eV ダークマター

Wen Yin (Tohoku University)

@ 阿蘇研究会 2023年11月13日

Axion domain wall formations and implications

Wen Yin (Tohoku University) Based on 2012.11576, 2211.06849, 2205.05083, 2306.17146

In collaboration with D. Gonzalez, N. Kitajima, F. Kozai, J. Lee, K. Murai, F. Takahashi,

・ストリング理論由来のアクシオンから宇 宙ストリングを伴わないドメインウォー ルができる。 ・ドメインウォール問題を解決する宇宙に 起こりうる現象の探索はストリング理論 へのアプローチの可能性

伝えたいこと

Plan

- Introduction
- Cosmological implications
- Conclusions

 Axion DW network from inflationary fluctuations is stable — String axion DWs without a string —

1. Introduction

What is axion, ϕ ? Axion has a periodic field space satisfying $\phi \leftrightarrow \phi + 2\pi f_{\phi}$, and an approximate shift symmetry, $\phi \rightarrow \phi + C$.

$V(\phi) = V(\phi + 2\pi f_{\phi})$

Axion gets periodic potential and small mass from non-perturbative effect.

UV completions:

- U(1)SSB - String/M theory

$\Delta \phi = 2\pi f_{\phi}$

A stable domain wall (DW) configuration must exist in axion theories! Periodicity predicts degenerate vacua.

 $V(\phi) = V(\phi + 2\pi f_{\phi})$

 $\phi_{\min} + 2\pi f_{\phi}$ ϕ_{\min} Configuration connecting the vacua gives domain wall. $\phi_{\min} + 2\pi f$ $dz = d\phi$

 $e \cdot g \cdot V(\phi) = V_0(1 - \cos(\phi/f_{\phi}))$

A stable domain wall (DW) configuration must exist in axion theories! Periodicity predicts degenerate vacua.

 $V(\phi) = V(\phi + 2\pi f_{\phi})$

Configuration connecting the vacua gives domain wall.

 $dz = d\phi$

 $e \cdot g \cdot V(\phi) = V_0(1 - \cos(\phi/f_{\phi}))$

Sometimes, degenerate vacua are more. Number of degenerate vacua in $[0, 2\pi f_{\phi})$ is DW number, N_{DW} . $e \cdot g \cdot V(\phi) = V_0(1 - \cos(2\phi/f_{\phi}))$ $N_{\rm DW} = 2$ $V(\phi) = V(\phi + 2\pi f_{\phi})$ ϕ_{\min} Configuration connecting the adjacent vacua gives DW. Φ $dz = d\phi/\sqrt{}$ $\phi_{\min} + 2\pi/N_{DW}f_{\phi}$

Sometimes, degenerate vacua are more. Number of degenerate vacua in $[0, 2\pi f_{\phi})$ is DW number, N_{DW} .

$V(\phi) = V(\phi + 2\pi f_{\phi})$

Configuration connecting the adjacent vacua gives DW.

 $dz = d\phi/\sqrt{}$

 $e \cdot g \cdot V(\phi) = V_0(1 - \cos(2\phi/f_{\phi}))$

 $N_{\rm DW} = 2$

DW network formation in the early Universe

Phase transition of the approximate U(1) Kibble, Zurek Strings + DWs

 $N_{\rm DW} = 1$

 $N_{\rm DW} \ge 2$:stable string-DW network Applicable to: - U(1)SSB $V \propto 1 - \cos[N_{\rm DW}\phi/f_{\phi}]$

Inflationary fluctuation in axion EFT.

DWs without a string

Applicable to:U(1)SSBString/M-theory

DW network formation in the early Universe

Phase transition of the approximate U(1) Kibble, Zurek Strings + DWs

 $N_{\rm DW} = 1$

 $N_{DW} \ge 2$:stable string-DW network Applicable to: - U(1)SSB $V \propto 1 - \cos[N_{DW}\phi/f_{\phi}]$

Inflationary fluctuation in axion EFT. DWs without a string

Applicable to:U(1)SSBString/M-theory

Let us consider axion EFT (U(1) symmetry never restore.)

