

Belle IIでの軽い新粒子探索

石川 明正 (KEK)

青木さんから

「今回、石川さんにも参加して頂いてBelle IIでの軽い粒子探索関連の講演をして頂き、研究会を盛り上げて頂けたらと思い、声をかけさせてもらいました。」

と言うわけで軽い新粒子探索(Dark Sector)に focus
 した話をしたいと思います

Contents

- Introduction
- Belle II での Trigger System
- Belle II での軽い新粒子探索

Belle II Experiment

- KEK Tsukuba campus
 - SuperKEKB accelerator
 - Belle II detector

SuperKEKB Accelerator

- Highest luminosity collider
 - $L_{target} = 6 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$
 - E_{CM}=10.58GeV on Y(4S)
 - Just above the BB threshold to produce B meson pairs efficiently
 - Can go higher, Y(5S) upto 11.24GeV
 - Energy-asymmetric collisions
 - 7.0GeV (e⁻) x 4.0GeV (e⁺)
 - To boost B mesons to measure time dependent CPV
 - 50ab⁻¹ will be accumulated around 2035
 - Containing 1x10¹¹ B mesons, 1.4x10¹¹ charm hadrons, and 0.9x10¹¹ τ
 - Processes with cross sections of O(1)ab or less are reachable

Peak Luminosity [x10³⁵cm_{.2}s⁻¹]

2

2019

2024

2029

20

10

0

2034

Belle II Detector

- Significant detector improvements from Belle
 - Better and Larger Vertex Detector → Time dependent CPV, especially with long lived Ks.

Luminosity and Dataset

- June 2022 : Run1 operation stopped
 - World's highest luminosity of 4.7x10³⁴ cm⁻²s⁻¹
 - 428fb⁻¹ data were accumulated so far
 - 362fb⁻¹ on resonance, 42fb⁻¹ off-resonance, 19fb⁻¹ energy scan
 - C.f. Belle collected 1040fb⁻¹

Near Future Prospects

- June 2022 Jan 2024: Long Shutdown 1 for SuperKEKB and Belle II upgrades
 - New collimators to reduce beam induced backgrounds which limit beam current
 - \rightarrow can go higher luminosity
 - Two-layer pixel detector was installed
 - → better vertex resolution under higher beam induced background
 - TOP PMT replacement \rightarrow better Kaon ID
- Jan 2024 : SuperKEKB operation resumed
 - Plan to accumulate more data than Belle in run2

Belle II Cons and Pros (vs. LHCb)

- Cons.
 - Statistics of b hadrons!! (cross section 1nb vs. 144µb)
 - We will only have 10^{11} B mesons with 50ab⁻¹ on Y(4S) and 5x10⁸ B_s with 5ab⁻¹ on Y(5S)
 - No large samples of b baryons and B_c
 - Production of these hadrons are not yet established at e^+e^- collisions around Y(nS).
 - Proper time resolution is worse and B meson is not so boosted.
 - Background suppression with B vertex displacement is not so easy
 - Bs mixing (Δm_s) can not be measured (while $\Delta \Gamma_s$ can be measured).

Belle II Cons and Pros (vs. LHCb)

- Pros.
 - Smaller background cross section (O(1)nb vs. O(10)mb)
 - ~3.4nb for ee \rightarrow qq, ~1.08nb for ee \rightarrow Y(4S) \rightarrow BB
 - Almost 100% trigger efficiency for BB events
 - Two level trigger system for low multiplicity events
 - Many dark sectors signature (X+missing) can be triggered
 - High hermeticity $4\pi \times 94\%$
 - High reconstruction efficiency of O(1)~O(10)%.
 - Full reconstruction of B meson possible (tagging of the other B meson)
 - More than one missing neutrino modes $\Rightarrow B \Rightarrow D(*)\tau v, B \Rightarrow \tau v, B \Rightarrow K^{(*)}vv, B \Rightarrow K\tau\tau, B \Rightarrow vv$
 - 4 momentum conservation usable → dark sector searches
 - Detection of electron
 - Detection efficiency of electron is almost the same as that of muon → test of LFU
 - Easy to recover bremsstrahlung photon
 - Detection of neutrals
 - reconstruction of γ , π^0 and Ks efficiently \rightarrow sum-of-exclusive method for $B \rightarrow Xsl^+l^-$, $B \rightarrow \pi^0 \pi^0$, $B_{(s)} \rightarrow \gamma \gamma$
 - Better energy resolution of hard $\gamma \rightarrow B \rightarrow K^* \gamma$ background to $B \rightarrow \rho \gamma$ can be suppressed

