Results and Perspectives on the Muon g-2 Experiment at Fermilab

A Muon g-2 storm seems to be brewing

Marco Incagli, INFN-Pisa
CERN seminar
5 September 2023
What is “g-2”?

\[\tilde{\mu}_P = -g_P \frac{e}{2m_P} \hat{S} \]

- \(g_P \): proportionality constant between spin and magnetic moment for particle P
- \(a_P \): magnetic anomaly
- \(a_P = 0 \) at tree level (purely Dirac particle)

Using modern language, the term \((g-2)/2\) reflects the magnitude of the Feynmann diagrams beyond leading order.

\[a = 0 + \frac{\alpha}{2\pi} + \ldots \]
Standard Model Components of g_μ

- **QED** dominates the value itself
- Uncertainty is dominated by **QCD**, in particular by the Hadronic Vacuum Polarization (**HVP**) term
- SM values taken from the **Muon g-2 Theory Initiative**
- Last compilation in 2020:

 https://doi.org/10.1016/j.physrep.2020.07.006

\[a_\mu = 0 + 0.00116584719 + 0.00000000154 + 0.000000000092 + 0.000000006845 \]
HVP Calculation: Dispersive (e^+e^-) Method

$$a^{HLO} = \frac{1}{4} \left(\frac{3}{4m^2} \right) \int_{4m^2}^{\infty} e^+e^- \rightarrow \text{hadr} (s) K(s) ds$$

- Kernel function: $K(s) \propto \frac{1}{s}$
- Due to the $1/s$ term, the low energies most important

$$R = \frac{\text{had}}{0}$$

R-ratio
Standard Model Components of g_μ

- Hadronic Light Equation
- QED
- Electroweak
- Hadronic Light-by-Light
- Hadronic Vacuum Polarization

$$a_\mu = 0 + 0.00116584719 + 0.00000000154 + 0.00000000092 + 0.000000006845$$

- Everything in SM needs to be included here: but are we sensitive to some **physics beyond the SM**?
- We can compare **experimental & predicted** values and ask:

 “Is there some New Physics in our experiment that isn’t in the Standard Model?”
A rich history of g-2 Theory and Experiment

Situation before Fermilab exp.: tension between theory and experiment

5/Sep/23 Marco Incagli - INFN Pisa
Fermilab Run-1 Result (2021)

- BNL E821 (2004) disagreed with SM prediction:

 - 7th April 2021, we released our Run-1 result
 - Using only 5% of our data, we confirmed BNL value
 - FNAL+BNL average stood 4.2σ from Theory Initiative White Paper (2020)

- Today’s talk is mostly about the new experimental result
- There have also been some new results from the SM prediction side of the plot…

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.141801
https://doi.org/10.1016/j.physrep.2020.07.006
The Fundamental Experimental Principle

- Difference between spin precession and cyclotron revolution for a muon (charged particle with spin) in a magnetic field*:

\[\omega_a = \omega_s - \omega_c = g \frac{e}{2m} B - \frac{e}{m} B = \frac{g - 2}{2} \frac{e}{m} B = a_\mu \frac{e}{m} B \]

*\(s \) and \(p \) are assumed to be in a plane perpendicular to \(B \)

- simple classical calculation
- the relativistic approach provides the same result
From single muon to *muon beam*

- The expression is more complicated when you add in E-field focusing and out of plane oscillations

\[
\omega_a = \frac{q}{m} a_\mu B
\]

- The motion is very nearly planar and the momentum is very nearly the ideal one, but both effects are not perfect and require corrections

\[
\vec{\omega}_a = -\frac{q}{m} \left[a_\mu \vec{B} - a_\mu \left(\frac{\gamma}{\gamma + 1} \right) (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]
\]

0 if "in plane"

Term cancels at 3.094 GeV/c, the "Magic γ"
The *Cern3 g-2* experiment

- Emilio Picasso view of the *Cern3 g-2* experiment

[Video from CERN CDS Video Service](https://videos.cern.ch/record/43113)
Creating the Muon Beam for g-2:

- 8 GeV protons into the Recycler
- Target for pion production
- Long FODO channel to collect $\pi \rightarrow \mu \nu$
- Pions decay in ~2km channel
- μ enter storage ring
How do we measure the spin direction?

- Use V-A structure of weak decays to build a polarized beam...

![Pion Rest Frame Diagram](image1)

- ... and to measure the muon polarization looking for energetic positrons

![Muon Rest Frame Diagram](image2)
The number of observed positrons above a threshold energy oscillates with the \(\omega_x/2\pi \) frequency due to spin precession.

\[
N(t) = N_0 e^{t/\tau} \left[1 + A \cos(\omega_x t + \phi) \right]
\]

- exponential decay modulated by spin precession
- note that the x-axis "wraps up" every 100 \(\mu \text{sec} \) for a total of \(\sim 700 \mu \text{s} \) \(\rightarrow \sim 10 \) muon lifetimes
Extracting a_μ (simplified)

\[\omega_a = a_\mu \left(\frac{e}{m} \right) B \rightarrow a_\mu = \frac{\omega_a}{B} \left(\frac{m}{e} \right) \]

by expressing B in terms of the (shielded) proton precession frequency: $(B = \hbar \omega'_p / 2\mu'_p)$:

\[
a_\mu = \frac{\omega_a}{\tilde{\omega}'_p} \cdot \frac{\mu'_p m_\mu g_e}{\mu_e m_e 2}
\]

External data

\[
R'_\mu = \frac{\omega_a}{\tilde{\omega}'_p}
\]

ratio of muon to proton precessions in the same magnetic field

\[
\tilde{\omega}'_p = \text{(shielded) Proton angular velocity weighted for the muon distribution}
\]
The key ingredients

\[R'_\mu = \frac{\omega_a}{\tilde{\omega}'_p} \]

\[\tilde{\omega}'_p = \omega'_p \cdot M(x, y, \varphi) \]

muon precession

proton precession

muon distribution

\[M(x, y, \varphi) \] magnetic field weighted by the muon distribution in the Storage Ring
24 Calorimeters + 2 trackers located all around the ring