. If $m_{\phi} \ll H_{inf}$, after inflation, axion

field values are naturally different at different position.

 In the observable Universe, the values follow a typical distribution around an averaged field value.

Let us consider axion EFT (U(1) symmetry never restore.)

. If $m_{\phi} \ll H_{inf}$, after inflation, axion

field values are naturally different at different position.

 In the observable Universe, the values follow a typical distribution around an averaged field value.

 $\sim H_{\rm inf}/f_{\phi}$

Let us consider axion EFT (U(1) symmetry never restore.)

. If $m_{\phi} \ll H_{inf}$, after inflation, axion

field values are naturally different at different position.

 In the observable Universe, the values follow a typical distribution around an averaged field value.

Let us consider axion EFT (U(1) symmetry never restore.)

- . If $m_{\phi} \ll H_{inf}$, after inflation, axion
- field values are naturally different at different position.
- In the observable Universe, the values follow a typical distribution around an averaged field value,

e.g. $\langle \phi \rangle \approx 0$.

- . When $m_{\phi} \sim H$, domain walls form!
- •O(1) DWs in 1 Hubble volume.
- No cosmic string!

Let us consider axion EFT (U(1) symmetry never restore.)

- . If $m_{\phi} \ll H_{inf}$, after inflation, axion
- field values are naturally different at different position.
- In the observable Universe, the values follow a typical distribution around an averaged field value,

e.g. $\langle \phi \rangle \approx 0$.

- . When $m_{\phi} \sim H$, domain walls form!
- •O(1) DWs in 1 Hubble volume.
- No cosmic string!

It was considered that stable DW from inflationary fluctuation requires serious fine-tuning.

e.g. Lalak et al, 95, Coulson, et al 96

-Random jump naturally provides $\langle \phi \rangle \neq 0$.

 $- \langle \phi \rangle \neq 0$, i.e. population bias, the DW network soon decay.

It was considered that stable DW from inflationary fluctuation requires serious fine-tuning.

e.g. Lalak et al, 95, Coulson, et al 96

-Random jump naturally provides $<\phi>\neq 0$.

 $- \langle \phi \rangle \neq 0$, i.e. population

bias, the DW network soon decay.

Not true for inflationary fluctuation!

•2. Axion DW network from inflationary fluctuations is stable —String axion DWs without a string—

Gonzalez, Kitajima, Takahashi, WY, 2211.06849

Lattice simulation of DW evolutions We use Z_2 symmetric, ϕ^4 theory to $P(\phi / f_{\phi})$ After oscillation approximate system.

$$V(\phi) = V_0 - \frac{1}{2}m_0^2\phi^2 + \frac{\lambda}{4}\phi^4$$

The essential difference between the two formation mechanisms are initial conditions of $\phi_{k\neq 0}$ modes. Thermal fluctuation

with $k \ll H$

White noise:

 $k^d < \phi_k \phi_{-k} > \propto k^d$

Inflationary fluctuation

Gonzalez, Kitajima, Takahashi, WY, with $k \ll H$ 2211.06849

DW network with $\langle \phi \rangle = 0$ ($b_d = 0$). Both cases have O(1) DW in a Hubble patch, but the structures are quite different. Gonzalez, Kitajima, Takahashi, WY, 2211.06849

 H^{-1}

DW network from inflation is long-lived, if $b_d \lesssim O(1)$

Gonzalez, Kitajima, Takahashi, WY, 2211.06849

The key point is the *correlated superhorzion modes* that have been omitted so far.

Results from 2D simulation are shown. 3D case is checked as well.

DW network from inflation is long-lived, if $b_d \lesssim O(1)$

Gonzalez, Kitajima, Takahashi, WY, 2211.06849

The key point is the *correlated superhorzion modes* that have been omitted so far.

