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The indirect search for NP
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- So far, no direct evidence of physics beyond the SM


- Indirect searches


‣ Study processes that are suppressed or even forbidden 
in the SM    NP can be relatively large


‣ Precision measurement of observables    compare 
with (precise) SM predictions


‣ Access higher mass scales (virtual contribution)

Quest for New Physics: The indirect approach
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Direct search Indirect search

• Study processes that are suppressed or even forbidden in the SM -

NP e↵ects can then be relatively large

• Precision measurement of observables that are very well predicted

in the SM

• Access to higher mass scales, due to virtual contributions, in a model

independent way
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Why  decays?b → sℓ+ℓ−

Renato Quagliani LHC Seminar, CERN 3

✦  to probe NP 

‣ , suppressed at tree level 

‣ Highly sensitive to NP (TeV scale)  
‣  probed depends on NP structure 

‣ NP can affect decay rates and angular distributions 

‣ Is BSM physics hierarchical in lepton sector?

b → sℓ+ℓ−

ℬ ∼ %(10−6)

ΛNP

✦ So far, no direct evidence of Beyond Standard Model (BSM) particles 
✦ Search of New Physics (NP) with indirect approach

‣ EW gauge boson couplings to  families universal in SM 

‣ Does it hold at higher energy scales? 

ℓ

Introduction



Why b → sμμ
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- Flavour Changing Neutral Currents such as  
are excellent candidates for indirect NP searches


‣ Strongly suppressed in the SM:  


‣ arise only at loop level


‣ quark mixing is so hierarchical 


‣ GIM mechanism


‣ only left-handed chirality participates in the SM

b → sμμ

ℬ ∼ 𝒪(10−6)

The b! s`+`� transition
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u (d) u (d)
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`+
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Z0,�

B K, ⇡
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(d) b s (d)

u (d) u (d)
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LQB K, ⇡

⌅ Suppressed in the SM
⇤ no flavour-changing neutral currents at tree level
⇤ sensitive to NP contributions (including LFU violation)
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- NP particles can compete with the SM process and modify the properties of the decay



The SM as an Effective Field Theory
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- Low energy processes (B decays) can 
be described by an effective theory 
by integrating out the heavy fields

ℋeff =
4GF

2
VtbV*ts ∑

i

(CSM
i + ΔCNP

i )𝒪i

γ/Z

W
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sb
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C7

O7g =
e

16p2 mbb̄a
RsµnFµnsa

L ,

O9V =
1
2

b̄a
Lgµsa

L
¯̀gµ` ,

O10A =
1
2

b̄a
Lgµsa

L
¯̀gµg5` ,

photon

vector

axial-vector

Local 
operators

Wilson coefficients

(effective couplings)

- SM operators contributing to 
 transitionsb → sℓ+ℓ−

- NP particles can modify the effective 
couplings of the different types of 
interaction
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16 the B0 !K⇤0`+`� decay and the flavour anomalies

the effective theory. Afterwards, renormalisation group equations [54,
55] are used to evolve the Wilson coefficients from the electroweak
scale down to the energy scale of the physical process (µ ⇡ mB).
Following this procedure, the presence of New Physics at high scale
can modify the initial values of the Wilson coefficients, appearing
as a shift with respect to the Standard Model predictions, i.e. Ci =
CSM

i + CNP
i .

In the case of b ! s`` transitions, the effective weak Lagrangian is
given by [56]

Lb!s
eff =

4GFp
2

VtbV⇤
ts

n
[C1Oc

1 + C2Oc
2] +

ae

4p
[C7O7g + C9O9V + C10O10A]

o

+ O
✓

VubV⇤
us

VtbV⇤
ts

, C3,...,6, asC8

◆
,

(21)
where the relevant dimension-six operators are the b ! scc̄ four-
quarks operators

Oc
1 = b̄a

Lgµca
Lc̄b

Lgµsb
L ,

Oc
2 = b̄a

Lgµcb
Lc̄b

Lgµsa
L ,

(22)

and radiative/semileptonic operators

O7g =
e

16p2 mbb̄a
RsµnFµnsa

L ,

O9V =
1
2

b̄a
Lgµsa

L
¯̀gµ` ,

O10A =
1
2

b̄a
Lgµsa

L
¯̀gµg5` ,

(23)

where b, s, c and ` are the SM fermionic fields, a and b denote colour
indices and Fµn is the electromagnetic tensor. The initial condition of
O7g, O9V and O10A are found to be particularly sensitive to NP. These
operators correspond to the photon production b ! sg and to the
vector and axial leptonic currents, respectively. Finally, by virtue of the
left-handed nature of the weak interaction, right-handed current oper-
ators O0

i , obtained by replacing qL(R) ! qR(L) in Eq. 23, are suppressed
in the Standard Model. Nevertheless, these chirality-flipped operators
can receive non-negligible contributions from NP models involving a
different helicity structure.

2.2 the B0 !K⇤0 `+`� decays

Rare B0 ! K⇤0`+`� decays, where the K⇤0 is reconstructed as K⇤0 !
K+p�, provide a rich framework to investigate possible New Physics
effects. In particular, the presence of a vector meson in the final state
introduces additional degrees of freedom to the system, which can be
parametrised in terms of the di-lepton invariant mass squared, q2, and
the angular distributions between the final-state particles.

photon

vector

axial-vector

Local 
operators

Wilson coefficients

(effective couplings)

- SM operators contributing to 
 transitionsb → sℓ+ℓ−

- NP particles can modify the effective 
couplings of the different types of 
interaction



Exclusive decays
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- In the real world, we do not observe the 
quark transition, but the hadron decay


q

μ-

μ+

q

sb

γ/Z

- Need to compute hadronic matrix elements 
(form-factors, decay constant, etc.)


‣ non-perturbative QCD   difficult calculations!


‣ main uncertainty in the SM predictions

b → sμ+μ−

B+ → K+μ+μ−

B0 → K*0μ+μ−

Bs → ϕμ+μ−{ … … …



Status of the field: experiments
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- Measured to be lower than SM in several  decays


‣ SM prediction largely affected by form-factors uncertainties

b → sμ+μ−
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Branching fraction measurements

B+ → K+μ+μ−B0 → K*0μ+μ−Bs → ϕμ+μ−

[ JHEP 11 (2016) 047 ]

[ JHEP 04 (2017) 142  ]

[ JHEP 09 (2022) 133 ]

[ PRD 107 (2023) 119903 ]

[ JHEP 06 (2014) 133 ][ PRL 127 (2021) 151801 ]

Anomaly or common issue with form factors from SM?

q2: dimuon invariant 
mass squared
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- Optimised  observable: reduced form-factor uncertainties


‣ long standing discrepancy (since first measurement in 2013)
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(c) φ definition for the B0 decay

⃗Ω = {cos θK, cos θℓ, ϕ}

[ PRL 111 (2013) 191801 ]

[ PRL 125 (2020) 011802 ]

ϕ
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More angular analyses…
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- LHCb performed angular analysis on other exclusive decaysb → sμ+μ−

Renato Quagliani LHC Seminar, CERN 5

[PRL 127 (2021) 151801]

0 2 4
Vector current C9

¡

K§+

K§0

0 2 4
Vector current C9

¡

K§+

K§0

b
→

sμ
+ μ−

SM

Fits in LH
C

b 

3.3σ 

3.1σ 

1.9σ 

Vector coupling C9

✦ SM predictions heavily affected by hadronic form factor 
uncertainties σth ∼ $(20-30%)

 differential decay ratesb → sμ+μ−

✦ Recent results (LHCb) ones: 

‣ with   

‣  with   

‣  with 

B0 → K*0μ+μ− 6 fb−1 ( ∼ 4600 evts . )
B+ → K*+μ+μ− 9 fb−1 ( ∼ 700 evts . )
Bs → ϕμ+μ− 9 fb−1( ∼ 1900 evts . )

✦ Intriguing coherent and consistent pattern  

‣ However, charm-loops can mimic shift in  C9

 angular analysesb → sμ+μ−

[PRL 125(2020)011802]

[PRL 126(2021)161802]

[JHEP11(2021)043]

✦ Similar behaviour in several decay (see backup)

Anomaly or common issue with form factors from SM?

Introduction

B0
s → ϕμ+μ−

Anomalies in b → sμ+μ−

‣  with 4.7 f-1 (~ 4600 events)


‣  with 9 f-1 (~ 700 events)


‣  with 9 f-1 (~ 1900 events)

B0 → K*0μ+μ−

B+ → K*+μ+μ−

Bs → ϕμ+μ−

Intriguing coherent pattern…

[*]

[*] based on Flavio software, only C9 floated

PRL 125 (2020) 011802

PRL 126 (2021) 161802

JHEP 11 (2021) 043

Is it New Physics or charm-loop…?



- Long-distance hadronic contribution “charm-loop”
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‣ Difficult to calculate reliably 
from first principles


‣ Can mimic NPDirect fit method 10 / 18

Theory nuisance parameters
4
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Form factors

⌅ V (q2), A0,1,2(q2) and T1,2,3(q2) from combined fit of
LCSR [JHEP 08 (2016) 098] and lattice [PRD 89 (2014) 094501]

⌅ Use covariance matrix as multivariate Gaussian constraint

Subleading corrections

⌅ Non-fact. subleading ⇤QCD/mb corrections following
⇥
JHEP 12 (2014) 125
NPB 909 (2016) 737

⇤

⌅ Factors (1 + a0,k,? + b0,k,?
q2

6GeV2 ) to corr. hadronic terms

⌅ Re/Im(ai) (Re/Im(bi)) constrained around 0 with � = ±0.1 (±0.25)
4full list in backup

C. Langenbruch (RWTH), (Re)interpreting LHC results Direct fits

Long-distance QCD effects (charm-loop)
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- A deeper comprehension of the impact of these hadronic contributions is crucial for 
a final understanding of the  anomaliesb → sμ+μ−

Can we get this from data? - Perform an amplitude analysis of 
 decaysB0 → K*0μ+μ−

‣ Fit the full 5D diff
 


‣ maximal sensitivity to non-local 
hadronic eff

q2
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Can we get this from data?

- A deeper comprehension of the impact of these hadronic contributions is crucial for 
a final understanding of the  anomaliesb → sμ+μ−

q2 unbinned

- Perform an amplitude analysis of 
 decaysB0 → K*0μ+μ−

‣ Fit the full 5D diff
 


‣ maximal sensitivity to non-local 
hadronic eff

q2
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Motivation to the analysis
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Can we get this from data?

- A deeper comprehension of the impact of these hadronic contributions is crucial for 
a final understanding of the  anomaliesb → sμ+μ−

q2 unbinned

- Perform a (model dependent) amplitude 
analysis of  decaysB0 → K*0μ+μ−

‣ Fit the full 5D differential decay rate 
unbinned in 


‣ maximal sensitivity to non-local 
hadronic effects (and New Physics)

q2



The  decay rateB0 → K*0μ+μ−

17

-  meson has spin-1 (P-wave)


‣ reconstructed through 


‣ 3 polarisations:                     

rich angular structure

K*0

K*0 → K+π−
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(a) θK and θ# definitions for the B0 decay
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(b) φ definition for the B0 decay
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(c) φ definition for the B0 decay
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bilinear combination of 
decay amplitudes [*]

[*] Full definition in the backup

with899

AP (m2

K⇡) = NP ⇥ fBW (m2

K⇡) ,

AS(m2

K⇡) = NS ⇥ |gS|ei�S ⇥ fLASS(m2

K⇡) ,
(61)

where the dynamical lineshapes fBW (fLASS) are normalized in the entire m
2

K⇡ physical900

region901 Z 1

0

��Ni ⇥ fi(m
2

K⇡)
��2dm

2

K⇡ = 1, (62)

while the coe�cients gS and �S determine respectively the relative magnitude and phase902

between the two contributions.903

Within this formalism, the di↵erential decay rate, after integrating in the angles, is904

given by905

d2�

dq2 dm
2

K⇡

=
��AP (m2

K⇡)
��2 · d�P

dq2
+
��AS(m2

K⇡)
��2 · d�S

dq2
, (63)

with906

d�P

dq2
=

3

4
(2I1s + I1c) � 1

4
(2I2s + I2c) (64)

and907

d�S

dq2
=

1

4
I
S
1c � 3

4
I
S
2c . (65)

In conclusion, the five-dimensional di↵erential decay rate is given by Eq. 51 when908

including the m
2

K⇡ dependence as from Eq. 61.909

9.5 Angular observables and S-wave fraction910

The conventional angular observable can be obtained as a function of q
2 as911

FL(q2) =
3

4
I1c � 1

4
I2c

d�P

dq2

(66)

and912

Si(q
2) =

Ii

d�P

dq2

(67)

Binned values of the angular observables can be naturally obtained by integrating separately913

numerator and denominator914

< Si >=

R b

a Ii(q2)dq
2

R b

a
d�

dq2dq2
(68)

The access to these binned observables is an interesting feature of this analysis, since it915

provides a direct metric to validate the results of the amplitude fit (see step [i.] of the916

unblinding strategy in Sec.14.1).917

Analogously, the S-wave fraction, FS, can be extracted by918

FS(m2

K⇡, q
2) =

��AS(m2

K⇡)
��2 · d�

S

dq2 (q2)
��AP (m2

K⇡)
��2 · d�P

dq2 (q2) +
��AS(m2

K⇡)
��2 · d�S

dq2 (q2)
(69)

61

difference w.r.t. 
binned approach

λ = ⊥ , ∥ ,0

ϕ
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- Need to parametrise the decay amplitudes


‣ model local vs non-local contributions


‣ choice of parametrisation introduces a model dependence

A
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⇢h
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0
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0
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- Based on the parametrisation proposed in Refs. 