Rich Physics Program

• Flavor physics

- B
 - CKM Unitarity Triangle
 - Rare decays
 - Lepton Flavor Universality
 - etc
- Charm
 - CPV
 - mixing
 - Lifetime
 - etc

- τ

- Mass
- Lifetime
- CPV
- EDM
- etc

• QCD

- Bottomonia, charmonia and exotic hadrons containing heavy quark
- HVP with radiative return for muon g-2
- fragmentation
- etc
- EW
 - Weak mixing angle
 - etc
- Light new particle searches
 - Dark sector (DS) mediators
 - etc
- And more

Belle II での Trigger System

• 自分の模型の事象が trigger にかからなければ、データとして残ることは 無いので、実験屋がその探索をする事は不可能

Triggerは物理の選択

- Trigger:事象の特徴をオンラインで見積もり興味ある事象を選別する
 - Trigger された物理事象・背景事象はストレージに保存される
 - ストレージに書けるデータ量は予算による限界がある
 - 10回 trigger されたうちの1回だけストレージに保存のような自由度はある (prescale)
 - Trigger されなかったら物理事象・背景事象は捨てる
- 物理事象
 - SM : BB, qq, ττ, $\mu\mu$, $\gamma\gamma$, $\pi\pi\gamma$, two photon...
 - NP : dark sector etc.
- 背景事象
 - Beam 起因の背景事象
 - (radiative) Bhabha
 - Two photon

Physics process Cross section [nb] Selection Criteria $\Upsilon(4S)$ 1.110 ± 0.008 $u\bar{u}(\gamma)$ 1.61 $d\bar{d}(\gamma)$ -5nb 0.40 $s\bar{s}(\gamma)$ 0.38 $c\bar{c}(\gamma)$ 1.30 $\overline{e^+e^-}(\gamma)$ $10^{\circ} < \theta_{e}^{*} < 170^{\circ},$ 300 ± 3 (MC stat.) $E_{e}^{*} > 0.15 \, \text{GeV}$ $e^+e^-(\gamma)$ $p_e > 0.5 \,\mathrm{GeV}/c$ and e in 74.4ECL 4.99 ± 0.05 (MC stat.) $10^{\circ} < \theta_{\gamma}^* < 170^{\circ},$ $\gamma\gamma(\gamma)$ $E_{\gamma}^* > 0.15 \,\mathrm{GeV}$ $E_{\gamma} > 0.5 \,\text{GeV}$ in ECL $\gamma\gamma(\gamma)$ 3.30 $\mu^+\mu^-(\gamma)$ 1.148 $\mu^+\mu^-(\gamma)$ 0.831 $p_{\mu} > 0.5 \,\mathrm{GeV}/c$ in CDC $\mu^+\mu^-\gamma(\gamma)$ $p_{\mu} > 0.5 \,\text{GeV}$ in CDC, 0.242 $\geq 1 \gamma (E_{\gamma} > 0.5 \,\text{GeV})$ in $\tau^+\tau^-(\gamma)$ 0.9191nb 0.25×10^{-3} $\nu \bar{\nu}(\gamma)$ 39.7 ± 0.1 (MC stat.) $W_{\ell\ell} > 0.5 \, {\rm GeV}/c^2$ $e^{+}e^{-}e^{+}e^{-}$ $e^{+}e^{-}\mu^{+}\mu^{-}$ 18.9 ± 0.1 (MC stat.) $W_{\ell\ell} > 0.5 \, {\rm GeV}/c^2$

20231115

2 Level の Trigger

- Hardware L1 trigger (L1)
 - 短時間に大雑把な情報を用いて事象を選別する
 - Belle 1 では L1 のみしか無かった
 - Belle II では最大30kHz(L_{max} =6x10³⁵/cm²/s=600/nb/s $\rightarrow \sigma_{L1}^{max}$ =50nb)
- Software Higher Level trigger (HLT)
 - L1 でTrigger された事象をさらに選別
 - PC server 上で比較的長い時間を使って物理解析に近い運動量・エネルギー精度の情報を用いて事象を選別する
 - Belle II で導入された
 - これによりL1 でより多くの(特に背景事象に近い)事象を取得する事が可能に
 - Dark sector 事象にとっては重要
 - Belle II では最大10kHz(になる予定)
- L1 が最も重要なのでその説明をします