NMR probes and electronics located all around the ring
Real World Experiment: Storage Ring

- 14 m diameter, 1.45 T C-shaped magnet stores muons
Measuring the Field: NMR Probes

- In-vacuum NMR trolley maps field every ~3 days

- 17 petroleum jelly NMR probes
- 2D field maps (~8000 points)
- Azimuthally-Averaged Variation < 1 ppm

- 378 fixed probes monitor field during muon storage at 72 locations
Calibration of Field Measurements

- Cross-calibrate using a cylindrical **plunging H$_2$O probe** which repeatedly **changes places with trolley** (petroleum jelly probes)

![Diagram of Calibration Volume with Trolley and Plunging Probe]

- This probe is **checked against a spherical probe** using an MRI magnet at ANL
- Both also cross-checked against a **3He probe** (different systematics)

![Images of H$_2$O Probe and 3He Probe]
Real World Experiment: Muon Injection

- Muons are injected into storage ring & bend in the B field
Real World Experiment: Kicker

- Fast kicker magnet tweaks direction from injection trajectory to center of aperture

μ⁺
Real World Experiment: Quads

Electrostatic quadrupoles vertically contain the beam.
Real World Experiment: Decay Positrons

- Experiment measures decay e^+ which curl inwards as they have lower momentum.
Real World Experiment: Trackers

- We measure the decay point with 2 trackers
Muon Distribution from Trackers:

- Measure **beam oscillations** directly
 - Beam-dynamics corrections
 - Tuning simulations
 - Optimizing experiment running
Muon Distribution from Trackers:

- Measure **beam oscillations** directly
 - Beam-dynamics corrections
 - Tuning simulations
 - Optimizing experiment running

- Use distribution to weight the field maps by where the muons live
Real World Experiment: Calorimeters

- Time & energy of decay e^+ are measured by 24 calorimeters
Measuring ω_a : 5 parameters fit function

- Fit with simple positron oscillation:
 \[N_e(t) = N_0 \exp\left(-\frac{t}{\tau_\mu}\right) \left[1 + A \cos(\omega_a t + \varphi)\right] \]

- This simple fit is clearly not sufficient and well defined resonances are observed in the residuals

Muon lifetime: $\tau_\mu = \gamma \tau_{0\mu} = 64.33$ μsec

CBO = Coherent Betatron Oscillations
VW = Vertical Waist (oscillations)

RESIDUALS (in frequency space)
The complete 22 parameters fit function

\[N_0 e^{-\frac{t}{\tau}} (1 + A \cdot A_{BO}(t) \cos(\omega_a t + \phi \cdot \phi_{BO}(t))) \cdot N_{CBO}(t) \cdot N_{VW}(t) \cdot N_y(t) \cdot N_{2CBO}(t) \cdot J(t) \]

\[A_{BO}(t) = 1 + A_A \cos(\omega_{CBO}(t) + \phi_A) e^{-\frac{t}{\tau_{CBO}}} \]
\[\phi_{BO}(t) = 1 + A_{\phi} \cos(\omega_{CBO}(t) + \phi_{\phi}) e^{-\frac{t}{\tau_{CBO}}} \]
\[N_{CBO}(t) = 1 + A_{CBO} \cos(\omega_{CBO}(t) + \phi_{CBO}) e^{-\frac{t}{\tau_{CBO}}} \]
\[N_{2CBO}(t) = 1 + A_{2CBO} \cos(2\omega_{CBO}(t) + \phi_{2CBO}) e^{-\frac{t}{2\tau_{CBO}}} \]
\[N_{VW}(t) = 1 + A_{VW} \cos(\omega_{VW}(t) + \phi_{VW}) e^{-\frac{t}{\tau_{VW}}} \]
\[N_y(t) = 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \]
\[J(t) = 1 - k_{LM} \int_{t_0}^{t} \Lambda(t) dt \]

\[\omega_{CBO}(t) = \omega_0 t + A e^{-\frac{t}{\tau_A}} + B e^{-\frac{t}{\tau_B}} \]
\[\omega_y(t) = F \omega_{CBO}(t) \sqrt{2\omega_c/F \omega_{CBO}(t)} - 1 \]
\[\omega_{VW}(t) = \omega_c - 2\omega_y(t) \]

Red = free parameters
Blue = fixed parameters

Lost muons (μ hitting collimators)
Final fit to get ω_α
Real World Complications: Corrections

- We need to make corrections for several small effects:

\[
\frac{\omega_a}{\omega_p} = \frac{\omega_a^m}{\omega_p^m} \frac{1 + C_e + C_p + C_{pa} + C_{dd} + C_{ml}}{1 + B_k + B_q}
\]

- E-field & Up/Down motion: Spin precesses slower than in basic equation
- Phase changes over each fill: Phase-Acceptance, Differential Decay, Muon Losses

- Total correction is 622 ppb, dominated by E-field & Pitch…
Run-2/3 Uncertainty Improvement Categories

Statistics

Running Conditions

Systematic Measurements & Studies

Analysis Improvements
Run-2/3 Uncertainty Improvement Categories

Statistics

Running Conditions

Systematic Measurements & Studies

Analysis Improvements
Run-2/3 Improvement: Statistics

Weighted e\(^+\) in our final fit after quality control

E > 1 GeV
t > 30 us

- Factor 4.7 more data in Run-2/3 than Run-1

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Statistical Error [ppb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run-1</td>
<td>434</td>
</tr>
<tr>
<td>Run-2/3</td>
<td>201</td>
</tr>
<tr>
<td>Run-1 + Run-2/3</td>
<td>185</td>
</tr>
</tbody>
</table>
Run-2/3 Uncertainty Improvement Categories

Statistics

Systematic Measurements & Studies

Running Conditions

Analysis Improvements
Running Conditions: Hall Temperature

- Temperature stability makes magnetic field less variable

![Graph showing temperature stability and magnetic field variability over time with added insulation highlighted.](image-url)
Running Conditions: Hall Temperature