Results from 2D simulation are shown. 3D case is checked as well.

Scenarios of DWs from inflationary fluctuations For $b_d \leq O(1)$,

1. $f_{\phi} \sim H_{\text{inf}}$

Reminder : $H_{inf} \leq 10^{13} GeV$ (tensor-to-scalar ratio)

- 2. $f_{\phi}^{\text{inf}} \sim H_{\text{inf}}$, with time-dependent f_{ϕ} . Takahashi WY,2012.11576
- 3. $N_{axion}H_{inf} \gtrsim f_{\phi}$, i.e., many light axions. e.g. $N_{\text{axion}} \gtrsim 10^2$ for $H_{\text{inf}} = 10^{13}$ GeV, $f_{\phi} = 10^{15}$ GeV
- 4. Mixing induced shift of ϕ/f_{ϕ} by π .

Daido, Takahashi, WY, <u>1702.03284</u>; Takahashi, WY, 1908.06071; Nakagawa, Takahashi, WY, <u>2002.12195</u>; Murai, Takahashi, WY, 2305.18677; Narita Takahashi, WY, 2308.12154;

Scenarios of DWs from inflationary fluctuations For $b_d \leq O(1)$,

1. $f_{\phi} \sim H_{\text{inf}}$

Reminder : $H_{inf} \leq 10^{13} GeV$ (tensor-to-scalar ratio)

- 2. $f_{\phi}^{\text{inf}} \sim H_{\text{inf}}$, with time-dependent f_{ϕ} . Takahashi WY,2012.11576
- 3. $N_{axion}H_{inf} \gtrsim f_{\phi}$, i.e., many light axions. e.g. $N_{\text{axion}} \gtrsim 10^2$ for $H_{\text{inf}} = 10^{13}$ GeV, $f_{\phi} = 10^{15}$ GeV
- 4. Mixing induced shift of ϕ/f_{ϕ} by π .

Daido, Takahashi, WY, <u>1702.03284</u>; Takahashi, WY, 1908.06071; Nakagawa, Takahashi, WY, <u>2002.12195</u>; Murai, Takahashi, WY, 2305.18677; Narita Takahashi, WY, 2308.12154;

String axion DWs without a string from string axiverse!

DWs from string axion have $f_{\phi} = 10^{15-17} GeV$.

1. $f_{\phi} \sim H_{\text{inf}}$

Reminder : $H_{inf} \leq 10^{13} GeV$ (tensor-to-scalar ratio)

- 2. $f_{\phi}^{\text{inf}} \sim H_{\text{inf}}$, with time-dependent f_{ϕ} . Takahashi WY,2012.11576
- 3. $N_{axion}H_{inf} \gtrsim f_{\phi}$, i.e., many light axions. e.g. $N_{axion} \gtrsim 10^2$ for $H_{inf} = 10^{13}$ GeV, $f_{\phi} = 10^{15}$ GeV
- 4. Mixing induced shift of ϕ/f_{ϕ} by π .

Daido, Takahashi, WY, <u>1702.03284</u> ; Takahashi, WY, 1908.06071; Nakagawa, Takahashi, WY, <u>2002.12195</u> ; Murai, Takahashi, WY, <u>2305.18677</u>; Narita Takahashi, WY, 2308.12154;

String axion DWs without a string from string axiverse!

DWs from string axion have $f_{\phi} = 10^{15-17} GeV$.

1. $f_{\phi} \sim H_{\text{inf}}$

Reminder : $H_{inf} \lesssim 10^{13} GeV$ (tensor-to-scalar ratio)

2. $f_{\phi}^{\text{inf}} \sim H_{\text{inf}}$, with time-dependent f_{ϕ} . Takahashi WY,2012.11576

3. $N_{axion}H_{inf} \gtrsim f_{\phi}$, i.e., many light axions

e.g. $N_{\rm axion} \gtrsim 10^2$ for $H_{\rm inf} = 10^{13}$ GeV, $f_{\phi} = 10^{15}$ GeV

4. Mixing induced shift of ϕ/f_{ϕ} by π .

Daido, Takahashi, WY, <u>1702.03284</u> ; Takahashi, WY, 1908.0607 <mark>;</mark> Nakagawa, Takahashi, WY, <u>2002.12195</u> ; Murai, Takahashi, WY, <u>2305.18677</u>; Narita Takahashi, WY, 2308.12154;

3. Cosmological implications

Once the DW network is formed, we must deal with the DW problem.