Belle II での L1 Trigger 情報

- CDC (Central Drift Chamber)
 - 荷電粒子の飛跡と運動量測定
 - 2次元の飛跡の数
 - 3次元の飛跡の数
 - 2次元での飛跡対の opening angle

- ECL (Electromagnetic CaLorimeter)
 - エネルギー測定(電子・光子、荷電粒子の通過)
 - Energy sum
 - ・ Cluster の数
 - ・ cluster 対の opening angle
- KLM (KL and Muon system)
 - KLM を貫通した飛跡(muon)の測定
 - ・ Muon の数
 - Muon対のOpening angle

Belle II での L1 Trigger 情報

- CDC (Central Drift Chamber)
 - 荷電粒子の飛跡と運動量測定
 - 2次元の飛跡の数
 - 3次元の飛跡の数 Topology 情報を使える
 - 2次元での飛跡対の opening angle
 - Forward/backward 方向は eff が低い
 - 2次元はビーム起因背景事象を拾いやすい

- ECL (Electromagnetic CaLorimeter)
 - エネルギー測定(電子・光子、荷電粒子の通過)
 - Energy sum
 - Cluster の数
 - ・ cluster 対の opening angle
- KLM (KL and Muon system)
 - KLM を貫通した飛跡(muon)の測定
 - ・ Muon の数

Belle II での L1 Trigger 情報

- CDC (Central Drift Chamber)
 - 荷電粒子の飛跡と運動量測定
 - 2次元の飛跡の数
 - 3次元の飛跡の数 Topology 情報を使える
 - 2次元での飛跡対の opening angle
 - Forward/backward 方向は eff が低い
 - 2次元はビーム起因背景事象を拾いやすい

- ECL (Electromagnetic CaLorimeter)
 - エネルギー測定(電子・光子、荷電粒子の通過)
 - Energy sum
 - Cluster の数
 - ・ cluster 対の opening angle
- KLM (KL and Muon system)
 - KLM を貫通した飛跡(muon)の測定
 - ・ Muon の数

Standard Trigger

- BBbar 事象は最優先 (1nb)
 - ほぼ100%の trigger efficiency が要求される
 - L_{max}=6x10³⁵/cm²/s = 600 nb/s だと 600Hz
- BBbar 事象での粒子数
 - 平均11本の荷電粒子
 - 平均5個の光子
 - 最も multiplicity が高い
- Trigger 条件は以下の OR
 - 3 track (2 2D-track + 1 3D-track)
 - 2 track (1 2D-track + 1 3D-track) with opening angle $\Delta \phi$ >90deg with Bhabha veto
 - hie = Esum > 1GeV with Bhabha veto
 - nCluster >=4
- 非常に緩い条件かつ背景事象を取ることがそれほど多くない
 - ee→qqもこれでほとんど取れる
 - ただし、これだけだと low multiplicity な event はとれない場合もある

Physics process	Cross section [nb]	Selection Criteria
$\Upsilon(4S)$	1.110 ± 0.008	-
$uar{u}(\gamma)$	1.61	
$d ar d (\gamma)$	0.40	5nb
$sar{s}(\gamma)$	0.38	-
$car{c}(\gamma)$	1.30	-
$e^+e^-(\gamma)$	$300 \pm 3 \text{ (MC stat.)}$	$10^{\circ} < \theta_e^* < 170^{\circ},$
		$E_e^* > 0.15{\rm GeV}$
$e^+e^-(\gamma)$	74.4	$p_e > 0.5 \mathrm{GeV}/c$ and e in
		ECL
$\gamma\gamma(\gamma)$	$4.99\pm0.05~({\rm MC \ stat.})$	$10^{\circ} < \theta_{\gamma}^* < 170^{\circ},$
		$E_{\gamma}^* > 0.15 { m GeV}$
$\gamma\gamma(\gamma)$	3.30	$E_{\gamma}^{'} > 0.5 { m GeV} \ { m in} \ { m ECL}$
$\mu^+\mu^-(\gamma)$	1.148	-
$\mu^+\mu^-(\gamma)$	0.831	$p_{\mu} > 0.5 \text{GeV}/c$ in CDC
$\mu^+\mu^-\gamma(\gamma)$	0.242	$p_{\mu} > 0.5 \text{GeV}$ in CDC,
		$\geq 1 \gamma (E_{\gamma} > 0.5 \text{GeV})$ in
$\tau^+\tau^-(\gamma)$	0.919 💶 1nh	-
$ uar u(\gamma)$	0.25×10^{-3}	-
$e^+e^-e^+e^-$	$39.7\pm0.1~(\mathrm{MC~stat.})$	$W_{\ell\ell} > 0.5 \mathrm{GeV}/c^2$
$e^+e^-\mu^+\mu^-$	18.9 ± 0.1 (MC stat.)	$W_{\ell\ell} > 0.5 \mathrm{GeV}/c^2$