‣ exploit analytic properties of the hadronic matrix elements

A
L,R
� = N�

⇢h
(C9 ± C

0
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0
10)

i
F�(q
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2mbMB

q2
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T
� (q2)� 16⇡2MB

mb
H�(q

2)
i�
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(z) =
1 − zz*J/ψ

z − zJ/ψ

1 − zz*ψ(2S)

z − zψ(2S)
× … × ∑

n

αλ.nzn

where the functions F (T )
� (form factors) and H� encode the local and non-local hadronic66

matrix elements, respectively, and mb and MB correspond to the b-quark and B0 meson67

masses. The coe�cient N is a normalisation factor given by68

N = GF↵eVtbV
⇤
ts

s
q2�µ

p
�(M2

B, q
2, k2)

3 · 210⇡5MB
, (3)

where �(M2
B, q

2, k2) is a kinematical factor, with �(a, b, c) = a2 + b2 + c2 � 2ab� 2ac� 2bc,69

�µ =
q
1� 4m2

µ/q
2, Vtb and V ⇤

ts are elements of the Cabibbo-Kobayashi-Maskawa (CKM)70

quark-mixing matrix, GF is the Fermi constant and ↵e is the fine structure constant.71

The exact definition of the form factors F (T )
� (q2, k2) is given in Appendix A.2, while72

the definition of the non-local functions H�(q2) follows what has been proposed in73

Refs. [16, 23–25] where the analytic properties of the hadronic matrix elements are74

exploited through the mapping [28,29]75

q2 7! z(q2) ⌘
p

t+ � q2 �
p
t+ � t0p

t+ � q2 +
p
t+ � t0

, (4)

where t+ = 4M2
D, with MD the D0 meson mass, and t0 can be arbitrarily chosen such76

that z(q2 = t0) = 0. After this transformation,2 the non-local hadronic functions can be77

expressed as78

H�(z) =
1� zzJ/ 
z � zJ/ 

1� zz (2S)
z � z (2S)

Ĥ�(z) , (5)

where the first and second terms remove the singularities due to the J/ and  (2S) poles.79

The Ĥ�(z) are analytic functions which can be further decomposed as80

Ĥ�(z) = ��1
� (z)

X

k

↵�,kz
k , (6)

where ��1
� (z) are so-called outer functions that ensure the correct kinematic depen-81

dence [24], e.g. H0(q2 = 0) = 0, and ↵�,k are the coe�cients of a polynomial expansion.82

The K+⇡� system in the final state can also appear in a scalar (S-wave) configuration,83

which introduces two additional amplitudes [30],84

AL,R
S 0 = �N

p
�(M2

B, q
2, k2)

MB

p
q2

nh
(C9 � C 0

9)⌥ (C10 � C 0
10)

i
f+(q

2, k2)

+
2mbMB

q2
(C7 � C 0

7)fT (q
2, k2)

o
, (7)

AS t = �2NM2
B � k2

MB

p
q2

(C10 � C 0
10)f0(q

2, k2),

with three new form factors, f+, fT and f0 whose definitions can be found in Appendix A.2.85

In the following, contributions from non-local hadronic matrix elements to the scalar86

amplitudes are ignored. This assumption is studied as a source of systematic uncertainty87

in Sec. 7.88

2The functional form of H� defined in Eq. 5 is defined as function of the variable z. Throughout this
article, the expression H�(q2) implies H�(z(q2)), where the contracted form is used to improve legibility.
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constrained to the combination of LCSR [16,58] and LQCD [59] results provided by the259

Eos software package [60], with the correlations amongst the form factors parameters260

fully taken into account. The current knowledge on the B0 ! [K⇡]J=0 scalar form factors261

is very limited and only recently these e↵ects have been investigated in the context of262

B0 ! K+⇡�`+`� decays [33]. The resulting q2 dependence is found to be almost entirely263

driven by the kinematic factors. In the following, the S-wave form factors f+, fT and264

f0 are constrained to those obtained for B+ ! K+ transitions from LQCD [61], with265

uncertainties inflated by a factor of three in order to compensate for the di↵erent meson266

species. This assumption is further studied as a source of systematic uncertainty with267

alternative parametric expressions [62] and it is found to be consistent with the numerical268

analysis of Ref. [33].269

While the determination of the non-local hadronic contributions H�(q2) is one of the270

key aspects of this analysis, additional external inputs can be used to constrain these271

elements. First, experimental measurements of the decays B0 !  nK⇤0 can provide272

information on the magnitude and phase of the non-local matrix elements evaluated at273

the pole of the corresponding resonance. The amplitude of these decays can be expressed274

in terms of the residues of the functions H�(q2) at the  n poles as [23]275

Res
q2!M2

 n

H�(q2)

F�(q2)
=

M nf
⇤
 n
A n

�

M2
B F�(M2

 n
)
, (11)

where the M n and f ⇤
 n

are masses and decay constants for the  n resonances [14, 45, 63],276

respectively, and A n

� are the transversity amplitudes of the tree-level decays to charmonia.277

These amplitudes are experimentally related to the measured polarisation fractions and278

phase di↵erences [64–67]279

f n

� =
|A n

� |2

|A n
0 |2 + |A n

k |2 + |A n

? |2
, � n

k,? = arg
A n

k,?

A n
0

, (12)

and to branching fraction measurements [65,66,68]280

B(B0 !  nK
⇤0) =

⌧B
}

q
�(M2

B,M
2
 n
,M2

K⇤0)

2⇡MB
G2

F |VcbV
⇤
cs|2

X

�

|A n

� |2 , (13)

where MK⇤0 is the pole mass of the K⇤0 meson and Vcb and V ⇤
cs are elements of the CKM281

matrix. Table 2 collects all the external inputs from B0 !  nK⇤0 measurements used to282

constrain the values of H�(q2) in the analysis.283

Theoretical predictions on the value of H�/F� can be obtained at q2 < 0GeV2/c4.284

In this regime, the e↵ects of four-quark operators can be treated perturbatively and285

SM theory predictions can be accessed by a light-cone operator-product expansion [14].286

Precise predictions on the real and imaginary parts of the ratio H�/F� are provided by287

Refs. [16, 24] at three q2 points, i.e. q2 2 {�7,�5,�3}GeV2/c4. While information at288

q2 = �1GeV2/c4 is also available, in this measurement it is used instead as a test point289

to check the consistency of the result of the fit. In order to explore the impact and the290

consistency of these theory predictions, two fit configurations are considered in the analysis:291

the first one includes external constraints to the above-mentioned theoretical prediction292

on the values of H�/F� at negative q2, hereafter referred to as “q2 < 0 constraints”; while293

the second one ignores those constraints and provides a pure data-driven determination of294

the non-local hadronic matrix elements, referred to as “q2 > 0 only”.295
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- Add information to constrain charm-
loop parameters 
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- Data driven determination of the truncation order:


‣ fit repeated with increasing polynomial order


‣ till no significant improvement in the likelihood is found

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 constr. q2 > 0 only

H�[z3]�H�[z2] - 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

investigated as a source of systematic uncertainty in Sec. 7. Finally, the parametrisation346

of the combinatorial background is treated separately for the Run1 and 2016 datasets as347

well as for the two considered q2 regions [1.1, 8.0] and [11.0, 12.5]GeV2/c4. All coe�cients348

are allowed to vary in the fit.349

6 Fit to data350

The polynomial expansion introduced in Eq. 6 used to parametrise the non-local hadronic351

matrix elements H� must be truncated at a certain order zn. Furthermore, the central352

point of the expansion t0 is a free parameter of the model and its choice can have an353

impact on how fast the polynomial expansion converges. In general, a sensible choice is a354

value of t0 that minimises |z| on the domain of the expansion. As originally proposed by355

Ref. [23], the choice of356

t0 = t+ �
q
t+(t+ �M2

 (2S))

is the one that minimises |z| in the interval �7GeV2/c4  q2  M2
 (2S); this value is taken357

as the default for the fit configuration with q2 > 0 information only. However, due to the358

strong constraints provided by the three q2 points, t0 is fixed to t0 = 0GeV2/c4 for the fit359

model with the q2 < 0 constraints in order to best accommodate the theoretical inputs in360

the negative q2 region. Following this choice, the truncation order zn is determined based361

on a data-driven procedure: fits are repeated with increasing truncation order for the362

polynomial sums, i.e. n = 2, 3, 4, 5, and the Akaike information criterion [69] is used to363

infer the importance of each additional set of coe�cients. The improvement between two364

subsequent orders is considered to be significant if 2� logL > 2�Npars, where Npars is the365

number of parameters of the model and each additional order zn+1 brings one complex366

coe�cient for each of the three polarisations, for a total of six additional parameters. For367

the fit model using only inputs at q2 > 0, it is found that a polynomial expansion truncated368

at z2 is su�cient to describe the data. For fits with q2 < 0 constraints, a significant369

improvement is found with the inclusion of terms up to z4, as shown in Tab. 3. The370

quality of the fit is assessed using an unbinned goodness of fit test based on point-to-point371

dissimilarity methods [70] and the p-value is found to be better than 10%.372

Figure 3 shows the combined dataset for Run1 and 2016, with the fit result overlaid.373

No di↵erence between the fit configurations with q2 < 0 constraints and q2 > 0 only374

information is visible in the projections.375
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Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 constr. q2 > 0 only

H�[z3]�H�[z2] - 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -
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Figure 3 shows the combined dataset for Run1 and 2016, with the fit result overlaid.373

No di↵erence between the fit configurations with q2 < 0 constraints and q2 > 0 only374

information is visible in the projections.375
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Figure 2: Distribution of events in the combined Run1 and 2016 data sets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. Overlaid are the total fit projections together with the individual signal and
background components.

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.
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sources of systematic uncertainties are discussed in detail below and are summarised in362

Table 4. The size of each systematic uncertainty is estimated using pseudoexperiments363

generated from the observed signal and background yields in which one or more parameters364

are varied. The parameters of interest are determined from these pseudoexperiments using365

the nominal model and the systematically varied model. In most of the cases, the average366

di↵erence between the results of the fit in the two models is taken as an estimation of the367

systematic uncertainty. The exception to this are systematic uncertainties associated to368

the use of external inputs and the statistical uncertainty of the e�ciency correction, where369

the standard deviation of the di↵erence between the two results in each pseudoexperiment370

is used instead.371

The main sources of systematic uncertainty on the size of the Wilson coe�cients372

C9 and C10 arise from the use of the external inputs in the determination of the signal373

branching fraction of Eq. 13. This primarily concerns the uncertainty on the normalisation374

branching fraction B(B0 ! J/ K+⇡�) = (1.15± 0.01± 0.05) · 10�3 [65] and the fraction375
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Figure 2: Distribution of events in the combined Run1 and 2016 data sets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. Overlaid are the total fit projections together with the individual signal and
background components.
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Table 4. The size of each systematic uncertainty is estimated using pseudoexperiments363

generated from the observed signal and background yields in which one or more parameters364

are varied. The parameters of interest are determined from these pseudoexperiments using365

the nominal model and the systematically varied model. In most of the cases, the average366

di↵erence between the results of the fit in the two models is taken as an estimation of the367

systematic uncertainty. The exception to this are systematic uncertainties associated to368

the use of external inputs and the statistical uncertainty of the e�ciency correction, where369

the standard deviation of the di↵erence between the two results in each pseudoexperiment370

is used instead.371

The main sources of systematic uncertainty on the size of the Wilson coe�cients372

C9 and C10 arise from the use of the external inputs in the determination of the signal373

branching fraction of Eq. 13. This primarily concerns the uncertainty on the normalisation374
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-  decays can also proceed though a scalar  configuration (S-wave)


‣ require additional scalar amplitudes


‣ extend the fit to 

B0 → K+π−μ+μ− K+π−

k2 = m2(K+π−)
In order to better separate the contribution of the S-wave amplitudes from those of89

the P-wave, the k2 dependence is included in the model. This is achieved by multiplying90

the decay amplitudes of Eq. 2 by a relativistic Breit-Wigner function for the resonant91

P-wave [31] and the scalar amplitudes of Eq. 7 by the LASS parameterisation [32] for the92

slowly varying S-wave, i.e.93

AL,R
0,?,k,t 7! AL,R

0,?,k,t ⇥ fP (k
2) ,

AL,R
S 0, S t 7! AL,R

S 0, S t ⇥ fS(k
2) ,

(8)

where fP and fS encode the P- and S-wave k2 dependence, respectively. In principle, the94

proportion between P- and S-waves can be determined from the normalisation of the decay95

amplitudes, however, an accurate prediction of the two relative contributions involves a96

complete analysis of the B0 ! K+⇡� form factors in the full K+⇡� spectrum [31, 33].97