- Temperature stability makes magnetic field less variable
Running Conditions: Kicker Strength

- Last 18% of Run-2/3 has upgraded, stronger kicker
 - Mom. distribution more centered
 - Lower E-field correction C_e
 - Phase space matching improved
 - Smaller beam oscillations
Run-2/3 Uncertainty Improvement Categories

Statistics

Systematic Measurements & Studies

Running Conditions

Analysis Improvements
Improved Measurements: Quad Transient Field

- Pulsing quads vibrate ⇒ oscillating magnetic fields
- Measured with a new NMR probe housed in insulator

![Graph showing field change over time](image)

- For Run-1 analysis, we had **limited measurement positions**
- Largest Run-1 systematic: **92 ppb**
Improved Measurements: Quad Transient Field

- For Run-2/3 analysis, **probe runs on the trolley rails**
- Allows **full mapping** of all quad stations:

- Uncertainty is reduced to **20 ppb**
Improved Measurements: Kicker Transient Field

- Kicker creates eddy currents ⇒ transient magnetic field

- Run-2/3 has lower vibration noise vs. Run-1

- Uncertainty reduces from 37 ppb to 13 ppb
Run-2/3 Uncertainty Improvement Categories

Statistics

Running Conditions

Systematic Measurements & Studies

Analysis Improvements
Analysis Improvements: *Pile-up*

- *Pile-up*: 2 e\(^+\) arriving at same time \rightarrow 1 cluster in ECAL
- Probability higher at injection (more muons): can bias ω_a
- Clusters with E>3.1GeV are certainly *Pile-up*
- Reduced uncertainty by:
 - Improved reconstruction
 - Improved correction algorithms
Uncertainty Improvements Summary

- Systematic improvements in **all parameters**

\[
\frac{\omega_a}{\omega_p} = \frac{\omega_a^m}{\omega_p^m} \frac{1 + C_e + C_p + C_{pa} + C_{dd} + C_{ml}}{1 + B_k + B_q}
\]

- **Analysis Improvements**
 - \(\omega_a \) syst.
 - \(C_e \)
 - \(C_p \)
 - \(C_{ml} \)
 - \(C_{pa} \)
 - \(C_{dd} \)
 - \(\omega_p \) syst.

- **Running Conditions**
 - \(B_q \)
 - \(B_k \)

- **Improved Measurements**
Run-2/3 Uncertainties: Final Values

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Correction</th>
<th>Uncertainty [ppb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_a^m (statistical)</td>
<td>–</td>
<td>201</td>
</tr>
<tr>
<td>ω_a^m (systematic)</td>
<td>–</td>
<td>20</td>
</tr>
<tr>
<td>C_e</td>
<td>451</td>
<td>32</td>
</tr>
<tr>
<td>C_p</td>
<td>170</td>
<td>10</td>
</tr>
<tr>
<td>C_{pa}</td>
<td>-27</td>
<td>13</td>
</tr>
<tr>
<td>C_{dd}</td>
<td>-15</td>
<td>17</td>
</tr>
<tr>
<td>C_{ml}</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>$f_{\text{calib}}(\omega_p(\tilde{r}) \times M(\tilde{r}))$</td>
<td>–</td>
<td>46</td>
</tr>
<tr>
<td>B_k</td>
<td>-21</td>
<td>13</td>
</tr>
<tr>
<td>B_q</td>
<td>-21</td>
<td>20</td>
</tr>
<tr>
<td>$\mu_p'(34.7^\circ)/\mu_e$</td>
<td>–</td>
<td>11</td>
</tr>
<tr>
<td>m_{μ}/m_e</td>
<td>–</td>
<td>22</td>
</tr>
<tr>
<td>$g_e/2$</td>
<td>–</td>
<td>0</td>
</tr>
<tr>
<td>Total systematic</td>
<td>–</td>
<td>70</td>
</tr>
<tr>
<td>Total external parameters</td>
<td>–</td>
<td>20</td>
</tr>
<tr>
<td>Totals</td>
<td>622</td>
<td>215</td>
</tr>
</tbody>
</table>

- Total uncertainty is **215 ppb**

<table>
<thead>
<tr>
<th>[ppb]</th>
<th>Run-1</th>
<th>Run-2/3</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stat.</td>
<td>434</td>
<td>201</td>
<td>2.2</td>
</tr>
<tr>
<td>Syst.</td>
<td>157</td>
<td>70</td>
<td>2.2</td>
</tr>
</tbody>
</table>

- Near-equal improvement: We’re still statistically dominated

Systematic uncertainty of 70 ppb surpasses our proposal goal of 100 ppb!
Blind Analysis

• Perform analysis with **software & hardware blinding**
• Hardware blind comes from **altering our clock frequency**

Non-collaborators set frequency to \((40 - \delta) \text{ MHz}\)

• Clock is locked and **value kept secret** until analysis completed
July 24th 2023: Unblinding

- Physics week in Liverpool for unblinding meeting:
 - Unanimous vote from all collaborators to unblind!
 - Secret envelopes were finally opened to reveal the hidden clock frequencies and the result…

Photo credits: McCoy Wynne
... a moment of panic!

- two layers of unblinding: software and hardware
- first the software unblinding was removed and the following image appeared on screen: few seconds of panic!

![Graph](image.png)

- $\chi^2/\text{dof} = 21.52/1$
- $\chi^2/\text{dof} = 37.82/2$

- Unblinding: Run 3 blind clock $= 39988000$ Hz
 - DeltaR [ppb] = 14864.089, total RmupT shift -0.000 [ppb]
 - $= 0.0037072920774(7904)$ [213 ppb]

- 39,998,000 Hz

- 5/Sep/23
- Marco Incagli
- INFN Pisa

- $a_\mu \cdot 10^9 - 1165900$
- $+3.66 \sigma$, BNL 2006
- $1165920.893(629) \cdot 10^{-9}$
- $+3.38 \sigma$, FNAL Run 1
- $1165920.430(539) \cdot 10^{-9}$
- -0.60σ, FNAL Run 2+3
- $1165917.800(250) \cdot 10^{-9}$
- $+0.17 \sigma$, FNAL Run 1+2+3
- $1165918.184(236) \cdot 10^{-9}$
- $+0.86 \sigma$, Exp. WA
- $1165918.515(221) \cdot 10^{-9}$
- Muon g-2 th. init. 2020
- $1165918.100(430) \cdot 10^{-9}$
After inserting the secret frequency ...