Esum > 1GeV with Bhabha veto

- Bhabha は σ が大きいので veto しないと trigger rate があふれてしまう
- ・ CM系で E>4.5GeV と E>3.0GeV の3次元の back-to-back cluster がいる event を veto
 - Bhabha に似ている dark sector 事象は veto されてしまう
 - 次の run からは single photon が Forward に行く radiative Bhabha も veto される

20231115

DS と Standard Trigger

- hie = Esum > 1GeV with Bhabha veto
 - High energy photon がある event はだいたいこれでいける
 - Dark photon : $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow \mu \mu$
 - low mass A'→ee は Bhabha veto されるので専用の trigger が必要
 - Invisible Dark Higgs : $e^+e^- \rightarrow A'H'$, $A' \rightarrow \mu\mu$
 - ALP : $e^+e^- \rightarrow \gamma a$, $a \rightarrow \gamma \gamma$
- 2 track with opening angle $\Delta \phi$ >90deg with Bhabha veto
 - Track と Invisible な final state。ただ、invisible が重いと eff が悪くなるので
 >30deg
 - Invisible Z' in $L_{\mu}-L_{\tau}$: e⁺e⁻ $\rightarrow \mu\mu$ Z', Z' $\rightarrow \chi\chi$

Low Multiplicity Trigger (τ , DS, HVP, etc)

- Single track trigger : 3D-track with p>0.7GeV
 - Track が multiplicity が低い event はほとんど
 - Invisible Z' in $L_{\mu}-L_{\tau}: e^+e^- \rightarrow \mu\mu Z', Z' \rightarrow \chi\chi$
- Single Barrel Cluster trigger E>1GeV with no other cluster with E>300MeV
 - Single photon
 - Invisible Dark photon : $e^+e^- \rightarrow \gamma A'$,
- Low mass Dark photon ee : 3D Bhabha in barrel, one cluster-track matching, track opening angle ϕ <90deg
 - 2つの近接電子陽電子が1つの cluster に見えるので Bhabha と認識される
 - Dark photon : $e^+e^- \rightarrow \gamma A'$, $A' \rightarrow ee$

Belle II での軽い新粒子探索

Belle II での軽い新粒子探索

• Dark Sector Mediators (and dark matter)

- Pseudo Scalar : ALPs
- Scalar : Dark Higgs
- Vector : Dark Photon, Z' in L_{μ} - L_{τ}
 - ATOMKI X17 (a variant of dark photon?)
 - Inelastic dark matter : χ_1 and χ_2
 - SIMP
- Fermion : sterile neutrinos
- Heavy QCD Axion
- Dark matter in B-Mesogenesis (Dark Matter has baryon number)
- CP odd scalar A⁰
- SUSY singlino
- Magnetic monopole/dyon
- And new particles in your models

Dark Photon

Belle II での探索結果はまだ出ていない
 Belle, Babar の制限が強いので。

Dark Photon

- U(1) gauge boson の mixing は禁止されていない。
- 光子が dark photon A' に転換することが可能である。
- ・ Dark photon は
 - Invisible : dark matter に崩壊 (m_{A'} > 2m_{DM}), 結合定数 α_D
 - Visible : SM 粒子に崩壊(m_{A'} < 2m_{DM}), 結合定数 ε²α_{EM}