Given the limited k2 range analysed around the K⇤0 mass, it is therefore practical to98

decouple the normalisation of the P- and S-wave amplitudes and introduce an additional99

complex coe�cient to control the relative magnitude and phase between the two. A100

detailed definition of fP and fS is given in Appendix A.3.101

Finally, when taking into account the full set of P-wave and S-wave amplitudes, the102

total B0 ! K+⇡�µ+µ� di↵erential decay rate reads as103
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where the first term corresponds to the P-wave di↵erential decay rate of Eq. 1 extended104

to the k2 dimension via Eq. 8, ISi are pure S-wave angular coe�cients and Ĩi denote105

interference terms between the S- and P-wave amplitudes, as defined in Appendix A.1.106

3 LHCb detector and simulation107

The LHCb detector [34, 35] is a single-arm forward spectrometer covering the108

pseudorapidity range 2 < ⌘ < 5, designed for the study of particles containing b or109

c quarks. The detector includes a high-precision tracking system consisting of a silicon-110

strip vertex detector surrounding the pp interaction region, a large-area silicon-strip111

detector located upstream of a dipole magnet with a bending power of about 4Tm, and112

three stations of silicon-strip detectors and straw drift tubes placed downstream of the113

magnet. The tracking system provides a measurement of the momentum, p, of charged114

particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at115

200GeV/c. The minimum distance of a track to a primary pp collision vertex (PV), the116

impact parameter (IP), is measured with a resolution of (15 + 29/pT)µm, where pT is117

the component of the momentum transverse to the beam, in GeV/c. Di↵erent types of118

charged hadrons are distinguished using information from two ring-imaging Cherenkov119
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⇡), m892 is the pole mass of the K⇤0 resonance, p (p892) is the653

momentum of the K+ in the rest frame of the resonance evaluated at a given k2 (m2
892),654

the running width �892(k) is given by655
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and B0
L is the Blatt-Weisskopf barrier function [78] that depends on the momentum of656

the decay products and on the size of the decaying particle, known as meson radius657

parameter, which is fixed to d = 1.6GeV�1~c [65]. The systematic uncertainty associated658

with the choice of this value is negligible. In Eq. 20, the first term is a pure kinematic659

phase space factor while (B0
Lp

L) is the orbital angular momentum barrier factor that660

accounts for spin-dependent e↵ects in the conservation of the angular momentum for the661

K⇤0 ! K+⇡� decay. The angular momentum between the K⇤0 meson and the dimuon662

system is considered to be zero.663

The S-wave component of the signal is modelled using the LASS parametrisation [32],664

given by665
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where m0 and �0 are the pole mass and width of the K⇤
0(1430)

0 resonance and666
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+

rk

2
, (23)

where a and r are empirical parameters whose values are fixed to a = 1.95GeV�1~c and667

r = 1.78GeV�1~c as from the LASS experiment [32]. In order to assess the systematic e↵ect668

of this choice, these parameters are also fixed to values used in Ref. [1], a = 3.83GeV�1~c669

and r = 2.86GeV�1~c and the resulting systematic uncertainty is found to be negligible.670

The second term of Eq. 22 is equivalent to a Breit–Wigner function for the K⇤
0(1430)671

resonance. Phase-space and orbital angular momentum barrier factors associated to672

B0 ! K+⇡�µ+µ� decays employed in Refs. [1, 8] have been omitted in Eqs. 20 and 22673

since these terms are already included in the form factors and amplitude normalisation of674

Eqs. 2, 3 and 7.675

Finally, the P- and S-wave k2-dependent lineshapes to be included in the decay676

amplitudes are defined as677

fP (k
2) = f̂BW(k2) ,

fS(k
2) = |gS| ei�S f̂LASS(k

2) ,
(24)

where f̂BW (f̂LASS) is the the Breit–Wigner (LASS) function of Eq. 20(22) normalised to678

unity and the coe�cients gS and �S determine respectively the relative magnitude and679

phase between the two P- and S-wave contributions.680

B Non-local contributions at q2
= �1GeV

2/c4681

The nominal fit with theory includes only three of the four q2 points where SM predic-682

tions on the non-local contributions are available [24]. Hence, the remaining point at683
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where the functions F (T )
� (form factors) and H� encode the local and non-local hadronic66

matrix elements, respectively, and mb and MB correspond to the b-quark and B0 meson67

masses. The coe�cient N is a normalisation factor given by68

N = GF↵eVtbV
⇤
ts

s
q2�µ

p
�(M2

B, q
2, k2)

3 · 210⇡5MB
, (3)

where �(M2
B, q

2, k2) is a kinematical factor, with �(a, b, c) = a2 + b2 + c2 � 2ab� 2ac� 2bc,69

�µ =
q
1� 4m2

µ/q
2, Vtb and V ⇤

ts are elements of the Cabibbo-Kobayashi-Maskawa (CKM)70

quark-mixing matrix, GF is the Fermi constant and ↵e is the fine structure constant.71

The exact definition of the form factors F (T )
� (q2, k2) is given in Appendix A.2, while72

the definition of the non-local functions H�(q2) follows what has been proposed in73

Refs. [16, 23–25] where the analytic properties of the hadronic matrix elements are74

exploited through the mapping [28,29]75

q2 7! z(q2) ⌘
p

t+ � q2 �
p
t+ � t0p

t+ � q2 +
p
t+ � t0

, (4)

where t+ = 4M2
D, with MD the D0 meson mass, and t0 can be arbitrarily chosen such76

that z(q2 = t0) = 0. After this transformation,2 the non-local hadronic functions can be77

expressed as78

H�(z) =
1� zzJ/ 
z � zJ/ 

1� zz (2S)
z � z (2S)

Ĥ�(z) , (5)

where the first and second terms remove the singularities due to the J/ and  (2S) poles.79

The Ĥ�(z) are analytic functions which can be further decomposed as80

Ĥ�(z) = ��1
� (z)

X

k

↵�,kz
k , (6)

where ��1
� (z) are so-called outer functions that ensure the correct kinematic depen-81
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with three new form factors, f+, fT and f0 whose definitions can be found in Appendix A.2.85

In the following, contributions from non-local hadronic matrix elements to the scalar86

amplitudes are ignored. This assumption is studied as a source of systematic uncertainty87

in Sec. 7.88

2The functional form of H� defined in Eq. 5 is defined as function of the variable z. Throughout this
article, the expression H�(q2) implies H�(z(q2)), where the contracted form is used to improve legibility.
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- Large number of signal parameters:


‣                               [floated]


‣               [fixed to SM(*)                                                            ]  


‣ 4 CKM pars (in     's norm.)  [constrained to CKMfitter]


‣ 19  FFs pars  [constrained to LCSR+LQCD]


‣ 18-30 non-local pars    [constrained via      ]  


‣ depending on the order of              


‣  relative magnitude and phase  [floated]


‣ 9  scalar FFs (nuisance)  [constrained]

B0 → K*0

αλ,i

gS, δS

B → Kπ |J=0

Total signal amplitude model
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- Five-dimensional P- and S-wave 
total  decay rateB0 → K+π−μ+μ−

the resonant P-wave [31] and by the LASS parametrisation [32] for the slowly varying90

S-wave. In principle, the proportion between P- and S-waves can be determined from91

the normalisation of the decay amplitudes, however, an accurate prediction of the two92

relative contribution involves a complete analysis of the B0 ! K+⇡� form factors in the93

full K+⇡� spectrum [31,33]. Given the limited k2 range analysed around the K⇤0 mass, it94

is therefore practical to decouple the normalisation of the P- and S-wave amplitudes and95

introduce an additional complex coe�cient to control the relative magnitude and phase96

between the two. A detailed definition of the P- and S-wave k2 parametrisation is given97

in App. A.3.98

Finally, when taking into account the full set of P-wave and S-wave amplitudes, the99

total B0 ! K+⇡�µ+µ� di↵erential decay rate reads as100

32⇡

9

d5�

dq2 dk2 d~⌦
=

32⇡

9

d5�

dq2 dk2 d~⌦

����
P�wave

+
�
IS1c + IS2c cos 2✓l

�

+
�
Ĩ1c + Ĩ2c cos 2✓l

�
cos ✓K (8)

+
�
Ĩ4 sin 2✓l + Ĩ5 sin ✓l

�
sin ✓K cos�

+
�
Ĩ7 sin ✓l + Ĩ8 sin 2✓l

�
sin ✓K sin� ,

where ISi are pure S-wave angular coe�cients and Ĩi denote interference terms between101

the S- and P-wave amplitudes, as defined in Appendix A.1.102

3 LHCb detector and simulation103

The LHCb detector [34, 35] is a single-arm forward spectrometer covering the104

pseudorapidity range 2 < ⌘ < 5, designed for the study of particles containing b or105

c quarks. The detector includes a high-precision tracking system consisting of a silicon-106

strip vertex detector surrounding the pp interaction region, a large-area silicon-strip107

detector located upstream of a dipole magnet with a bending power of about 4Tm, and108

three stations of silicon-strip detectors and straw drift tubes placed downstream of the109

magnet. The tracking system provides a measurement of the momentum, p, of charged110

particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at111

200GeV/c. The minimum distance of a track to a primary pp collision vertex (PV), the112

impact parameter (IP), is measured with a resolution of (15 + 29/pT)µm, where pT is113

the component of the momentum transverse to the beam, in GeV/c. Di↵erent types of114

charged hadrons are distinguished using information from two ring-imaging Cherenkov115

detectors. Photons, electrons and hadrons are identified by a calorimeter system con-116

sisting of scintillating-pad and preshower detectors, an electromagnetic and a hadronic117

calorimeter. Muons are identified by a system composed of alternating layers of iron and118

multiwire proportional chambers. The online event selection is performed by a trigger,119

which consists of a hardware stage, based on information from the calorimeter and muon120

systems, followed by a software stage, which applies a full event reconstruction. In the121

hardware stage, signal candidates are required to have at least one muon with a pT greater122

than 1 to 2GeV/c or a pair of muons with the product of their pT above 1 to 4GeV2/c2,123

depending on the data-taking conditions. The software trigger requires a two-, three- or124

four-track secondary vertex with a significant displacement from any PVs. At least one125

4

‣ expressed in terms of decay 
amplitudes 


‣ Fit this to data!

(*) Strongly constrained by radiative decays 
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‣ LHCb is a forward arm spectrometer to 
study b- and c-hadron decays (2 < η < 5)

- Analysis performed with 4.7 f-1 of pp 
data collected by the LHCb detector 
between 2011 and 2016


‣ same dataset of previous binned 
 angular analysisB0 → K*0μ+μ−
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Quest for New Physics: The indirect approach

0GY�2CTVKENGU�
HTQO�VJG�EQNNKUKQP!

R R

Direct search Indirect search

• Study processes that are suppressed or even forbidden in the SM -

NP e↵ects can then be relatively large

• Precision measurement of observables that are very well predicted

in the SM

• Access to higher mass scales, due to virtual contributions, in a model

independent way

P. Álvarez Cartelle (Imperial College London) LFU in B+ ! K+`+`� 3/43

3/40

p
p

PV

The LHCb detector

- Analysis performed with 4.7 f-1 of pp 
data collected by the LHCb detector 
between 2011 and 2016


‣ same dataset of previous binned 
 angular analysisB0 → K*0μ+μ−

π

‣ LHCb is a forward arm spectrometer to 
study b- and c-hadron decays (2 < η < 5)

[ JINST 3 (2008) S080005 ]

[ Int. J Mod. Phys A 30 (2015) 1530022 ]



Selection of the candidates
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- Require large impact parameter (IP) 
for final-state particles and small IP 
+ good vertex for B0

μ
+

μ-

K
+π-

Quest for New Physics: The indirect approach

0GY�2CTVKENGU�
HTQO�VJG�EQNNKUKQP!

R R

Direct search Indirect search

• Study processes that are suppressed or even forbidden in the SM -

NP e↵ects can then be relatively large

• Precision measurement of observables that are very well predicted

in the SM

• Access to higher mass scales, due to virtual contributions, in a model

independent way

P. Álvarez Cartelle (Imperial College London) LFU in B+ ! K+`+`� 3/43

3/40

p
p

PV

IP

B0

- Peaking backgrounds suppressed 
below 1% by dedicated vetoes 
based on mass and PID 
requirements

‣ 


‣   


‣  

B0
s → ϕ(1020)( → K+K−)μ+μ−

Λ0
b → pK−μ+μ−

B0 → K*0μ+μ−

- BDT trained against combinatorial 
background 

‣ 85% efficient on signal


‣ reject 97% of background



Combinatorial background
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- Surviving combinatorial background must be 
modelled in the fit


‣ Added reconstructed  invariant mass


‣ double CB (signal) + exponential (background)


‣ background q2, k2 and angles modelled with 2nd 
order Chebichev polynomials (free parameters) 

m(K+π−μ+μ−)
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Figure 2: Distribution of events in the combined Run1 and 2016 data sets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. Overlaid are the total fit projections together with the individual signal and
background components.