- The secret frequency, written in the two envelopes, was inserted in the program
Run-2/3 Result: Measured Value

\[a_\mu(\text{FNAL; Run-2/3}) = 0.00\ 116\ 592\ 057(25) [215\ \text{ppb}] \]

- Excellent agreement with Run-1 and BNL!
- Uncertainty more than halved to 215 ppb
- Both FNAL values dominated by statistical error
- Assume systematics are 100% correlated and combine…
Run-2/3 Result: FNAL Run-1 + Run-2/3 Combination

\[a_\mu(\text{FNAL}) = 0.00116592055(24) \, [203 \, \text{ppb}] \]

- FNAL combination: 203 ppb uncertainty
- Both FNAL and BNL dominated by statistical error
Run-2/3 Result: FNAL + BNL Combination

\[a_\mu(\text{FNAL}) = 0.00 \ 116 \ 592 \ 055(24) \ [203 \ \text{ppb}] \]

- FNAL combination: 203 ppb uncertainty
- Both FNAL and BNL dominated by statistical error
- Combined world average dominated by FNAL values.

\[a_\mu(\text{Exp}) = 0.00 \ 116 \ 592 \ 059(22) \ [190 \ \text{ppb}] \]
Measurements at Different Magnetic Fields

- Datasets were taken at slightly different field settings
- Allows a cross check with one of the most basic “handles”:

Also checked a_μ against temperature, day/night & others
Theory prediction is less clear now, but we can still compare experiment vs theory. Large discrepancy between experiment and WP (2020). Significance for Fermilab alone get to 5.0σ. ... but the theoretical band is not as sharp as it was in the 2021 comparison!
HVP Calculation: Lattice QCD Method

- **Ab-initio** calculation of HVP on lattice
- Results **not included** in White Paper (2020)

- BMW collaboration reached the precision of 0.8%, comparable to R-ratio method
- Their calculation is closer to the experimental result
- Other groups are cross checking
- Intermediate stages agree, but no full HVP calculations to same precision.
Theory prediction is less clear now, but we can still compare

- Include **BMW** result by swapping HVP from WP with their value
- As expected, BMW falls in between WP (2020) and experiment
HVP Calculation: Dispersive (e⁺e⁻) Method

- Calculated from data for σ(e⁺e⁻→ hadrons)

\[a_{\mu}^{\text{HVP,LO}} = \frac{\alpha^2}{3\pi^2} \int_{s_{\text{th}}}^{\infty} \frac{K(s)}{s} R(s) \, ds \]

- Analyticity & Unitarity

- Uses **data** from different experiments from **20+ years**
- **1/s weights low energy strongly:** 73% from π⁺π⁻ channel

New results from SND2k and CMD-3 since White Paper

- **CMD-3 is discrepant**
- **... what is going on?**
Data Collection 2018 – 2023

Last update: 2023-07-11 08:26; Total = 21.90 (xBNL)

- **Apr. 2021:** Run-1 Result (2018 data)
- **Aug. 2023:** Run-2/3 Result (2019-20 data)
- **~2025:** Run-4+5+6 Result (2021-23 data)
 - Reach our proposal goal for statistics (~21 BNL)

9 July 2023
Director Lia Merminga switches off the beam in **Muon g-2 control room**
The experimental landscape will improve …

1. FNAL Muon g-2:
 - \(a_\mu\) measured at 0.2 ppm
 - data already available to reduce error to < 0.14 ppm

2. A new type of experiment projected at J-Parc using low energy muons (p~300 MeV/c)
 - new technique
 - under construction
 - final goal ~0.4 ppm
The experimental landscape will improve …

Ongoing work in experimental inputs on $\sigma(e^+e^-\rightarrow \text{hadrons})$

- **Initial State Radiation technique:**
 - **BaBar:** new analysis of large $\pi\pi$ data set with better detector
 - **KLOE:** new analysis of 7x larger $\pi\pi$ set
 - **BESIII:** new results for $\pi\pi$ channel and $\pi\pi\pi$
 - **Belle II:** promising greater statistics than BaBar or KLOE and similar or better systematics for low-energy cross sections

- **Energy scan (VEPP-2000 machine in Novosibirsk)**
 - **SND:** new results for $\pi\pi$ channel
 - **CMD-3:** confirmation of their result on $\pi\pi$ channel; more channels to be analyzed
The theoretical landscape will improve …

1. close scrutiny of lattice calculations to establish its solidity
 – how to reconcile it with dispersion approach?

2. Use the dispersive approach with t-channel data (muon-electron scattering), instead of the standard s-channel
 – Letter Of Intents submitted at CERN: Muone (mu-on-e scattering)

\[a_{\mu}^{\text{HLO}} = \frac{\alpha}{\pi} \int_0^1 dx \ (1 - x) \Delta \alpha_{\text{had}}[t(x)] \]

\[t(x) = \frac{x^2 m_\mu^2}{x - 1} < 0 \]

\(\Delta \alpha_{\text{had}}(t) \) is the hadronic contribution to the running of \(\alpha \) in the spacelike region: \(a_{\mu}^{\text{HLO}} \) can be extracted from scattering data!
Conclusions

- We’ve determined a_μ to an unprecedented \textbf{203 ppb} precision
- New result is in \textbf{excellent agreement} with Run-1 & BNL
- More than \textbf{halved the total uncertainty} from Run-1
- Smashed our design goal with systematic uncertainty of \textbf{70 ppb}.
- There’s \textbf{more data} to analyze and we’ll squeeze uncertainty down further in our future results!
EXTRAS
Running Conditions: Damaged Quad Resistors

- Run-1 had damaged resistors in 2/32 quad plates leading to unstable beam storage
- Resistors re-designed & replaced before Run-2
- C_{pa} uncertainty is reduced ($75 \text{ ppb} \rightarrow 13 \text{ ppb}$)
- Beam oscillation frequencies are also more stable
Experiment vs Theory Comparison

- Theory prediction is less clear now, but we can still compare

Following A. Keshavarzi at Lattice 2023...