Dark photon の生成

• ε=10⁻³とすると1GeV A' で 5fb⁻¹

Invisible Dark Photon

- 終状態は光子1つ
 - Trigger : ECL total energy >1GeV
- 背景事象
 - $e^+e^- \rightarrow \gamma \gamma(\gamma)$
 - Cosmic
 - Single beam background
- 制限
 - $\epsilon^{-3}x10^{-4}$ with 20fb⁻¹
 - $\epsilon^{4}x10^{-4}$ with 50ab⁻¹

mono-photon + invisible

Visible Dark Photon

- 終状態は光子と dilepton
 - Trigger : hie or two track trigger
- Signature
 - − e^+e^- → A' γ, A' → e^+e^- or $\mu^+\mu^-$
- 背景事象
 - $e^+e^- \not\rightarrow e^+e^- \gamma$
 - $e^+e^- \rightarrow \mu^+\mu^-\gamma$
- 感度
 - $-\epsilon$ ~ a few x 10⁻⁴

photon + di-lepton resonance

- 特殊な dark photon
- むしろ dark sector というより anomaly free に motivate された 模型という印象
- 最近だと muon g-2 に motivate された模型

,模型でのZ′

- L_u-L_t 模型では Z' は第二第三世代のレプト ンにしか結合しない: μ , τ , v_{μ} , and v_{τ}
 - Two parameters : m₇, and g'

 $\mathcal{L} = -g'\bar{\mu}\gamma^{\mu}Z'_{\mu}\mu + g'\bar{\tau}\gamma^{\mu}Z'_{\mu}\tau - g'\bar{\nu}_{\mu,L}\gamma^{\mu}Z'_{\mu}\nu_{\mu,L} + g'\bar{\nu}_{\tau,L}\gamma^{\mu}Z'_{\mu}\nu_{\tau,L}$

- もし dark matter と結合可能で m_{z'}>2m_y なら dark matter への崩壊分岐比がほぼ100%
- muon g-2 anomalyを説明できる
- m_{z'}>2m_uは排除されている
 - Belle and BaBar, with muons
 - neutrino trident experiments CCFR and CHARM-II
 - BOREXINO limit > 10MeV (Not shown)
- Invisible decay で探索する

 10^{-1} °10^{−2} 10^{-3} BABAR Belle (Born) CCFR ----- Belle (visible) CHARM-II 10 m_{7} [GeV/c²]

0%と仮定し muon モードで探索

 $-Z' \rightarrow v_1 \overline{v}_1$ $Z' \rightarrow \mu \mu'$

 $-Z' \rightarrow \tau \tau^+$

10

Invisible Z' in
$$L_{\mu}$$
- L_{τ} model

- Typical cross section
 - ~10fb with g'=0.01 and M_{z'} = 1GeV
- Signature
 - $e^+e^- \rightarrow \mu^+\mu^- Z' \rightarrow \mu^+\mu^- \chi \chi$
- Trigger
 - 2 track with opening angle
- Search
 - Dominant backgrounds
 - ee→eeμμ, ττγ, μμγ
 - Recoil mass and θ_{Recoil} to identify the signal

Limit on invisible Z'

- Invisible 崩壊で世界で初めて muon g-2 anomaly を説明する 領域を排除
 - $0.8 < M_{z'} < 4.5 GeV$

arxiv: 2212:03066 submitted to PRL

Invisible Z':将来の展望

 50ab⁻¹ あれば muon g-2 を説明できる領域での発見もしくは 排除が可能

20231115

33

Axion Like Particles (ALPs)

Axion Like Particles (ALPs)

- Axion like particles (ALPs) 以下の
 - Global 対称性の自発的破れ
 - 超弦理論の String compactification
 - SM gauge group を作れる最大の群を選ぶと181820 種類のALPs が存在
- QCD Axion は質量と崩壊定数に関係があるが (m_πf_π ~ m_af_a) ALPs には無い
 - 探索可能な parameter space が広い
- 単純のために ALP が光子としか結合しないと 2 parameters
 - g_{aγγ} : coupling constant
 - m_a : mass of ALP

$$\delta \mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \frac{1}{2} (\partial_{\mu} a)^2 - \frac{1}{2} m_a^2 a^2$$

