be signal of boosted dark matter from 3→2 or 4→2 processes, or maybe from semi-ann. too.

Backup

Semi-annihilation at the Sun

Number of DM particles accumulated in the Sun

Semi-annihilation at the Sun

Number of DM particles accumulated in the Sun

Semi-annihilation at the Sun

- Evaporation rate: Some DM particles scatter with nuclei in the Sun and get enough energy to escape from the Sun.
- Neglecting $\Gamma_{
 m evap}~(m_\chi\gtrsim$ 4 GeV), the solution is

$$\Gamma_{\rm ann} = \frac{\Gamma_{\rm capt}}{2} \tanh^2 \left(\frac{t}{\tau}\right) \quad \stackrel{t \gg \tau}{\longrightarrow} \quad \frac{\Gamma_{\rm capt}}{2}$$

where $au = (\Gamma_{
m capt} C_{
m ann})^{-1/2}$, Age of the Sun $t \sim$ 4.5 Gyr

Equilibrium can easily be reached.

Angular distribution

- Atmospheric neutrinos (black line) are uniform.
- Easy to distinguish the signals and $\nu_{\rm atm}$ background.
- But we need to distinguish two signals.