- Substitute **CMD-3** data for HVP below 1 GeV
- Cherry-picking one experiment but gives a bounding case
- **SND2k** cannot be processed in this way, but would fall closer to WP (2020).
- Many parallel efforts are underway to resolve the theoretical ambiguity

Disclaimer from A. Keshavarzi’s Lattice 2023 talk:

IMPORTANT: THIS PLOT IS VERY ROUGH!
- TI White Paper result has been substituted by CMD-3 only for 0.33 → 1.0 GeV.
- The NLO HVP has not been updated.
- It is purely for demonstration purposes → should not be taken as final!

Fermilab
Theory Prediction
Lattice QCD
HVP Calculation: Lattice QCD Method Status

- Other groups are working to reproduce BMW result
- Start with “windowing” method and compare in easiest region

- Cut off effects suppressed
- No signal-to-noise problem
- Finite-volume effects small
3.8σ tension between lattice QCD and data-driven evaluation [Colangelo et al., 2205.12963].

This accounts for 50% of the difference between BMW 20 and the White Paper average for a_{μ}^{HV}.
Simone Kuberski, Lattice 2023

The Intermediate-Distance Window

- 3.8 σ tension between lattice QCD and data-driven evaluation [Colangelo et al., 2205.12963].

- This accounts for 50% of the difference between BMW 20 and the White Paper average for a_μ^{hvp}.

- Agreement across many actions for the light-connected contribution (87%).

- Data-driven estimate: [Benton et al., 2306.16808] [Golterman]
Theory Prediction
Future Prospects
Dispersive Approach: Future Prospects for HVP

A. El-Khadra P5 town hall, 21-24 Mar 2023

Ongoing work on experimental inputs:
- BaBar: new analysis of large data set in $\pi\pi$ channel, also $\pi\pi\pi$, other channels, other channels
- KLOE: new analysis of large data in $\pi\pi$ channel, other channels
- SND: new results for $\pi\pi$ channel, other channels in progress
- BESIII: new results in 2021 for $\pi\pi$ channel, continued analysis also for $\pi\pi\pi$, other channels
- Belle II: arXiv:2207.06307 (Snowmass WP)
 Better statistics than BaBar or KLOE; similar or better systematics for low-energy cross sections
- STCF: arXiv:2203.06961
- Need blind analyses to resolve the tensions (esp. for $\pi\pi$ channel)

Ongoing work on theoretical aspects:
- Developing NNLO Monte Carlo generators (STRONG 2020 workshop https://agenda.infn.it/event/28089/) [appendix]
- radiative corrections using FsQED (scalar QED + pion form factor)
- charge asymmetry (CMD-3 measurement) vs radiative corrections [Ignatov + Lee, arXiv:2204.12235]
- development of new dispersive treatment of radiative corrections in $\pi\pi$ channel [Colangelo et al, arXiv:2207.03495]
- including τ decay data: requires nonperturbative evaluation of IIB correction [M. Bruno et al, arXiv:1811.00508]

If the differences between experiments are resolved:
data-driven evaluations of HVP with ~ 0.3% feasible by ~2025
Lattice QCD: Future Prospects for HVP

A. El-Khadra P5 town hall, 21-24 Mar 2023

HVP: lattice

Ongoing work:
- Evaluations of short-distance windows [ETMC, RBC/UKQCD]
- Proposals for computing more windows:
 - Use linear combinations of finer windows to locate the tension (if it persists) in \sqrt{s} [Colangelo et al, arXiv:12963]
 - Use larger windows, excluding the long-distance region $t \gtrsim 2\,\text{fm}$ to maximize the significance of any tension [Davies at at, arXiv:2207.04765]

For total HVP:
- Independent lattice results at sub-percent precision: coming soon!
- Including $\pi\pi$ states for refined long-distance computation (Mainz, RBC/UKQCD, FNAL/MILC)
- Include smaller lattice spacings to test continuum extrapolations (needs adequate computational resources)

If results are consistent, Lattice HVP (average) with $\sim 0.5\%$ errors feasible by 2025
Theory vs Experiment
Differences between a_μ values:

Sigma deviation between different predictions/measurements

<table>
<thead>
<tr>
<th></th>
<th>FNAL 2023 (World Ave)</th>
<th>WP 2020</th>
<th>BMW</th>
<th>CMD-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP 2020</td>
<td>5.0 (5.1)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMW</td>
<td>1.6 (1.7)</td>
<td>2.0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CMD-3</td>
<td>1.4 (1.5)</td>
<td>2.8</td>
<td>0.4</td>
<td>-</td>
</tr>
</tbody>
</table>

- Comparisons are taken from the whole a_μ value.
- They’re accurate when comparing to experiment.
- But e.g. WP (2020) & BMW both include same H-LbL components and error, so significance of difference between them is a little underestimated (2.0 vs 2.2σ).
BSM Physics
Discrepancy and New Physics:
(Experimentalist's (mis)Understanding)

D. Stöckinger:

\[\text{discrepancy} \approx 2 \times a_{\mu}^{\text{SM,weak}} \]

but: expect \(a_{\mu}^{\text{NP}} \sim a_{\mu}^{\text{SM,weak}} \times \left(\frac{M_W}{M_{NP}} \right)^2 \times \text{couplings} \)

loop-induced, CP- and Flavor-conserving, chirality-flipping

compare:

\[b \rightarrow s\gamma \quad \text{EDMs, } B \rightarrow \tau \nu \quad \mu \rightarrow e\gamma \quad \text{EWPO} \]
Discrepancy and New Physics: (Experimentalist’s (mis)Understanding)

Which models can still accommodate large deviation?