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 prior q2 > 0 only

H�[z3]�H�[z2] 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

sources of systematic uncertainties are discussed in detail below and are summarised in362

Table 4. The size of each systematic uncertainty is estimated using pseudoexperiments363

generated from the observed signal and background yields in which one or more parameters364

are varied. The parameters of interest are determined from these pseudoexperiments using365

the nominal model and the systematically varied model. In most of the cases, the average366

di↵erence between the results of the fit in the two models is taken as an estimation of the367

systematic uncertainty. The exception to this are systematic uncertainties associated to368

the use of external inputs and the statistical uncertainty of the e�ciency correction, where369

the standard deviation of the di↵erence between the two results in each pseudoexperiment370

is used instead.371

The main sources of systematic uncertainty on the size of the Wilson coe�cients372

C9 and C10 arise from the use of the external inputs in the determination of the signal373

branching fraction of Eq. 13. This primarily concerns the uncertainty on the normalisation374

branching fraction B(B0 ! J/ K+⇡�) = (1.15± 0.01± 0.05) · 10�3 [65] and the fraction375

12

Fit projections in the high mass sideband

Sculpting due to the 
 veto, 

included in the 
background model

B+ → K+μ+μ−



Sig + bkg total pdf

31

- Trigger, reconstruction and selection requirement 
distorts the signal distributions: acceptance effect


‣ studied with simulated samples


‣ parametrised by Legendre polynomials

8 E�ciencies621

8.1 Angular acceptance622

The determination of the acceptance follows closely Ref. [37], apart from the fact that
the acceptance is parametrised in a smaller q

2 interval, [1, 14] GeV2, which is su�cient
to cover the region of interest of this analysis. This reduced interval allows to lower the
order of the Legendre polynomials required to describe the q

2 variation of the acceptance
(3rd instead of 5th).

The script used in this section can be found at:

AmplitudeFit/work/acceptance/

� acceptance.py

� plot acceptance 1D all years.py

623

The reconstruction and selection of the signal decay distorts the distributions of the624

decay angles and q
2, resulting in the so-called acceptance e↵ect. To account for this625

e↵ect, the acceptance is parametrised using a method of moments approach, where the626

angular and q
2 distributions in simulation are described using Legendre polynomials, as627

in Ref. [11].628

The acceptance is parametrised in the three decay angles cos ✓l, cos ✓K and �, as well629

as q
2, without assuming factorisation. This results in the expression630

Acc(cos ✓`, cos ✓K , �, q
2) =

X

k,l,m,n

cklmnP (cos ✓`, k)P (cos ✓K , l)P (�, m)P (q2, n), (21)

where P (x, m) are Legendre polynomials in x of order m and the observables q
2 and �631

are rescaled to the range �1  x  1, when evaluating the polynomial. The coe�cients632

cklmn are obtained using simulated signal events. In particular, for Run 1, the acceptance633

is determined with B
0 ! K

⇤0
µ
+
µ
� phase-space simulation, while for 2016, the FLATQ2634

sample described in Sec. 3.2 and 3.3 is used. The following expression for the coe�cients635

can be calculated using Monte Carlo integration and the intrinsic orthogonality property636

of the Legendre polynomials637

cklmn =
1

N 0

NX

i=1

wi

✓
2k + 1

2

◆✓
2l + 1

2

◆✓
2m + 1

2

◆✓
2n + 1

2

◆

⇥ P (cos ✓`, k)P (cos ✓K , l)P (�, m)P (q2, n)
i (22)

where i is the index of the simulated signal event, N is the number of candidates in638

the simulated sample and wi is a per-candidate weight used to correct for the non-flat639

phasespace distribution of events in q
2, as described in Sec. 3.5, as well as the data-driven640

corrections for pT(B0), �
2

Vtx
and track multiplicity (see Sec. 5.2 for more details). The641

normalisation is given by642

N
0 =

NX

i=1

wi . (23)
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- Differential decay rate can only access the relative size 
of the Wilson coefficients


‣ Scale of Wilson coeff. set by branching ratio

- Extended fit allows to link the observed yield to the signal 
branching fraction

is parametrised over the range [1, 14]GeV2/c4 using the sum over the product of four86

one-dimensional Legendre polynomials, each depending on one angle or q2. No dependence87

of the e�ciency on k2 is observed. Moreover, the relative e�ciency between rare and88

control modes are obtained from these simulations in order to access the branching ratio89

information. The e�ciency model is validated by comparing the branching fraction of the90

decay B0
!  (2S)K⇤0 to its known value [50] in di↵erent data-taking periods.91

An extended unbinned maximum-likelihood fit to the five-dimensional di↵erential92

decay-rate, in q2, k2 and the three decay angles, and the B -candidate invariant mass93

distribution is performed using the TensorFlow library [51] with an interface to the94

Minuit minimisation algorithm [52, 53]. The fit is performed simultaneously on each95

data-taking period and each q2 region. The real part of the C
(0)
9 and C

(0)
10 coe�cients are96

allowed to vary in the fit, while the C
(0)
7 WCs, which are strongly constrained by radiative97

B decays [54] are fixed to their SM values. The B -candidate invariant mass distribution98

is used in the fit to to discriminate signal from background.99

The signal model is developed by systematically assessing the impact of the polynomial100

expansion of the non-local FF contributions. Due to the strong correlations amongst the101

predictions at q2 < 0, the expansion is performed around q2 = 0. The truncation point of102

the expansion is chosen by repeating the fit with increasing orders of polynomials, and103

the Akaike information criterion [55] is used to decide on the statistical relevance of each104

additional set of coe�cients. A fourth order expansion is found to be su�cient when fitting105

the data. The B -candidate mass distribution is parameterised by a Gaussian function106

with power-law tails on both sides of the distribution. Finally, the signal component in107

the k2 distribution is modelled using a relativistic Breit-Wigner function and the LASS108

parameterisation [56] for the S-wave component.109

The background is independently modelled for each run period by second-order110

polynomials for the decay angles and q2, with coe�cients allowed to vary in the fit. The111

k2 distribution is described by the sum of a linear function and a Breit-Wigner amplitude112

squared in order to accommodate possible genuine K⇤0 resonances associated with random113

µ+ and µ� tracks. The B-candidate mass distribution is parameterised by an exponential114

function. A significant correlation between the cos ✓K , q2 and the B invariant mass is115

observed due to a veto used to reject B+
! K+µ+µ� decays. This distortion is accounted116

in the combinatorial background lineshape by introducing a three-dimensional data-driven117

correction factor in the background parametrisation.118

The observed yield is related to the branching ratio for the decay through119

Nsig = NJ/ K⇡ ⇥
B(B0

! K⇤0µ+µ�)⇥ 2
3

B(B0 ! J/ K+⇡�)⇥ fJ/ K⇡ ⇥ B(J/ ! µ+µ�)
⇥R" , (3)

where NJ/ K⇡ corresponds to the yield of the control channel obtained directly from a120

mass fit, the resonant and charmonium branching ratios B(B0
! J/ K+⇡�) = (1.15±121

0.01 ± 0.01)10�3 and B(J/ ! µ+µ�) = (5.96 ± 0.03 ± 0.05)10�2 are obtained from122

Refs. [57] and [50], respectively, fJ/ K⇡ = 0.644 ± 0.010 is a numerical factor to scale123

the total B ! J/ K+⇡� branching ratio in the k2 range considered, R✏ is the relative124

e�ciency between the signal and control modes obtained by simulated samples, and the125

signal decay width is given in Eq. 2.126

A series of external constraints are further imposed on the signal model in order to127

ensure the stability of the amplitude fit in a similar fashion to Refs. [36, 37]: the values of128
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Figure 3: Distribution of events in the combined Run1 and 2016 datasets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. The total fit projections together with the individual signal and background
components are overlaid.

di↵erence between the results of the fit in the two models is taken as an estimation of the373

systematic uncertainty. The exception to this are systematic uncertainties associated to374

the use of external inputs and the statistical uncertainty of the e�ciency correction, where375

the standard deviation of the di↵erence between the two results in each pseudoexperiment376

is used instead.377

The main sources of systematic uncertainty on the size of the Wilson coe�cients378

C9 and C10 arise from the use of the external inputs in the determination of the signal379

branching fraction of Eq. 14. This primarily concerns the uncertainty on the normalisation380

branching fraction B(B0 ! J/ K+⇡�) = (1.15± 0.01± 0.05) · 10�3 [65] and the fraction381

of B0 ! J/ K+⇡� decays that fall in the mK⇡ window of the analysis fB0!J/ K⇡
±100MeV =382

13

right-hand chirality of the dimuon current, N is a normalization factor and mb and MB40

are the masses of the b quark (in the MS scheme) and the B meson [44]. Finally, all41

non-perturbative e↵ects are contained within the local, F (T )
� , and non-local, H�, form-42

factors (FF). The numerical values for the Wilson coe�cients at the b-quark energy scale of43

µb = 4.2GeV/c2 are calculated in the SM as CSM
7 = �0.337, CSM

9 = 4.27, CSM
10 = �4.17, and44

C
0 SM
7,9,10 ' 0 [45, 46]. Local form-factors can be assessed by light-cone sum rules [22–26] and45

lattice QCD [27–31] techniques. Non-local contributions from b ! cc̄s operators are more46

di�cult to calculate reliably from first principles and only recently a rigorous approach47

that relies on the analytical structure of these matrix elements has been formulated [16,37].48

This isolates the  n resonance poles, where  n is a J/ or  (2S) state, and constructs a49

series expansion for the remainder function in terms of a conformal variable, z(q2). In order50

to acquire control over the size of the coe�cients of the expansion, data on B0
!  nK⇤0

51

decays as well as SM predictions for the ratios H�/F� at negative q2 [36] are employed.52

In this Letter, the role of the theoretical inputs on the determination of non-local e↵ects53

(H�) is examined, as well as their impact on the estimation of short-distance physics54

parameters (C(0)
i and F�).55

The K+⇡� system can also be in an S-wave configuration, which introduces an56

additional pair of decay amplitudes. The current knowledge of the FFs for these scalar57

amplitudes is limited [35]; in this analysis the local FFs are assumed to have the same q258

dependence as the B ! K transition whereas non-local terms are ignored.59

The absolute scale of the Wilson coe�cients is set by the branching fraction of the60

decay, which is related to the integral of the di↵erential decay rate over the desired q261

and k2 ranges through62

B(B0
! K⇤0µ+µ�) =

⌧B
~

Z q2max

q2min

Z k2max

k2min

d2�

dq2dk2
dq2dk2 , (2)

where ⌧B is the lifetime of the B0 meson.63

The dataset used in this analysis corresponds to an integrated luminosity of 4.7 fb�1 of64

proton-proton collisions collected with the LHCb experiment during 2011, 2012 and 2016.65

The LHCb detector is a single-arm forward spectrometer covering the pseudorapidity range66

2 < ⌘ < 5, described in detail in Refs. [47, 48]. Simulated events are used to determine67

the reconstruction and selection e�ciencies of signal candidates, and to estimate the68

contamination from residual backgrounds. The simulated samples are produced using the69

software described in Refs. [49–52]. Residual mismodeling in simulation is corrected for70

using control samples from data.71

The same dataset analysed in Ref. [10] is considered for this measurement. The K⇤0
72

candidates are selected withK+⇡� invariant mass within 100MeV/c2 of its known mass [44].73

Signal candidates are only considered in two q2 regions, [1.1, 8.0] and [11.0, 12.5]GeV2/c4.74

Candidates with q2 < 1.1GeV2/c4 are excluded, to remove contributions from light-quark75

resonances, while those with q2 > 15.0GeV2/c4 are not used to remove contributions76

from charmonium states beyond the open-charm threshold whose treatment goes beyond77

the validity of the current H� parameterisation. The tree-level decays B0
! J/ K⇤0

78

and B0
!  (2S)K⇤0, where the charmonium resonance decays to µ+µ�, are retained as79

control regions in the intervals [8.0, 11.0] and [12.5, 15.0]GeV2/c4, respectively, in order80

to validate several procedures of the analysis. A total of 2568 ± 60 signal decays and81

approximately 677 000 B0
! J/ K⇤0 and 43 700 B0

!  (2S)K⇤0 decays are selected.82

2
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- BR determination requires several external inputs:

is parametrised over the range [1, 14]GeV2/c4 using the sum over the product of four86

one-dimensional Legendre polynomials, each depending on one angle or q2. No dependence87

of the e�ciency on k2 is observed. Moreover, the relative e�ciency between rare and88

control modes are obtained from these simulations in order to access the branching ratio89

information. The e�ciency model is validated by comparing the branching fraction of the90

decay B0
!  (2S)K⇤0 to its known value [50] in di↵erent data-taking periods.91

An extended unbinned maximum-likelihood fit to the five-dimensional di↵erential92

decay-rate, in q2, k2 and the three decay angles, and the B -candidate invariant mass93

distribution is performed using the TensorFlow library [51] with an interface to the94

Minuit minimisation algorithm [52, 53]. The fit is performed simultaneously on each95

data-taking period and each q2 region. The real part of the C
(0)
9 and C

(0)
10 coe�cients are96

allowed to vary in the fit, while the C
(0)
7 WCs, which are strongly constrained by radiative97