Decay width (lifetime)

$$\Gamma_a = \frac{g_{a\gamma\gamma}^2 m_a^3}{64\pi}.$$

• Axion Portal :
$$\frac{a}{f_a}F_{\mu
u} ilde{F}^{\mu
u}$$

SM gauge boson

Signature

- ALP can be generated from
 - ALP-strahlung
 - Photon fusion
 - under study
- Cross section

- ~1fb for
$$g_{a\gamma\gamma}$$
=10⁻⁴ GeV⁻¹

$$\sigma_a = \frac{g_{a\gamma\gamma}^2 \alpha_{\text{QED}}}{24} \left(1 - \frac{m_a^2}{s}\right)^3$$

- Sequential two-body decays
 - e⁺e⁻→γa, a→γγ
 - Only three photons in a final states
- Belle II search for shorter lifetime region
 - Large coupling and large mass
 - beam dump experiments \rightarrow longer lifetime
 - two photons are resolved in EM calorimeters

37

Search for ALPs at Belle II

- Trigger
 - hie
- Two Reconstruction technique
 - Invariant mass for low mass [0.2, 6.85]GeV
 - Recoil mass for high mass [6.85, 9.7]GeV
- Dominant background is SM $e^+e^- \rightarrow \gamma \gamma \gamma$

445pb⁻¹

Limit on $\sigma(e^+e^- \rightarrow a\gamma)$

- No significant excess is observed
 - Largest local significance of 2.8σ at m_a=0.447GeV
- Set a limit on σ .

 $-\sigma < 1pb$

Limit on ALP parameter space

- Coupling around 10⁻³GeV⁻¹ level
- World's best limit around 500MeV
- We can improve the sensitivity more than one order of magnitude in coupling with 50ab⁻¹ data
- Adding photon fusion process gives better limit

Dark Scalar

- Dark Photon からの輻射
- B中間子ループ崩壊での top quark からの輻射

Dark Higgs

- Dark photon A' はdark Higgs field の自発 ۲ 的対称性の破れで質量を獲得したかも しれない→physical dark Higgs h' が存在
 - 今回は SM Higgsとの mixing は仮定しない
 - Portal 粒子では無い
- Dark Higgs は dark higgsstrahlung ۲ process で生成可能 : e⁺e⁻ →A'h'
- 4 parameters
 - $M_{A'}$, $M_{h'}$
 - $-\epsilon$: kinetic mixing
 - α_{D} : coupling constant of dark sector
- $M_{h'} > M_{A'}$ •
 - Dark Higgs は visible h' \rightarrow A'A'
 - already covered by Belle and Babar
- $M_{h'} < M_{A'}$
 - Dark Higgs は invisible
 - KLOE.でのみしか探索されていない
- 広い探索領域が残っている 20231115

Search for Dark Higgs in $e^+e^- \rightarrow A'h'$

- Dark photon decay
 - A'→μμ
 - M_{µµ} >1.65GeV for trigger limitation
- Dark Higgs
 - invisible
 - Recoil mass against dimuon system
- Trigger on dimuon
 - two track with opening angle $\Delta \phi$ >90de
 - 90% efficiency
- Search in two dimensional plain
 - M_{µµ} VS M_{rec}
 - Correlated
 - Ellipse signal windows
- Dominant background
 - e⁺e⁻→μμγ
 - e⁺e⁻→ττ
 - e⁺e⁻→eeµµ

8.34fb⁻¹

Limits on $\sigma(e^+e^- \rightarrow A'h')$

- No significant signal is observed
- Counting method to set the cross section limits in each bin
 - − $\sigma(e^+e^- \rightarrow A'h') < 10$ fb for wide region
- World's leading limit for $1.65 < M_{A'} < 10.51 GeV$

Limits on Physics Parameters

- 4 parameters : $M_{A'}$, $M_{h'}$, ϵ and α_{D}
- Limit on $\epsilon^2 \alpha_D$
 - Kinetic mixing ϵ and coupling constant α_{D} cannot be separately constrainted in this process.
- First limits in this mass region

B中間子崩壊でのDark Scalar

- B中間子の b→s Penguin 崩壊は loop の中に top quark を含む
 – 湯川結合がデカい
- SM Higgs との mixing があれば dark scalar を作ることが可能である
 - Mixing angle θ