SUSY: MSSM, MRSSM
- MSugra... many other generic scenarios
- Bino-dark matter + some coannihil. + mass splittings
- Wino-LSP + specific mass patterns

Two-Higgs doublet model
- Type I, II, Y, Type X (lepton-specific), flavour-aligned

Lepto-quarks, vector-like leptons
- Scenarios with muon-specific couplings to μ_L and μ_R

Simple models (one or two new fields)
- Mostly excluded
- Light N.P. (ALPs, Dark Photon, Light $L_\mu - L_\tau$)
Detectors
Calorimeter Location

- 24 EM calorimeters inside the ring to measure decay e^+
Calorimeter Design

• Array of 54 PbF$_2$ crystals - 2.5 x 2.5 cm2 x 14 cm (15X$_0$)
• Readout by SiPMs to 800 MHz WFDs (1296 channels)
Calorimeter Performance

Energy Resolution

\[\sigma_{E/E} \sim 2.8\% @ 2 \text{ GeV} \]

Timing Resolution

\[\sigma_t \sim 25 \text{ ps} \]

Electron pile-up

Temporal separation at 5 ns

See NIMA 783 (2015), pp 12–21 for details
GAIN stability established to \simfew x 10^{-4}

State-of-the-art Laser-based calibration system also allows for pseudo data runs for DAQ

10$^{-4}$ / h demonstrated (in Test Beam)
Muon Distribution M_μ

- Want the **field actually experienced by muons**, so need to know **where muons are** in the field map.

- Measured with **two straw trackers** inside storage vacuum.
Tracker: Hawk-Eye with Muons

- Each tracker is made up of 8 modules inside vacuum chamber:
Tracker: Hawk-Eye with Muons

- A muon decays to a positron which travels through tracker
- e^+ position is recorded in tracker modules
- Hits are grouped and reconstructed into a track
- Track is extrapolated backwards to beam storage region
Corrections
E-field & Pitch Corrections:

- Non-simplified spin-motion is described by BMT equation:
 \[
 \frac{d(\hat{\beta} \cdot \vec{S})}{dt} = -\frac{q}{m} \vec{S}_T \cdot \left[a_\mu \hat{\beta} \times \vec{B} + \beta \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{E}}{c} \right]
 \]
 Jackson Eq. (11.171)

- Muons travel in E-field from focusing quadrupoles: experience a motional magnetic field in their rest frame

- Term vanishes at "magic" momentum (\(p_\mu = 3.094\) GeV)

- But not all muons are at \(p_\mu\) magic

- \(C_E\) comes from \(p_\mu\) distribution measured using timing data from calorimeters

- \(C_E = 489 \pm 53\) ppb
E-field & Pitch Corrections:

- Non-simplified spin-motion is described by BMT equation:

\[
\frac{d(\hat{\beta} \cdot \vec{S})}{dt} = -\frac{q}{m} \vec{S}_T \cdot \left[a_\mu \hat{\beta} \times \vec{B} + \beta \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{E}}{c} \right]
\]

- Jackson Eq. (11.171)

- Muons oscillate vertically (pitch) so \(\hat{\beta} \times \vec{B} \) term is reduced

- \(C_P \) is extracted from vertical width measured by the trackers

\[C_P = 180 \pm 13 \text{ ppb} \]
E-field Correction: C_E

- Imagine injecting uniform momentum & time distributions:

 - Higher momentum muons have further to travel, so have lower cyclotron freq.

- Higher momentum muons have further to travel, so have lower cyclotron freq.
E-field Correction: C_E

- Over time, lower momentum will catch higher momentum:

- The way that the gaps are filled in is related to the momentum distribution of the stored beam.
E-field Correction: C_E

- Effect is a strong feature of the data at early times:
 - Less pronounced when all calos are added together
 - Either Fourier analysis or χ^2 fit are used to get momentum distribution

![Cyclotron Period](image1)

- 4 – 10 µs

![g - 2](image2)

- 52 – 58 µs
Many systematics come from effects that change the phase of the detected e^+ over time.

These make us mis-measure ω_a with no other indications that we’re getting it wrong.

$$\cos(\omega_a t + \phi(t)) = \cos(\omega_a t + \phi_0 + \phi' t + \ldots)$$

$$= \cos((\omega_a + \phi') t + \phi_0 + \ldots)$$

In general, anything that changes from early-to-late within each muon fill can be a cause of systematic error.

Most phase shifts are eliminated by design or before fitting the data, but we must correct for two effects (C_{ML} & C_{PA}).
C_{PA} – Phase-Acceptance Correction

- Remember $\phi \rightarrow \phi(t)$ causes us to mis-measure ω_a
 - Due to acceptance, ϕ depends on muon decay position (x,y)
 - Not an issue if the muon distribution doesn’t change shape over a fill

- But in Run 1, equipment failure led to beam instability
 - 2/32 quad HV resistors died
 → Focusing E-field changed
 → Beam width changed
• Beam width changes couples to phase “map” to cause $\phi(t)$
• -158 ppb correction with a 75 ppb uncertainty in Run 1
• Fixed by Run 2: majority of correction & uncertainty disappears
Why phase varies with decay position

- Average detected phase changes with decay position:
 - Origin is acceptance: if e^+ decays outwards then it will have a longer path length to a detector
 - We see fewer events from top/bottom of storage region as they miss the detectors vertically
a_μ from Measurement
What do we really measure?

\[a_\mu \propto \frac{\omega_a}{B} \]

\[a_\mu = \frac{\omega_a}{\tilde{\omega}_p'(T_r)} \frac{\mu'_p(T_r)}{\mu_e(H)} \frac{\mu_e(H)}{\mu_e(0)} \frac{m_\mu}{m_e} \frac{g_e}{2} \]