B decays [54] are fixed to their SM values. The B -candidate invariant mass distribution98

is used in the fit to to discriminate signal from background.99

The signal model is developed by systematically assessing the impact of the polynomial100

expansion of the non-local FF contributions. Due to the strong correlations amongst the101

predictions at q2 < 0, the expansion is performed around q2 = 0. The truncation point of102

the expansion is chosen by repeating the fit with increasing orders of polynomials, and103

the Akaike information criterion [55] is used to decide on the statistical relevance of each104

additional set of coe�cients. A fourth order expansion is found to be su�cient when fitting105

the data. The B -candidate mass distribution is parameterised by a Gaussian function106

with power-law tails on both sides of the distribution. Finally, the signal component in107

the k2 distribution is modelled using a relativistic Breit-Wigner function and the LASS108

parameterisation [56] for the S-wave component.109

The background is independently modelled for each run period by second-order110

polynomials for the decay angles and q2, with coe�cients allowed to vary in the fit. The111

k2 distribution is described by the sum of a linear function and a Breit-Wigner amplitude112

squared in order to accommodate possible genuine K⇤0 resonances associated with random113

µ+ and µ� tracks. The B-candidate mass distribution is parameterised by an exponential114

function. A significant correlation between the cos ✓K , q2 and the B invariant mass is115

observed due to a veto used to reject B+
! K+µ+µ� decays. This distortion is accounted116

in the combinatorial background lineshape by introducing a three-dimensional data-driven117

correction factor in the background parametrisation.118

The observed yield is related to the branching ratio for the decay through119

Nsig = NJ/ K⇡ ⇥
B(B0

! K⇤0µ+µ�)⇥ 2
3

B(B0 ! J/ K+⇡�)⇥ fJ/ K⇡ ⇥ B(J/ ! µ+µ�)
⇥R" , (3)

where NJ/ K⇡ corresponds to the yield of the control channel obtained directly from a120

mass fit, the resonant and charmonium branching ratios B(B0
! J/ K+⇡�) = (1.15±121

0.01 ± 0.01)10�3 and B(J/ ! µ+µ�) = (5.96 ± 0.03 ± 0.05)10�2 are obtained from122

Refs. [57] and [50], respectively, fJ/ K⇡ = 0.644 ± 0.010 is a numerical factor to scale123

the total B ! J/ K+⇡� branching ratio in the k2 range considered, R✏ is the relative124

e�ciency between the signal and control modes obtained by simulated samples, and the125

signal decay width is given in Eq. 2.126

A series of external constraints are further imposed on the signal model in order to127

ensure the stability of the amplitude fit in a similar fashion to Refs. [36, 37]: the values of128
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Figure 3: Distribution of events in the combined Run1 and 2016 datasets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. The total fit projections together with the individual signal and background
components are overlaid.

di↵erence between the results of the fit in the two models is taken as an estimation of the373

systematic uncertainty. The exception to this are systematic uncertainties associated to374

the use of external inputs and the statistical uncertainty of the e�ciency correction, where375

the standard deviation of the di↵erence between the two results in each pseudoexperiment376

is used instead.377

The main sources of systematic uncertainty on the size of the Wilson coe�cients378

C9 and C10 arise from the use of the external inputs in the determination of the signal379

branching fraction of Eq. 14. This primarily concerns the uncertainty on the normalisation380

branching fraction B(B0 ! J/ K+⇡�) = (1.15± 0.01± 0.05) · 10�3 [65] and the fraction381

of B0 ! J/ K+⇡� decays that fall in the mK⇡ window of the analysis fB0!J/ K⇡
±100MeV =382

13
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Figure 2: Distribution of events in the combined Run1 and 2016 data sets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. Overlaid are the total fit projections together with the individual signal and
background components.

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 prior q2 > 0 only

H�[z3]�H�[z2] 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

sources of systematic uncertainties are discussed in detail below and are summarised in362

Table 4. The size of each systematic uncertainty is estimated using pseudoexperiments363

generated from the observed signal and background yields in which one or more parameters364

are varied. The parameters of interest are determined from these pseudoexperiments using365

the nominal model and the systematically varied model. In most of the cases, the average366

di↵erence between the results of the fit in the two models is taken as an estimation of the367

systematic uncertainty. The exception to this are systematic uncertainties associated to368

the use of external inputs and the statistical uncertainty of the e�ciency correction, where369

the standard deviation of the di↵erence between the two results in each pseudoexperiment370

is used instead.371

The main sources of systematic uncertainty on the size of the Wilson coe�cients372

C9 and C10 arise from the use of the external inputs in the determination of the signal373

branching fraction of Eq. 13. This primarily concerns the uncertainty on the normalisation374

branching fraction B(B0 ! J/ K+⇡�) = (1.15± 0.01± 0.05) · 10�3 [65] and the fraction375
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Figure 3: Distribution of events in the combined Run1 and 2016 datasets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. The total fit projections together with the individual signal and background
components are overlaid.

di↵erence between the results of the fit in the two models is taken as an estimation of the373

systematic uncertainty. The exception to this are systematic uncertainties associated to374

the use of external inputs and the statistical uncertainty of the e�ciency correction, where375

the standard deviation of the di↵erence between the two results in each pseudoexperiment376

is used instead.377

The main sources of systematic uncertainty on the size of the Wilson coe�cients378

C9 and C10 arise from the use of the external inputs in the determination of the signal379

branching fraction of Eq. 14. This primarily concerns the uncertainty on the normalisation380

branching fraction B(B0 ! J/ K+⇡�) = (1.15± 0.01± 0.05) · 10�3 [65] and the fraction381

of B0 ! J/ K+⇡� decays that fall in the mK⇡ window of the analysis fB0!J/ K⇡
±100MeV =382
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Table 4: Summary of the systematic uncertainties on the Wilson coe�cients. The individual
sources are described in the text. The subtotals and total are obtained by adding individual
sources in quadrature.

C9 C10 C 0
9 C 0

10

Amplitude model

S-wave form factors < 0.01 < 0.01 < 0.01 < 0.01
S-wave non-local hadronic 0.02 0.02 0.14 0.04
S-wave k2 model < 0.01 < 0.01 0.05 0.03

Subtotal 0.02 0.02 0.15 0.05

External inputs on BR

B(B0 ! J/ K+⇡�) 0.05 0.08 0.02 0.01

fB0!J/ K⇡
±100MeV 0.03 0.03 0.01 < 0.01
Others 0.03 0.04 0.03 0.01

Subtotal 0.07 0.09 0.04 0.01

Background model

Chebyshev polynomial order 0.01 0.01 0.01 < 0.01
Combinatorial shape in k2 0.02 < 0.01 0.02 < 0.01
Background factorisation 0.01 0.01 0.01 0.01
Peaking background 0.01 < 0.01 0.02 0.01

Subtotal 0.03 0.02 0.03 0.01

Experimental e↵ects

Acceptance parametrisation < 0.01 < 0.01 < 0.01 < 0.01
Statistical uncertainty on acceptance 0.02 < 0.01 0.02 < 0.01

Subtotal 0.02 < 0.01 0.02 < 0.01

Total systematic uncertainty 0.08 0.10 0.16 0.05

0.644 ± 0.010. The systematic uncertainties associated to the use of these external383

inputs are provided separately in view of possible future improvement on these quantities.384

Contributions from the uncertainty on the branching fraction of the J/ ! µ+µ� decay,385

B(J/ ! µ+µ�) = (5.96±0.03±0.05) ·10�2 [61], the uncertainty on the e�ciency ratio R",386

and the uncertainty on the observed yield of the control channel NJ/ K⇡ are also considered387

and reported together under “others” in Tab. 4. The uncertainty on R" is due to the388

finite size of the simulation samples and assumptions in the simulation model. The model389

dependence of the simulation is studied by varying the signal model in multiple ways:390

hadronic parameters are extensively varied within and beyond the SM prediction, large391

variations of the Wilson coe�cients are artificially inserted, and an S-wave component392

compatible with what is observed in the fit to data is added. The di↵erent sources are393
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Statistical uncertainty (q2 < 0 constr.) 0.40        0.28         0.40        0.24

Table 4: Summary of the systematic uncertainties on the Wilson Coe�cients. The individual
sources are described in the text. The subtotals and total are obtained by adding individual
sources in quadrature.

C9 C10 C 0
9 C 0

10

Amplitude model
S-wave form factors < 0.01 < 0.01 < 0.01 < 0.01
S-wave non-local hadronic 0.02 0.02 0.14 0.04
S-wave k2 model < 0.01 < 0.01 0.05 0.03

Subtotal 0.02 0.02 0.15 0.05

External inputs on BR
B(B0 ! J/ K+⇡�) 0.05 0.08 0.02 0.01

fB0!J/ K⇡
±100MeV 0.03 0.03 0.01 < 0.01
Others 0.03 0.04 0.03 0.01

Subtotal 0.07 0.09 0.04 0.01

Background model
Chebyshev polynomial order 0.01 0.01 0.01 < 0.01
Combinatorial shape in k2 0.02 < 0.01 0.02 < 0.01
Background factorisation 0.01 0.01 0.01 0.01
Peaking background 0.01 < 0.01 0.02 0.01

Subtotal 0.03 0.02 0.03 0.01

Experimental e↵ects
Acceptance parametrisation < 0.01 < 0.01 < 0.01 < 0.01
Statistical uncertainty on acceptance 0.02 < 0.01 0.02 < 0.01

Subtotal 0.02 < 0.01 0.02 < 0.01

Total systematic uncertainty 0.08 0.10 0.16 0.05

of B0 ! J/ K+⇡� decays that fall in the mK⇡ window of the analysis fB0!J/ K⇡
±100MeV .375

These uncertainties are provided separately in view of possible future improvement on376

these quantities. Contributions from the uncertainty on the branching fraction of the377

J/ ! µ+µ� decay, B(J/ ! µ+µ�) = (5.96± 0.03± 0.05) · 10�2 [60], the uncertainty378

on the e�ciency ratio R" and the uncertainty on the observed yield of the control channel379

NJ/ K⇡ are also considered. The uncertainty on R" is is due to the finite size of the380

simulation sample and assumptions in the simulation model. The model dependence381

of the simulation is studied by varying the signal model in multiple ways: hadronic382

parameters are extensively varied within and beyond the SM prediction, large variations of383

the Wilson coe�cients are artificially inserted and an S-wave component compatible with384

what observed in the fit to data is added. The di↵erent sources are found to contribute385

to the relative uncertainty on R" at the level of 1-2%. Finally, the measurement of386

the observed yield in the control channel is found to be systematically dominated, with387

the prime sources of uncertainty associated to the choice of the signal mass model and388

assumptions about the residual background contribution from ⇤b ! pKJ/ decays. The389

di↵erent sources contribute to the relative uncertainty on NJ/ K⇡ at a level below 1%.390
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Figure 3: Distribution of the fit variables for the combined Run1 and 2016 datasets. The
distributions of the three angles, q2, and k2 are given for candidates within a window of
±50MeV/c2 around the known B0 mass. The total fit projections together with the individual
signal and background components are overlaid.

7 Systematic uncertainties377

There are di↵erent categories of systematic uncertainties that a↵ect the extraction of the378

parameters of interest, from the choice of the nominal amplitude model and the inclusion379

of external inputs in the fit, to imperfect modelling of experimental e↵ects. The distinct380

sources of systematic uncertainties are discussed in detail below and are summarised in381

Table 4. The size of each systematic uncertainty is estimated using pseudoexperiments382

generated using the observed signal and background yields. The parameters of interest383

are determined from these pseudoexperiments under the nominal and the systematically384

varied hypotheses. In most of the cases, the average di↵erence between the two results is385

taken as an estimation of the systematic uncertainty. Exceptions to this are the systematic386
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Figure 3: Distribution of the fit variables for the combined Run1 and 2016 datasets. The
distributions of the three angles, q2, and k2 are given for candidates within a window of
±50MeV/c2 around the known B0 mass. The total fit projections together with the individual
signal and background components are overlaid.
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Figure 3: Distribution of the fit variables for the combined Run1 and 2016 datasets. The
distributions of the three angles, q2, and k2 are given for candidates within a window of
±50MeV/c2 around the known B0 mass. The total fit projections together with the individual
signal and background components are overlaid.
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Figure 3: Distribution of the fit variables for the combined Run1 and 2016 datasets. The
distributions of the three angles, q2, and k2 are given for candidates within a window of
±50MeV/c2 around the known B0 mass. The total fit projections together with the individual
signal and background components are overlaid.
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- Dominant uncertainty in  SM branching ratio prediction


- Fit results are found to require small adjustment in               ratio 

b → sℓℓ

The main sources of systematic uncertainty for C 0
9 comes from ignoring the non-local392

hadronic contribution in the S-wave. In absence of any theoretical study on non-local393

hadronic e↵ects on K⇡-scalar amplitudes, pseudoexperiments are generated assuming a394

non-local hadronic component which is identical to the one of the longitudinal P-wave395

amplitude. Other sources of systematic uncertainties associated to the modelling of the S-396

wave amplitudes are related to the choice of the S-wave form factors and k2 parametrisation.397

The former is accessed by generating pseudoexperiments with the alternative model of398