Once the DW network is formed, we must deal with the DW problem.

Gravitational Waves (GWs) from DW collapse

For instance,

- Potential bias makes DW collapse àt $\sigma \times H \sim \Delta V$ at which GWs can be dominantly produced.
- Only GWs from scaling DWs with $\Delta V = 0$ have been numerically studied so far.

e.g. Hiramatsu, Kawasaki, Saikawa, 1002.1555; 1309.5001;

 The numerical lattice simulation is difficult for the full system because scaling solution vs. potential bias, <u>calculation time vs. resolution.</u>

The first lattice simulation of the GW from decaying DW! The key point of our analysis: time-dependent bias. Kitajima, Lee, Murai, Takahashi and WY,2306.17146; Kitajima, Lee, Takahashi and WY, to appear soon; $\Delta V/\epsilon$ Conventional scaling regime 8.0 time 🗸 0.6 Our time-dependent bias 0.4 DW bias has a QCD-0.2 Cutting the UV fluctuations accelerates axion like potential the formation of scaling regime at $\tau = 3 - 4.$ $\Delta V \propto \chi(T).$ 10 2 8 6 Reminder: We use Z_2 symmetric, ϕ^4 theory conformal time $\tau \times m_0$ to approximate system.

- DW collapse after
- DW collapse in a short
- Good approximation if

New dominant contribution to the GW from decaying DW!

 k/m_0

Kitajima, Lee, Murai, Takahashi and WY,2306.17146;

New dominant contribution to the GW from decaying DW!

 k/m_0

Kitajima, Lee, Murai, Takahashi and WY,2306.17146;

New dominant contribution to the GW from decaying DW!

 k/m_0

Kitajima, Lee, Murai, Takahashi and WY,2306.17146;

 10^{-8}

 10^{-9}

 10^{-10} L

 10^{-11}

 10^{-9}

 $\Omega_{{
m GW},0}h^2$

$$\delta \mathscr{L} = \alpha_s \frac{\phi}{8\pi f_\phi} G\tilde{G}$$

$$\rightarrow \delta V = \chi(T) \cos(\frac{\phi}{f_{\phi}} + \theta_{\rm QCD})$$

- DW decay induced by QCDPT predicts nHz GW!
- It naturally explains the NANOGrav data! NANOGrav collaboration, 2306.16219
- It is unlikely the string axion, becasue $f_{\phi} < 10^8 \, GeV$

Once DW network is formed we have to deal with DW problem.

Stable DW with small tension $\sigma < MeV^3$

Model particle.

Let us consider photon coupling

$$\mathcal{L} \supset -\frac{g_{\phi\gamma\gamma}}{4}\phi F\tilde{F}$$

$$\equiv \frac{\alpha\phi}{8\pi f_{\phi}}F\tilde{F}$$

With $m_{\phi} = 10^{-33} - 10^{-29} eV$,

Cosmic birefringence (CB) from axion domain walls

Changes of background axion the field rotate propagating photon polarization.

Carroll, Field, Jackiw, 1990; Harari, Sikivie, 1992; Carroll,1998; $\Phi(\Omega) = 0.42 \text{ deg} \times c_{\gamma} \left(\frac{\phi_{\text{Earth}} - \phi_{\text{LSS}}(\Omega)}{2\pi f_{\phi}} \right)$ ϕ/f_{ϕ} -1.0

• Observables: -Isotropic CB

$$\beta \equiv \frac{1}{4\pi} \int d\Omega \Phi[\Omega]$$

 $\beta_{\rm obs} = 0.36 \pm 0.11 {\rm deg}$

Minami and Komatsu, 2006.15982, Diego-Palazuelos et al, 2201.07682.