Long-lived Dark Scalar in B Decays

- Dark scalar particles S
 - M_s < 2M_{χ}
 - S→χχは relic density を説明出来る領域はすでに排除されている
 - SM Higgs と混ざることが出来るwith the mixing angle 0
 - 湯川結合は重い fermion でデカい
 - long-lived if θ is small
- $B \rightarrow K^+ S$ and $B \rightarrow K^{*0} S$ decays
 - S is radiated off from internal top quark in $b \rightarrow$ s decays
 - S→ee, μμ, ππ, KK
 - In total, 8 decay modes
- Bが長寿命粒子に崩壊
 - Trigger を気にしなくて良い
 - Clean displaced vertex signature
 - Dominant backgrounds are combinatorial
 - ee \rightarrow cc, ee \rightarrow uu,dd,ss , ee \rightarrow Y(4S) \rightarrow BB
 - Long-lived K_s⁰ is a good control sample

Particles from the other B

189fb⁻¹ data

Limit on $B \rightarrow K^{(*)} S$

- BFに対するモデル非依存の制限
 - As functions of $c\tau$ and mass.
 - For 8 decay modes
 - First limit on S decaying to hadrons
- モデル依存の制限 on m_s vs. sinθ
 - Dark Higgs mixing with the SM Higgs
 Filimonova, Schäfer, Westhoff, Phys. Rev. D 101, 095006

Model dependent

Sterile Neutrino

- Belle II で最近始めました
 - Belleの制限が強い

Sterile Neutrino

• Fermion Portal : $Y_N \overline{L} H N$

right-handed neutrino

EW scaleより下であればNeutrinoの生成は

- B,D中間子の(セミ)レプトニック崩壊
 - $B \rightarrow D(*) I \nu, B^+ \rightarrow \mu^+ \nu$
- τレプトンの崩壊
- ・ Active neutrino が Sterile neutrino と mixing
 - $\quad U_{e4,}\,U_{\mu4,}\,U_{\tau4}$
- 崩壊の時も active neutrino への mixing で
- 基本的に長寿命
 - Weak interaction で崩壊
 - さらに mixing の効果

Production

from meson decays:

Decay

Sterile Neutrinoの制限

- Collider
 - LEP, LHC, Belle
- Fixed target
 - CHARM
- 0νββ
 - 電子モードはこれで強い制限がついている
 - 標準模型では 2vββ だが majorana neutrino であれば 0vββが可能
 - ⁷⁶Ge \rightarrow ⁷⁶Se e⁻e⁻ (GERDA)
 - − 136 Xe → 136 Ba e⁻e⁻ (KAMLand-Zen)

重要なのはミューオンとタウ

Belle での Sterile Neutrino 探索

- B中間子崩壊 1301.1105
 - B→D(*) | N, N→I π (l=e,μ)
 - $|U_e|^2$, $|U_{\mu}|^2$, $|U_e||U_{\mu}|$ に制限
- τレプトン崩壊 2212.10095
 - $-\tau \rightarrow N \pi$, $N \rightarrow I \pi$ (I=e, μ)
 - $|U_e||U_{\tau}|, |U_{\mu}||U_{\tau}|$ に制限

生成と崩壊を見るので mixing matrix element の4乗 |U|⁴に制限

 $M(v_{\rm h}) (GeV/c^2)$

20231115

$B^+ \rightarrow \mu^+ N$ at Belle II

- $B^+ \rightarrow \mu^+ N$, $N \rightarrow \mu^+ \pi^-$
- N は重いので Helicity suppression が緩和される

Invisible Sterile Neutrino

- 崩壊しない場合 N は観測できない
 - $B \rightarrow D(*) | N$
 - $B^+ \rightarrow \mu^+ N$
- 逆側のBを tag して Recoil mass を測定
 - FEIの efficiency (~0.3%)がかかる
 - 背景事象が多い
- 生成しか見ないので mixing matrix element の2乗|U|²に制限

Summary

- Belle II ではフレーバーの物理以外にも、軽い新粒子探索が可能である。
- Dark sector mediator 探索では暗黒物質に崩壊する場合も 探索出来る。
- 今回説明できませんでしたが、inelastic dark matter や ATOMKI X17 なども探しています
- 新しい模型がありましたら教えてください。

backup