Ref. [70], while the latter is assessed by replacing the LASS lineshape with an isobar399

model built from the sum of the K⇤
0(700) and K⇤

0(1430) resonances.400

For the combinatorial background modelling, three sources of systematic uncertainty401

are considered. The first is associated with the choice of second-order polynomials to402

model the background angular and q2 distributions. Since it is not possible to fit a403

more complex model to the data because of the small number of background candidates,404

the BDT requirement is relaxed and the background candidates selected in the upper405

mass-sideband are fitted with a fourth-order polynomial in each of the angles and q2. This406

model is used as an alternative model for the generation of pseudoexperiments. The second407

is associated with the modelling of the k2 distribution, where the value of the fraction of408

the resonant component introduced in Sec. 5.5 is varied within its uncertainty. The third409

is associated to the assumption of complete factorisation of the background distributions.410

This is studied in the upper mass-sideband. A mild non-factorisation between � and cos ✓`411

angles is observed and an alternative background model that does not assume factorisation412

in these two variables is used for the generation of pseudoexperiments. In addition,413

systematic uncertainties are assessed for the di↵erent sources of peaking background that414

are neglected in the analysis. The distribution of residual peaking-background events415

is studied in data, after removing PID information from the BDT and inverting the416

background vetoes. Events are then drawn from the selected background samples and417

injected into the pseudoexperiment data.418

Finally, two sources of systematic uncertainties are associated to the determination of419

the acceptance function: the first is related to the finite size of the simulated samples used420

to derive the acceptance coe�cients and is studied by sampling the obtained coe�cients421

within their covariance matrix; and the second is associated to the choice of the order422

of the Legendre polynomials used, and is investigated by considering a higher order423

acceptance parametrisation built from polynomials of order six, seven, eight and four for424

cos ✓`, cos ✓K , � and q2, respectively.425

8 Results426

8.1 Local form factors427

Form factor predictions are currently the limiting factor for the understanding of the428

tension observed in the branching fraction measurements of many b ! sµµ decay channels.429

Any further indication on the contribution of the form factors to the decay rate is therefore430

extremely valuable. Figure 3 shows the form factors posterior distributions obtained431

from the amplitude fit results in the two fit configurations. We observe a tendency of432

the fits to systematically prefer lower values of the form factors, especially for the fit433

result with theory. Similarly, the plot on the right of Fig. 3 presents the ratio F?,k/F0,434
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Figure 4: Form factor results as a function of q2 obtained from the amplitude fit in the two
fit configurations, compared to the predictions from Refs. [16, 58,59] that are used as external
constraint in the fit.

8 Results445

8.1 Local form factors446

Figure 4 shows the form factor results obtained from the amplitude fit in the two tested447

configurations. We observe a tendency of the fits to slightly adjust the ratio F?,k/F0 (Fig. 4448

right) towards lower values with respect to the theoretical predictions used as external449

input to the fit. Both the fit configurations with and without the q2 < 0 constraints450

manifest this behaviour coherently.451

8.2 Non-local hadronic contributions452

Figure 5 shows the real and imaginary parts of the non-local hadronic contributions453

obtained for the two fit configurations normalised to the size of the local form factors.454

The two results are compatible, however some discrepancy is visible in their imaginary455

parts, especially in Im(Hk). The theoretical predictions at q2 < 0 impose an extremely456

strong constraint on the shape of these contributions, which are in fact forced to be457

approximately constant (and have an imaginary part very close to zero) at negative q2.458

The size of Im(H�(q2)) is then found to rise in the physical region. At finite truncation459

order, the presence of the constraint at q2 < 0 limits the flexibility of Im(H�(q2)) in460

the physical region and overconstrains their contribution towards smaller values. The461

behaviour of these functions in the transition between the unphysical and physical regions462

of q2 is further investigated in Appendix B and the imaginary part of H�(q2) is found to463

rise more rapidly than the theoretical predictions. It is interesting to note that, while464

phase di↵erences between the amplitudes are predicted to be tiny at low q2, significant465

di↵erences are measured between the amplitudes for B0 ! J/ K⇤0 decays.466

One of the advantages of the parameterisation proposed in Refs. [16,24] is the introduc-467

tion of a dispersive bound to provide control over the systematic truncation errors on the468

z-expansion. This states that, under a particular choice of polynomial functions, the sum469
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.

of the coe�cients squared over all b ! s`` processes must be below unity. However, the470

dispersive bound is found to be irrelevant for this analysis since it is very far from being471

fulfilled, as the sum of the coe�cients squared, after the appropriate basis transformation,472

is found to be of the order of O(10�3), for the fit result without the constraints at negative473

q2.474

Finally, a good compatibility between the input values and corresponding fit results475

is observed on all the B0 !  nK⇤0 observables. Moreover, in addition to the di↵erences476

of phases provided by B0 !  nK⇤0 external measurements, this analysis introduces477

another phase di↵erence that can be determined from the model, the di↵erence between478

the phase of A n
0 and the local amplitudes. The phase di↵erence of the J/ longitudinal479

amplitude (at the J/ mass pole) with respect to the rare mode is found to be �1.55+0.22
�0.18480

for the fit result with the q2 < 0 constraints and �1.61+0.22
�0.20 for the one without these481

constraints,3 showing a good agreement between the two fit configurations. This result is482

also compatible with one of the two solutions obtained in the measurement of the phase483

di↵erence between B+ ! K+µ+µ� and B+ ! J/ K+ decays [21], which are ruled by484

the same rare-electroweak and tree-level underlying transitions, respectively, but with a485

di↵erent spectator quark. The phase di↵erence of A (2S)
0 with respect to the rare mode486

shows an almost complete degeneracy and cannot be determined precisely from the fit.487

3The fit result with q2 > 0 only information shows a second solution at about �J/ 0 7! �J/ 0 + ⇡, which is
however excluded at more than 3�.
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theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
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the same rare-electroweak and tree-level underlying transitions, respectively, but with a485

di↵erent spectator quark. The phase di↵erence of A (2S)
0 with respect to the rare mode486

shows an almost complete degeneracy and cannot be determined precisely from the fit.487

3The fit result with q2 > 0 only information shows a second solution at about �J/ 0 7! �J/ 0 + ⇡, which is
however excluded at more than 3�.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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is observed on all the B0 !  nK⇤0 observables. Moreover, in addition to the di↵erences476

of phases provided by B0 !  nK⇤0 external measurements, this analysis introduces477

another phase di↵erence that can be determined from the model, the di↵erence between478

the phase of A n
0 and the local amplitudes. The phase di↵erence of the J/ longitudinal479

amplitude (at the J/ mass pole) with respect to the rare mode is found to be �1.55+0.22
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di↵erent spectator quark. The phase di↵erence of A (2S)
0 with respect to the rare mode486
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size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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di↵erence between B+ ! K+µ+µ� and B+ ! J/ K+ decays [21], which are ruled by484

the same rare-electroweak and tree-level underlying transitions, respectively, but with a485
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0 with respect to the rare mode486

shows an almost complete degeneracy and cannot be determined precisely from the fit.487
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Im ∥q2 = �1GeV2/c4 can be used to test the compatibility of the fit result with the theoretical652

prediction. Figure 11 shows a zoom of the obtained H�(q2) function at low q2. While653

the real part of H�/F� nicely embraces the theory prediction at q2 = �1GeV2/c4, the654

imaginary part tents to raise stronger than the theoretical predictions. Note that all theory655

points are strongly correlated, hence the compatibility with the point at q2 = �1GeV2/c4656

is poor. In fact, in order to include the theory point at q2 = �1GeV2/c4 as part of the657

constraints to the amplitude fit, it is found to be necessary to further increase the trunca-658

tion of the polynomial expansion by one additional order. However, this additional degree659

of freedom is found to uniquely modify the behaviour of the functions H� around that660

point, without providing any significant changes to the quality of the fit to data. Hence,661

no additional information are provided by the inclusion of the point at q2 = �1GeV2/c4662

and all conclusions remain unchanged.663
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Figure 11: Results for the ratio H�(q2)/F�(q2) obtained from the amplitude fit model with
theory. The theoretical prediction at q2 < 0 are overlaid for comparison.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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another phase di↵erence that can be determined from the model, the di↵erence between478

the phase of A n
0 and the local amplitudes. The phase di↵erence of the J/ longitudinal479

amplitude (at the J/ mass pole) with respect to the rare mode is found to be �1.55+0.22
�0.18480

for the fit result with the q2 < 0 constraints and �1.61+0.22
�0.20 for the one without these481

constraints,3 showing a good agreement between the two fit configurations. This result is482

also compatible with one of the two solutions obtained in the measurement of the phase483

di↵erence between B+ ! K+µ+µ� and B+ ! J/ K+ decays [21], which are ruled by484

the same rare-electroweak and tree-level underlying transitions, respectively, but with a485

di↵erent spectator quark. The phase di↵erence of A (2S)
0 with respect to the rare mode486

shows an almost complete degeneracy and cannot be determined precisely from the fit.487

3The fit result with q2 > 0 only information shows a second solution at about �J/ 0 7! �J/ 0 + ⇡, which is
however excluded at more than 3�.
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size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
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0 with respect to the rare mode486
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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Figure 5: Real and imaginary part of the non-local contributions H�(q2) normalised to the
size of the local form factors F�(q2) obtained for the two fit configurations. The black dots
correspond to the theory predictions at q2 < 0 from [16,24]. The result obtained without the
theory constraints is also extrapolated to the negative q2 region for comparison. The shaded
gray regions correspond to the vetoed J/ and  (2S) regions.
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q2 = �1GeV2/c4 can be used to test the compatibility of the fit result with the theoretical652

prediction. Figure 11 shows a zoom of the obtained H�(q2) function at low q2. While653

the real part of H�/F� nicely embraces the theory prediction at q2 = �1GeV2/c4, the654

imaginary part tents to raise stronger than the theoretical predictions. Note that all theory655

points are strongly correlated, hence the compatibility with the point at q2 = �1GeV2/c4656

is poor. In fact, in order to include the theory point at q2 = �1GeV2/c4 as part of the657

constraints to the amplitude fit, it is found to be necessary to further increase the trunca-658

tion of the polynomial expansion by one additional order. However, this additional degree659

of freedom is found to uniquely modify the behaviour of the functions H� around that660

point, without providing any significant changes to the quality of the fit to data. Hence,661

no additional information are provided by the inclusion of the point at q2 = �1GeV2/c4662

and all conclusions remain unchanged.663
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Figure 11: Results for the ratio H�(q2)/F�(q2) obtained from the amplitude fit model with
theory. The theoretical prediction at q2 < 0 are overlaid for comparison.
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Figure 2: Distribution of events in the combined Run1 and 2016 data sets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. Overlaid are the total fit projections together with the individual signal and
background components.

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 prior q2 > 0 only

H�[z3]�H�[z2] 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

sources of systematic uncertainties are discussed in detail below and are summarised in362

Table 4. The size of each systematic uncertainty is estimated using pseudoexperiments363

generated from the observed signal and background yields in which one or more parameters364

are varied. The parameters of interest are determined from these pseudoexperiments using365

the nominal model and the systematically varied model. In most of the cases, the average366

di↵erence between the results of the fit in the two models is taken as an estimation of the367

systematic uncertainty. The exception to this are systematic uncertainties associated to368

the use of external inputs and the statistical uncertainty of the e�ciency correction, where369

the standard deviation of the di↵erence between the two results in each pseudoexperiment370

is used instead.371

The main sources of systematic uncertainty on the size of the Wilson coe�cients372

C9 and C10 arise from the use of the external inputs in the determination of the signal373
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- From the fit result we can reproduce the classic binned observables

‣ Lower BR compared to 
LHCb Run1 due to updated 
normalisation inputs
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Figure 10: Branching fraction and S-wave fraction obtained a posteriori from the fit results of
the two fit configurations. The published Run1 measurement from LHCb [1] has been overlaid
for comparison. The SM branching fraction prediction from GRvDV [16] is also reported.
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- From the fit result we can reproduce the classic binned observables
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Figure 9: Angular observables (P -basis) obtained a posteriori from the fit results of the two fit
configurations; the subfigures isolate the contribution from non-local e↵ects to the given angular
observables. The LHCb result from Ref. [9] is overlaid for comparison, together with the SM
theory prediction from DHMV [14,15] and (for P 0

5) GRvDV [16].
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 isolates contribution due to ccΔP′￼b→scc̄
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uncertainties
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‣ Uncertainty obtained from neg. 
log-likelihood profile

Table 5: Best fit value, confidence interval and deviation from the SM predictions [49,50] for the
four Wilson coe�cients for the two fit configurations. For each Wilson coe�cient, the likelihood
has been marginalised over the three other coe�cients. The SM predictions at the b-quark
energy-scale [49, 50] are also reported for reference.