- \(\omega_a \): e\(^+\) oscillation frequency
- \(\tilde{\omega}_p'(T_r) \): magnetic field from precession of protons in H\(_2\)O, weighted by muon distribution

Proposal Goal:
- 140 ppb = 100 ppb (stat)
- \(\oplus 100 \) ppb (syst)

Measured to 10.5 ppb accuracy at \(T = 34.7^\circ \text{C} \)
- *Metrologia* 13, 179 (1977)

Bound-state QED (exact)

- Known to 22 ppb from muonium hyperfine splitting

Measured to 0.28 ppt

Total < 25 ppb
Systematics vs BNL
Systematic Errors on ω_a (ppb)

<table>
<thead>
<tr>
<th>Category</th>
<th>BNL (E821)</th>
<th>Proposal</th>
<th>Run 1</th>
<th>Run-2/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>120</td>
<td>20</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Pileup</td>
<td>80</td>
<td>40</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>CBO</td>
<td>70</td>
<td>30</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>E & Pitch</td>
<td>50</td>
<td>30</td>
<td>55</td>
<td>33</td>
</tr>
<tr>
<td>Lost Muons</td>
<td>90</td>
<td>20</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Phase Acceptance</td>
<td>-</td>
<td>-</td>
<td>75</td>
<td>15</td>
</tr>
<tr>
<td>Total</td>
<td>180</td>
<td>70</td>
<td>108</td>
<td>42</td>
</tr>
</tbody>
</table>

Numbers are approximate
Category mapping is imperfect
Systematic Errors on ω_p (ppb)

<table>
<thead>
<tr>
<th>Category</th>
<th>BNL 2001 (E821)</th>
<th>Proposal</th>
<th>Run 1</th>
<th>Run-2/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Calibration</td>
<td>50</td>
<td>35</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>Trolley Calibration</td>
<td>90</td>
<td>30</td>
<td>32</td>
<td>14</td>
</tr>
<tr>
<td>Trolley Baseline</td>
<td>50</td>
<td>30</td>
<td>40</td>
<td>38</td>
</tr>
<tr>
<td>Fixed Probe Baseline</td>
<td>70</td>
<td>30</td>
<td>23</td>
<td>16</td>
</tr>
<tr>
<td>Muon Weighting</td>
<td>30</td>
<td>10</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Quad Transient</td>
<td>*</td>
<td>*</td>
<td>92</td>
<td>20</td>
</tr>
<tr>
<td>Kicker Transient</td>
<td>*</td>
<td>*</td>
<td>37</td>
<td>13</td>
</tr>
<tr>
<td>*Others</td>
<td>100</td>
<td>50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>170</td>
<td>70</td>
<td>114</td>
<td>53</td>
</tr>
</tbody>
</table>

Numbers are approximate
Category mapping is imperfect
Magnet Shimming Tools
Magnet Design & Shimming

• 14.2 m diameter “C”-shape magnet with 1.45 T vertical field
• **Shimming** campaign from 2015-16 resulted in very uniform field
• 14 ppm RMS across full azimuth & 3x better than at BNL

![Graph showing dipole field variation](image)

- Fermilab
- Brookhaven Typical

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- ρ = 7112 mm
Magnetic Shimming Tools

- Many “knobs” for shimming:
 - 72 Poles
 - Shaping & homogeneity
Magnetic Shimming Tools

• Many “knobs” for shimming:

 – 72 Poles
 • Shaping & homogeneity

 – 864 Wedges
 • Quadrupole asymmetry
Magnetic Shimming Tools

• Many “knobs” for shimming:
 – 72 Poles
 • Shaping & homogeneity
 – 864 Wedges
 • Quadrupole asymmetry
 – 48 Iron Top Hats
 • Change effective μ

\[\text{g-2 Magnet in Cross Section}\]
Magnetic Shimming Tools

• Many “knobs” for shimming:
 – 72 Poles
 • Shaping & homogeneity
 – 864 Wedges
 • Quadrupole asymmetry
 – 48 Iron Top Hats
 • Change effective μ
 – 144 Edge Shims
 • Quad/sextapole asymmetry
Many “knobs” for shimming:
- 72 Poles
 - Shaping & homogeneity
- 864 Wedges
 - Quadrupole asymmetry
- 48 Iron Top Hats
 - Change effective μ
- 144 Edge Shims
 - Quad/sextapole asymmetry
- 8000 Surface Iron Foils
 - Local changes of effective μ
- 100 Active Surface Coils
 - Control current to add ring-wide average field moments
Shimming the Magnet

- Progress towards a uniform field from Oct ‘15 to Sep ’16:

Dipole field (p-p & RMS) improved by factor 3 compared to BNL
ω_a Measurement
Why do decay e^+ tell us about muon spin?

- Muon spin information is encoded in **parity violating** decay

\[\begin{align*}
 \mu^+ & \xrightarrow{p_{\nu_e}} e^+ \\
 \mu^+ & \xrightarrow{p_{\bar{\nu}_\mu}} e^+
\end{align*} \]

- Highest energy positrons are emitted back-to-back with neutrinos

- Neutrino helicity is fixed, so **high energy** positrons are emitted in **direction of muon spin**
Simple fit: residuals

- Simplest form for fit is an exponentially decaying oscillation:
 \[N_0 e^{-t/\tau} (1 + A \cos(\omega_a t + \phi)) \]

CBO = Radial Mean Oscillations
VW = Vertical Width Oscillations

- Beam oscillations couple to acceptance & change number of e\(^+\) detected with time, and exponential isn’t perfect
Fit with beam dynamics terms

• Add terms to fit function to deal with complications:

\[f(t) = N_0 e^{-t/\tau} \left(1 + A \cos(\omega_a t + \phi) \right) \]

• Muons that are lost from storage ring before they decay:

\[\Lambda(t) = 1 - \kappa_{loss} \int_{t_0}^{t} L(t') e^{(t'/\tau)} dt' \]