Anisotropic CB e.g. $C^{\Phi}_{\ell} \leftrightarrow < \Phi(\hat{\Omega})\Phi(\hat{\Omega'}) >$

Cosmic birefringence (CB) from axion domain walls

Changes of background axion the field rotate propagating photon polarization.

Carroll, Field, Jackiw, 1990; Harari, Sikivie, 1992; Carroll,1998; $\Phi(\Omega) = 0.42 \text{ deg} \times c_{\gamma} \left(\frac{\phi_{\text{Earth}} - \phi_{\text{LSS}}(\Omega)}{2\pi f_{\phi}} \right)$

• Observables: -Isotropic CB

$$\beta \equiv \frac{1}{4\pi} \int d\Omega \Phi[\Omega]$$

 $\beta_{\rm obs} = 0.36 \pm 0.11 {\rm deg}$

Minami and Komatsu, 2006.15982, Diego-Palazuelos et al, 2201.07682.

Anisotropic CB e.g. $C^{\Phi}_{\ell} \leftrightarrow < \Phi(\vec{\Omega})\Phi(\vec{\Omega}')$

Scaling DW without a string naturally explains isotropic CB!

$c.f.\beta_{obs} = 0.36 \pm 0.11 deg$

Minami and Komatsu, 2006.15982, Diego-Palazuelos et al, 2201.07682.

DWs +string from U(1) symmetry is difficult to explain it.

Agrawal, et al, 1912.02823, Takahashi, WY, 2012.11576, Jain et al, 2208.08391

Anisotropic CB will be probed soon.

Takahashi, WY, 2012.11576; Takahashi, Kitajima and Kozai, WY, 2205.05083; Gonzalez, Kitajima, Takahashi, WY,

Conclusions: Axion models always involve stable domain wall (DW) configurations.

- Due to inflationary fluctuations, DW formation is natural in string axiverse with many axions.
- contribution to GWs.
- Avoiding the DW problem by a small tension, the stable DW (CB). This will be tested by future anisotropic CB.
- They both may be the probes of string axiverse because $f_{\phi} = 10^{15-17} \,\text{GeV}$ can also be probed as well.

 Avoiding the DW problem by potential bias predicts gravitational waves (GWs). From lattice simulation, we found a new dominant

without a string can explain the isotropic cosmic birefringence

Backup

Axion domain wall from phase transition for dark charge conjugation, C_{dark}, breaking.

 $U(1)_{\rm PO}$ breaking but $C_{\rm dark}$ conserving interaction in the UV model,

 $\mathcal{L} = -y\Phi\bar{\Psi}_L\Psi_R - M\bar{\Psi}_L\Psi_R + h.c.$ y, and *M* are real.

$$\delta V_{\rm eff} \supset -\frac{T^2}{24} M_{\rm eff}^2 \supset -\frac{T^2}{24} \sqrt{2} y f_a M \cos(a/s)$$

Gonzalez, Kitajima, Takahashi, WY, 2211.06849

This results in white noise DW without string if $U(1)_{PO}$ never restores.

Axion induced birefringence Carroll, Field, Jackiw, 1990; Harari, Sikivie, 1992; Carroll, 1998;

Axion induced birefringence Carroll, Field, Jackiw, 1990; Harari, Sikivie, 1992; Carroll, 1998;

 $\Delta \Phi(\vec{\Omega}) = \frac{1}{2} g_{\phi\gamma\gamma} \int_{\text{LSS}}^{\text{today}} d\phi = 0.42 \text{ deg} \times c_{\gamma} \left(\frac{\phi_{\text{Earth}} - \phi_{\text{LSS}}(\Omega)}{2\pi f_{\phi}} \right),$

(if ALP background changes adiabatically.)