q2 > 0 only
best fit
value

68% CL 95% CL SM value
deviation
from SM

C9 3.34 [ 2.77, 3.87] [ 2.30, 4.33] 4.273 1.9 �

C10 �3.69 [�4.00,�3.40] [�4.33,�3.12] �4.166 1.5 �

C 0
9 0.48 [�0.07, 0.97] [�0.62, 1.45] 0 0.9 �

C 0
10 0.38 [ 0.13, 0.66] [�0.14, 0.92] 0 1.5 �

q2 < 0 prior

C9 3.59 [ 3.13, 3.92] [ 2.75, 4.34] 4.273 1.8 �

C10 �3.93 [�4.21,�3.66] [�4.51,�3.40] �4.166 0.9 �

C 0
9 0.26 [�0.22, 0.66] [�0.68, 1.08] 0 0.5 �

C 0
10 0.27 [ 0.00, 0.52] [�0.26, 0.78] 0 1.0 �

8.3 Wilson coe�cients482

Table 5 reports the values of the Wilson coe�cients for the two fit configurations, together483

with their confidence intervals and compatibility with the Standard Model. For each484

of the four Wilson coe�cients, confidence intervals are built from the one-dimensional485

profile likelihood scans shown in Fig. 6. The 68% (95%) CL range is identified with the486

interval where the negative log-likelihood di↵erence, �NLL, is smaller than 0.5 (2). The487

remaining three coe�cients are marginalised over in the scan along with the other nuisance488

parameters, i.e. at each step �NLL is minimised with respect to all the other parameters.489

The di↵erence between the best fit values and the corresponding SM predictions obtained490

are491
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�0.57 (�0.68+0.33
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�C10 = 0.48+0.29
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�0.55 ( 0.26+0.40
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for the fit configuration without (with) constraints at negative q2, where the SM prediction492

at the b-quark energy-scale is taken to be CSM
9 = 4.273, CSM

10 = �4.166 and C 0 SM
9,10 = 0 [49,50].493

The coe�cient that shows the largest di↵erence with respect to the SM is C9, whose494

compatibility with the SM is found to be at the level of 1.9 and 1.8 standard deviations,495

for fit models using only q2 > 0 information and with q2 < 0 prior, respectively.496

Two-dimensional profile-likelihood contours for the Wilson coe�cients are shown in497

Fig. 7, where the 68% (95%) CL range is identified with the region where the �NLL is498
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Figure 6: One-dimensional profile likelihood scan of the Wilson coe�cients. Shaded regions
correspond to the one (68% CL) and two (95% CL) sigma confidence intervals.

could expect that non-local hadronic contributions would only a↵ect C9, the experimental505

determination of the Wilson coe�cients is a↵ected by the strong correlations of the system:506

a modification of the non-local hadronic contributions is found to influence the result507

on the form factors (as shown in Fig. 4), which in turn have an impact on the Wilson508

coe�cients. This behaviour has been studied with pseudoexperiments, where the same509

generated dataset is fitted with and without the constraints at negative q2 replicating the510

procedure adopted on data, and the variation measured in data is found to be compatible511

with what is observed in the pseudoexperiments.512

Finally, the global compatibility with respect to the SM is evaluated by inspecting the513

likelihood di↵erence in the four-dimensional space given by the four considered Wilson514

coe�cients. Taking into account the systematic uncertainties, the observed di↵erence515

in twice the log-likelihood between the best fit and SM point is found to be 2.99 (3.25).516

Considering the four degrees of freedom of the system, this corresponds to 1.3 (1.4) standard517

deviations with respect to the SM, for fit without (with) the negative q2 constraints.518

8.4 Comparison to binned observables519

Conventional angular observables accessed by binned angular analyses [7–9] can be deter-520

mined from the fit results by dividing the angular coe�cients, Ii(q2, k2), by the di↵erential521
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could expect that non-local hadronic contributions would only a↵ect C9, the experimental505

determination of the Wilson coe�cients is a↵ected by the strong correlations of the system:506

a modification of the non-local hadronic contributions is found to influence the result507

on the form factors (as shown in Fig. 4), which in turn have an impact on the Wilson508

coe�cients. This behaviour has been studied with pseudoexperiments, where the same509

generated dataset is fitted with and without the constraints at negative q2 replicating the510

procedure adopted on data, and the variation measured in data is found to be compatible511

with what is observed in the pseudoexperiments.512

Finally, the global compatibility with respect to the SM is evaluated by inspecting the513

likelihood di↵erence in the four-dimensional space given by the four considered Wilson514

coe�cients. Taking into account the systematic uncertainties, the observed di↵erence515

in twice the log-likelihood between the best fit and SM point is found to be 2.99 (3.25).516

Considering the four degrees of freedom of the system, this corresponds to 1.3 (1.4) standard517

deviations with respect to the SM, for fit without (with) the negative q2 constraints.518

8.4 Comparison to binned observables519

Conventional angular observables accessed by binned angular analyses [7–9] can be deter-520

mined from the fit results by dividing the angular coe�cients, Ii(q2, k2), by the di↵erential521
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‣ Results consistent with global analyses of  decaysb → sμ+μ−
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Figure 7: Two-dimensional profile likelihood scan of the Wilson coe�cients. Shaded areas
correspond to the one (68% CL) and two (95% CL) sigma contour regions. Dotted contours
in the top left plot assume right-handed Wilson coe�cients fixed to their SM values, i.e.
C0
9 = C0

10 = 0.

decay rate, d2�P/dq2dk2, both integrated over the k2. The determination of these angular522

observables o↵ers an important perspective for the validation and interpretation of the523

results. Figures 8 and 9 show the q2-dependent angular observables derived from the524

amplitude fit results. The contributions from non-local e↵ects to the so-called CP -averaged525

Si [27] and corresponding optimised Pi [13] series of observables, �S(P )bscc̄i , is also il-526

lustrated in the plots. In general, the post-fit determination of the angular observables527

agrees very well with the dedicated measurement of Ref. [9] and the overall impact of528

non-local hadronic contributions on the angular observables is found to be compatible529

between the two tested fit configurations. The only exception is observed in the S7 (P 0
6)530

observable, which is related to the imaginary part of the product of the longitudinal and531

parallel amplitudes, where the fit result that includes the theory points at q2 < 0 does532

not have enough freedom to fully accommodate the shape observed in the physical region.533

This is a reflection of the di↵erent behaviour of the imaginary part of H�(q2) between the534

two fit configurations observed in Sec. 8.2. In addition, a closer look at the P 0
5 observable535
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Figure 5: 1 and 2� contours of the posterior samples of the C
BSM

9
, C

BSM

10
fit. All other

Wilson coe�cients are assumed SM-like. The strong dispersive bound is applied to

all samples. The pulls are 5.7�, 2.7� and 2.6� for B ! Kµ
+
µ

� + Bs ! µ
+
µ

�,

B ! K
⇤
µ

+
µ

�, and Bs ! �µ
+
µ

�, respectively.

discussed previously in the literature [85–89]. To compute the SM-pull in the marginalized

posterior plane, we approximate the posterior distributions with Gaussian mixture densities

and compute the isobar of the distribution corresponding to the SM point. We find pulls of

5.7�, 2.7� and 2.6� for B ! Kµ
+
µ

� + Bs ! µ
+
µ

�, B ! K
⇤
µ

+
µ

�, and Bs ! �µ
+
µ

�,

respectively.

A summary of our fit results is shown in the “BSM9,10” columns of Table 5. We observe

a small improvement of the goodness-of-fit in B ! K
⇤
µ

+
µ

� with respect to the SM fit, as

expected from our previous comments. For Bs ! �µ
+
µ

�, the improvement in the global

�
2 value is also marginal, resulting in a smaller p value. However, as can be inferred from

the values in parenthesis, the best-fit point can now be obtained without distortion of the

hadronic parameters. The B ! Kµ
+
µ

� fit is also improved in the presence of BSM physics,

but a tension remains. We find that the large �
2 value is driven by Belle 2019 measurement of

the semi-leptonic branching ratio. Being in agreement with SM predictions, this measurement

is de facto in tension with the measurements of the other collaborations.

From our results we conclude that the non-local FFs are not the source of the tension

between SM predictions and data: floating these FFs is insu�cient to bring the three processes

in agreement with the SM. We also find that the local FFs are driving the uncertainties. For

the process Bs ! �µ
+
µ

� in particular, the tension with the SM increases substantially when

we use light-meson LCSR results [29] instead of the the B-LCSR results [39] for the local FFs;

see the discussion in Section 4.1.
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Global compatibility [4 d.o.f.] with SM 1.3 (1.4) σ

[ Gubernari, et al.;  JHEP 09 (2022) 133 ]

[ Greljo et al.;  JHEP 05 (2023) 087 ]

[ Alguero et al.;  EPJ C83 (2023) 648 ]

[ Ciuchiniet al.;  PRD 107 (2023) 055036 ]

[ Hurth, Mahmoudi, Neshatpour;  arXiv:2310.05585 ]

[ Capdevile, Crivellin, Matias;  arXiv:2309.01311 ]

‣ Many global fits available in the literature


‣ sub-sets of inputs, different statistical 
tools/theory assumptions, etc…
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- New analysis method to determine hadronic contributions 
in  decays


‣ choice of parametrisation       model dependence


- Impact of  on  found to be consistent with predictions


- Despite the extra freedom given by  pars, fit still prefers 
to insert a shift in


‣ Result consistent with pattern of anomalies seen in 
 decays


‣ compatibility w.r.t. SM:  in      and  global

B0 → K*0μ+μ−

cc̄ P′￼5

cc̄

b → sμ+μ−

1.8σ 1.4σ

- Should not forget the importance of the form-factors!
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Figure 9: Angular observables (P -basis) obtained a posteriori from the fit results of the two fit
configurations; the subfigures isolate the contribution from non-local e↵ects to the given angular
observables. The LHCb result from Ref. [9] is overlaid for comparison, together with the SM
theory prediction from DHMV [14,15] and (for P 0

5) GRvDV [16].
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- Analysis offers a large set of results


- Strong interplay between theory and 
experiment


- Publish set of bootstrapped fit 
parameters to favour future 
reinterpretation of the analysis


‣ non-trivial correlations


‣ allow to reproduce confidence 
intervals for any desired quantity


‣ can transform fit results to different 
models
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- Important step towards a better understanding of 
 decays….


‣  but this is not the end of the story!


- Need to update with the full Run2 dataset


‣ Binned angular analysis coming soon


‣ Binned branching fraction too


‣ More unbinned analyses


‣ different long-distance parametrisations      

complementary info

B0 → K*0μ+μ−

- Run3 dataset will boost the precision of these measurements


‣ also allow to study even more suppressed decays
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- Set of anomalies in different measurements of 
 processes


‣ Difficult interpretation due to SM hadronic uncertainties


- First q2-unbinned amplitude analysis of 


‣ Complementary and more in-dept set of information 
w.r.t. previous binned analyses


‣ Non-local hadronic contributions determined from data 
under two assumptions 


- Result consistent with pattern of anomalies seen in 
 decays with significance of  in       and 

 global
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Figure 7: Two-dimensional profile likelihood scan of the Wilson coe�cients. Shaded areas
correspond to the one (68% CL) and two (95% CL) sigma contour regions. Dotted contours
in the top left plot assume right-handed Wilson coe�cients fixed to their SM values, i.e.
C0
9 = C0

10 = 0.

decay rate, d2�P/dq2dk2, both integrated over the k2. The determination of these angular522

observables o↵ers an important perspective for the validation and interpretation of the523

results. Figures 8 and 9 show the q2-dependent angular observables derived from the524

amplitude fit results. The contributions from non-local e↵ects to the so-called CP -averaged525

Si [27] and corresponding optimised Pi [13] series of observables, �S(P )bscc̄i , is also il-526

lustrated in the plots. In general, the post-fit determination of the angular observables527

agrees very well with the dedicated measurement of Ref. [9] and the overall impact of528

non-local hadronic contributions on the angular observables is found to be compatible529

between the two tested fit configurations. The only exception is observed in the S7 (P 0
6)530

observable, which is related to the imaginary part of the product of the longitudinal and531

parallel amplitudes, where the fit result that includes the theory points at q2 < 0 does532

not have enough freedom to fully accommodate the shape observed in the physical region.533

This is a reflection of the di↵erent behaviour of the imaginary part of H�(q2) between the534

two fit configurations observed in Sec. 8.2. In addition, a closer look at the P 0
5 observable535
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decay rate, d2�P/dq2dk2, both integrated over the k2. The determination of these angular522

observables o↵ers an important perspective for the validation and interpretation of the523

results. Figures 8 and 9 show the q2-dependent angular observables derived from the524

amplitude fit results. The contributions from non-local e↵ects to the so-called CP -averaged525

Si [27] and corresponding optimised Pi [13] series of observables, �S(P )bscc̄i , is also il-526

lustrated in the plots. In general, the post-fit determination of the angular observables527

agrees very well with the dedicated measurement of Ref. [9] and the overall impact of528

non-local hadronic contributions on the angular observables is found to be compatible529

between the two tested fit configurations. The only exception is observed in the S7 (P 0
6)530

observable, which is related to the imaginary part of the product of the longitudinal and531

parallel amplitudes, where the fit result that includes the theory points at q2 < 0 does532

not have enough freedom to fully accommodate the shape observed in the physical region.533

This is a reflection of the di↵erent behaviour of the imaginary part of H�(q2) between the534

two fit configurations observed in Sec. 8.2. In addition, a closer look at the P 0
5 observable535
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Figure 13: Reconstructed K+⇡�µ+µ� invariant mass for B0 ! J/ K⇤0 decays for (left) Run1
and (right) 2016 datasets.
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Figure 14: Likelihood scan of the phase di↵erence of the B0 ! J/ K⇤0 longitudinal amplitude
with respect to the rare mode.
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- Phase difference between rare mode and 
 decays


‣
B0 → J/ψK*0

Compatible with what 
measured in 

 decaysB+ → K+μ+μ−

> 3σ

EPJ C77 (2017) 161

Non-local hadronic results ( )J/ψ
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- From the fit result we can reproduce the classic binned observables

been kept.
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The transversity amplitudes at low recoil are given in Section III. The ones at large recoil can be

seen in [13].