• Beam oscillations that modulate decay rate:

\[N_{cbo}(t) = (1 + A_{cbo-N} \cdot e^{-t/\tau_{cbo}} \cdot \cos(\omega_{cbo}(t) \cdot t + \phi_{cbo-N})) \]
Fit with beam dynamics terms: residuals

- Adding terms tames the beast:

 ![Residuals FFT](image)

 Simple 5-parameter fit
 $\chi^2 / \text{ndf} = 8191 / 4149$

 Fit with extra terms
 $\chi^2 / \text{ndf} = 4005 / 4134$

- Important to get it right: ω_a changes by 2.2 ppm

- Good residuals & χ^2 are necessary, but not sufficient condition.
Systematic Cause: Time-Dependent Phase

- If average phase of muon population changes over time then we can mis-measure ω_a:

\[N_0 e^{-t/\tau} (1 + A \cos(\omega_a t + \phi)) \]

But if $\phi \rightarrow \phi(t)$, then

\[\cos(\omega_a t + \phi(t)) = \cos(\omega_a t + \phi_0 + \phi' t + \ldots) = \cos((\omega_a + \phi') t + \phi_0 + \ldots) \]

- If higher order terms are small, then we measure $(\omega_a + \phi')$ instead of ω_a and still get good χ^2
Main Systematic Issues

- 3 main systematics for ω_a measurement
- Variety of mitigation strategies
- Well under control – total is 56 ppb

Pile Up

- ~30 ppb

Gain Change

- ~10 ppb

Beam Oscillations

- ~40 ppb

Tracker data & beam dynamics

Empirical correction using calo data

Dedicated laser calibration system

Analysis starts here

116 5/Sep/23 Marco Incagli - INFN Pisa
Systematic Issues: Gain

- Calorimeter gain takes time to recover from “flash” when beam first enters storage ring:

- Phase is energy dependent – so gain change generates another time-dependent phase & normalization issues

- Correct based on gain measurements from laser system and cross-check with tracker
Systematic Issues: Pile Up

- Pile up happens less often as the muons decay so phase changes with time and we get ω_a wrong

- Derive a pile up correction from data and check validity above 3.1 GeV

Two low energy e^+ can look like one high energy e^+
Muon EDM
Muon Electric Dipole Moment

- Muon EDM is essentially zero in SM.
- Any observation would be a sign of new physics:
 - Muon is the best option for a higher flavour gen. search
 - And it’s free of nuclear / molecular effects
 - But, needs non-mass-scaling BSM effects to see anything given e^- EDM limit

EDMs: Theory & Experiment
Muon EDM: Tracker Search

• A non-zero muon EDM would modify the spin equation

\[\tilde{\omega}_{a\eta} = a_\mu \frac{e}{m} \vec{B} + \eta \frac{e}{2m} \left[\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right] \]

• \(\vec{\beta} \times \vec{B} \) dominates, so precession plane is tilted.

\[\omega = \sqrt{\omega_a^2 + \omega_\eta^2} = \sqrt{\omega_a^2 + \left(\frac{e\eta\beta B}{2m} \right)^2} \]

• Search for an up-down oscillation, out of phase with \(\omega_a \).
Muon EDM: Tracker Search

- Search was done with tracker at BNL:
 - Previous tracker search was statistics limited
 - We’re aiming to improve this limit to 10^{-21} e cm

![Graph of # Tracks vs (time % T_a)](image)

![Graph of Average vertical angle vs (time % T_a)](image)

- **Tracker:** $|d_\mu| < 3.2 \times 10^{-19}$ e cm (95% CL)
- **Tracker & Calo:** $|d_\mu| < 1.8 \times 10^{-19}$ e cm (95% CL)
- **SM:** $|d_\mu| < 10^{-38}$ (World’s best for muon EDM)

122 5/Sep/23 Marco Incagli - INFN Pisa
Electron Anomaly: a_e
Why a_μ and not a_e?

- Coupling of virtual loops goes as m^2 (dimensional analysis).
- Therefore, while a_μ is measured ~20x less precisely than the a_e, it has better sensitivity to heavy physics scales:

$$\left(\frac{m_\mu}{m_e}\right)^2 \approx 43,000$$

- E.g. lowest-order hadronic contribution to a_e is $a^{\text{had,LO}} = (1.875 \pm 0.017) \times 10^{-12}$ (1.5 ppb of a_e).
- By comparison, the muon’s hadronic contribution is ~60 ppm.
g_e and α:

- New measurement of g_e in 2023:

 0.13 ppt on g_e

- Ability to compare with prediction hampered by disagreement in the value of α:

 ![Graph showing g_e measurements](image)

 FIG. 5. SM prediction of α using μ/μ_B from this Northwestern measurement (red), and from our 2008 Harvard measurement (blue), with solid and open points for slightly differing C_{10} [40,41]. The α measurements (black) were made with Cs at Berkeley [38] and Rb in Paris [39]. A ppb is 10^{-9}.
J-PARC Experiment
J-PARC muon g-2/EDM experiment

J-PARC MLF

Constructed in 2021

Muon beam

$\mu^+(4 \text{ MeV})$ cooling 25 meV

4 MeV

acceleration

Construction from FY2022

Transmission muon microscope

Aiming for data taking from 2028

H-line experimental bldg.

Muons storage ring

0.66 m

RF Acc. Test at S2 area (May 2023)

Shields, area control (2022)

127 5/Sep/23 Marco Incagli - INFN Pisa

Fermilab

5/Sep/23 Marco Incagli - INFN Pisa

Shields, area control (2022)
J-PARC Experiment

- Complementary technique
 - μ beam accelerated from rest
 - no E fields
 - smaller magnet
- Aiming for a result comparable to Run-1 result towards the end of the decade

- Under construction aiming for data taking from 2028.
- Succeeded to deliver a surface muon beam to H-line.
- Constructed the experimental area for muon cooling and the first stage of the acceleration.
- Currently taking data to demonstrate the muon cooling by using the laser ionization of muonium, followed by RF acceleration tests.