Appendix B: The Low Recoil Transversity Observables

It is useful to introduce the (q2-dependent) quantities
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Figure 9: Angular observables (P -basis) obtained a posteriori from the fit results of the two fit
configurations; the subfigures isolate the contribution from non-local e↵ects to the given angular
observables. The LHCb result from Ref. [9] is overlaid for comparison, together with the SM
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5) GRvDV [16].
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‣ Theory points at  limit the 
flexibility of the fit to accommodate 
potentially large strong phases in 
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q2

q2 < 0 J/ψ ψ(2S)

q2 = 0

z = 0z(q2)

q2 < 0 J/ψ ψ(2S)

q2 = 0

z = 0z(q2)

q2 < 0 J/ψ ψ(2S)

- Choice of t0 impacts the convergency 
of the series

where the functions F (T )
� (form factors) and H� encode the local and non-local hadronic66

matrix elements, respectively, and mb and MB correspond to the b-quark and B0 meson67

masses. The coe�cient N is a normalisation factor given by68

N = GF↵eVtbV
⇤
ts

s
q2�µ

p
�(M2

B, q
2, k2)

3 · 210⇡5MB
, (3)

where �(M2
B, q

2, k2) is a kinematical factor, with �(a, b, c) = a2 + b2 + c2 � 2ab� 2ac� 2bc,69

�µ =
q
1� 4m2

µ/q
2, Vtb and V ⇤

ts are elements of the Cabibbo-Kobayashi-Maskawa (CKM)70

quark-mixing matrix, GF is the Fermi constant and ↵e is the fine structure constant.71

The exact definition of the form factors F (T )
� (q2, k2) is given in Appendix A.2, while72

the definition of the non-local functions H�(q2) follows what has been proposed in73

Refs. [16, 23–25] where the analytic properties of the hadronic matrix elements are74

exploited through the mapping [28,29]75

q2 7! z(q2) ⌘
p

t+ � q2 �
p
t+ � t0p

t+ � q2 +
p
t+ � t0

, (4)

where t+ = 4M2
D, with MD the D0 meson mass, and t0 can be arbitrarily chosen such76

that z(q2 = t0) = 0. After this transformation,2 the non-local hadronic functions can be77

expressed as78

H�(z) =
1� zzJ/ 
z � zJ/ 

1� zz (2S)
z � z (2S)

Ĥ�(z) , (5)

where the first and second terms remove the singularities due to the J/ and  (2S) poles.79

The Ĥ�(z) are analytic functions which can be further decomposed as80

Ĥ�(z) = ��1
� (z)

X

k

↵�,kz
k , (6)

where ��1
� (z) are so-called outer functions that ensure the correct kinematic depen-81

dence [24], e.g. H0(q2 = 0) = 0, and ↵�,k are the coe�cients of a polynomial expansion.82

The K+⇡� system in the final state can also appear in a scalar (S-wave) configuration,83

which introduces two additional amplitudes [30],84

AL,R
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p
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(C9 � C 0
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i
f+(q

2, k2)

+
2mbMB

q2
(C7 � C 0

7)fT (q
2, k2)

o
, (7)

AS t = �2NM2
B � k2

MB

p
q2

(C10 � C 0
10)f0(q

2, k2),

with three new form factors, f+, fT and f0 whose definitions can be found in Appendix A.2.85

In the following, contributions from non-local hadronic matrix elements to the scalar86

amplitudes are ignored. This assumption is studied as a source of systematic uncertainty87

in Sec. 7.88

2The functional form of H� defined in Eq. 5 is defined as function of the variable z. Throughout this
article, the expression H�(q2) implies H�(z(q2)), where the contracted form is used to improve legibility.

3

z = 0.44 z = − 0.44

z = 0.10 z = − 0.73

 only fit q2 > 0

 constr. fit q2 < 0

- Data driven determination of the 
truncation order:


‣ fit repeated with increasing 
polynomial order


‣ till no significant improvement in 
the likelihood is found

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 constr. q2 > 0 only

H�[z3]�H�[z2] - 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

investigated as a source of systematic uncertainty in Sec. 7. Finally, the parametrisation346

of the combinatorial background is treated separately for the Run1 and 2016 datasets as347

well as for the two considered q2 regions [1.1, 8.0] and [11.0, 12.5]GeV2/c4. All coe�cients348

are allowed to vary in the fit.349

6 Fit to data350

The polynomial expansion introduced in Eq. 6 used to parametrise the non-local hadronic351

matrix elements H� must be truncated at a certain order zn. Furthermore, the central352

point of the expansion t0 is a free parameter of the model and its choice can have an353

impact on how fast the polynomial expansion converges. In general, a sensible choice is a354

value of t0 that minimises |z| on the domain of the expansion. As originally proposed by355

Ref. [23], the choice of356

t0 = t+ �
q
t+(t+ �M2

 (2S))

is the one that minimises |z| in the interval �7GeV2/c4  q2  M2
 (2S); this value is taken357

as the default for the fit configuration with q2 > 0 information only. However, due to the358

strong constraints provided by the three q2 points, t0 is fixed to t0 = 0GeV2/c4 for the fit359

model with the q2 < 0 constraints in order to best accommodate the theoretical inputs in360

the negative q2 region. Following this choice, the truncation order zn is determined based361

on a data-driven procedure: fits are repeated with increasing truncation order for the362

polynomial sums, i.e. n = 2, 3, 4, 5, and the Akaike information criterion [69] is used to363

infer the importance of each additional set of coe�cients. The improvement between two364

subsequent orders is considered to be significant if 2� logL > 2�Npars, where Npars is the365

number of parameters of the model and each additional order zn+1 brings one complex366

coe�cient for each of the three polarisations, for a total of six additional parameters. For367

the fit model using only inputs at q2 > 0, it is found that a polynomial expansion truncated368

at z2 is su�cient to describe the data. For fits with q2 < 0 constraints, a significant369

improvement is found with the inclusion of terms up to z4, as shown in Tab. 3. The370

quality of the fit is assessed using an unbinned goodness of fit test based on point-to-point371

dissimilarity methods [70] and the p-value is found to be better than 10%.372

Figure 3 shows the combined dataset for Run1 and 2016, with the fit result overlaid.373

No di↵erence between the fit configurations with q2 < 0 constraints and q2 > 0 only374

information is visible in the projections.375
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(each z-order brings 
six additional 
parameters)

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 constr. q2 > 0 only

H�[z3]�H�[z2] - 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

investigated as a source of systematic uncertainty in Sec. 7. Finally, the parametrisation346

of the combinatorial background is treated separately for the Run1 and 2016 datasets as347

well as for the two considered q2 regions [1.1, 8.0] and [11.0, 12.5]GeV2/c4. All coe�cients348

are allowed to vary in the fit.349

6 Fit to data350

The polynomial expansion introduced in Eq. 6 used to parametrise the non-local hadronic351

matrix elements H� must be truncated at a certain order zn. Furthermore, the central352

point of the expansion t0 is a free parameter of the model and its choice can have an353

impact on how fast the polynomial expansion converges. In general, a sensible choice is a354

value of t0 that minimises |z| on the domain of the expansion. As originally proposed by355

Ref. [23], the choice of356

t0 = t+ �
q
t+(t+ �M2

 (2S))

is the one that minimises |z| in the interval �7GeV2/c4  q2  M2
 (2S); this value is taken357

as the default for the fit configuration with q2 > 0 information only. However, due to the358

strong constraints provided by the three q2 points, t0 is fixed to t0 = 0GeV2/c4 for the fit359

model with the q2 < 0 constraints in order to best accommodate the theoretical inputs in360

the negative q2 region. Following this choice, the truncation order zn is determined based361

on a data-driven procedure: fits are repeated with increasing truncation order for the362

polynomial sums, i.e. n = 2, 3, 4, 5, and the Akaike information criterion [69] is used to363

infer the importance of each additional set of coe�cients. The improvement between two364

subsequent orders is considered to be significant if 2� logL > 2�Npars, where Npars is the365

number of parameters of the model and each additional order zn+1 brings one complex366

coe�cient for each of the three polarisations, for a total of six additional parameters. For367

the fit model using only inputs at q2 > 0, it is found that a polynomial expansion truncated368

at z2 is su�cient to describe the data. For fits with q2 < 0 constraints, a significant369

improvement is found with the inclusion of terms up to z4, as shown in Tab. 3. The370

quality of the fit is assessed using an unbinned goodness of fit test based on point-to-point371

dissimilarity methods [70] and the p-value is found to be better than 10%.372

Figure 3 shows the combined dataset for Run1 and 2016, with the fit result overlaid.373

No di↵erence between the fit configurations with q2 < 0 constraints and q2 > 0 only374

information is visible in the projections.375
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Figure 2: Distribution of events in the combined Run1 and 2016 data sets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. Overlaid are the total fit projections together with the individual signal and
background components.

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 prior q2 > 0 only

H�[z3]�H�[z2] 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

sources of systematic uncertainties are discussed in detail below and are summarised in362

Table 4. The size of each systematic uncertainty is estimated using pseudoexperiments363

generated from the observed signal and background yields in which one or more parameters364

are varied. The parameters of interest are determined from these pseudoexperiments using365

the nominal model and the systematically varied model. In most of the cases, the average366

di↵erence between the results of the fit in the two models is taken as an estimation of the367

systematic uncertainty. The exception to this are systematic uncertainties associated to368

the use of external inputs and the statistical uncertainty of the e�ciency correction, where369

the standard deviation of the di↵erence between the two results in each pseudoexperiment370

is used instead.371

The main sources of systematic uncertainty on the size of the Wilson coe�cients372

C9 and C10 arise from the use of the external inputs in the determination of the signal373

branching fraction of Eq. 13. This primarily concerns the uncertainty on the normalisation374
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Figure 2: Distribution of events in the combined Run1 and 2016 data sets. The distributions of
the three angles, q2, and k2 are given for candidates within a window of ±50MeV/c2 around the
known B0 mass. Overlaid are the total fit projections together with the individual signal and
background components.

Table 3: Log-likelihood di↵erences between the fits to data with di↵erent truncation orders of
the non-local hadronic parametrisation H�[zn] for the two considered fit configurations.

2� logL
q2 < 0 prior q2 > 0 only

H�[z3]�H�[z2] 3.6
H�[z4]�H�[z3] 21.22 -
H�[z5]�H�[z4] 8.64 -

sources of systematic uncertainties are discussed in detail below and are summarised in362

Table 4. The size of each systematic uncertainty is estimated using pseudoexperiments363

generated from the observed signal and background yields in which one or more parameters364

are varied. The parameters of interest are determined from these pseudoexperiments using365

the nominal model and the systematically varied model. In most of the cases, the average366

di↵erence between the results of the fit in the two models is taken as an estimation of the367

systematic uncertainty. The exception to this are systematic uncertainties associated to368

the use of external inputs and the statistical uncertainty of the e�ciency correction, where369

the standard deviation of the di↵erence between the two results in each pseudoexperiment370

is used instead.371
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Results 68% 95% CL
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Table 5: Best fit value, confidence interval and deviation from the SM predictions [49,50] for the
four Wilson coe�cients for the two fit configurations. For each Wilson coe�cient, the likelihood
has been marginalised over the three other coe�cients.

q2 > 0 only
best fit
value

68% CL 95% CL
deviation
from SM

C9 3.34 [ 2.77, 3.87] [ 2.30, 4.33] 1.9 �

C10 �3.69 [�4.00,�3.40] [�4.33,�3.12] 1.5 �

C 0
9 0.48 [�0.07, 0.97] [�0.62, 1.45] 0.9 �

C 0
10 0.38 [ 0.13, 0.66] [�0.14, 0.92] 1.5 �

q2 < 0 prior

C9 3.59 [ 3.13, 3.92] [ 2.75, 4.34] 1.8 �

C10 �3.93 [�4.21,�3.66] [�4.51,�3.40] 0.9 �

C 0
9 0.26 [�0.22, 0.66] [�0.68, 1.08] 0.5 �

C 0
10 0.27 [ 0.00, 0.52] [�0.26, 0.78] 1.0 �

di↵erence between the best fit values and the corresponding SM predictions obtained are482

CNP
9 = �0.93+0.53

�0.57 (�0.68+0.33
�0.46 )

CNP
10 = 0.48+0.29

�0.31 ( 0.24+0.27
�0.28 )

C 0NP
9 = 0.48+0.49

�0.55 ( 0.26+0.40
�0.48 )

C 0NP
10 = 0.38+0.28

�0.25 ( 0.27+0.25
�0.27 )

for the fit configuration without (with) constraints at negative q2, where the SM prediction483

at the b-quark energy-scale is taken to be CSM
9 = 4.273, CSM

10 = �4.166 and C 0 SM
9,10 = 0 [49,50].484

The coe�cient that shows the largest di↵erence with respect to the SM is C9, whose485

compatibility with the SM is found to be at the level of 1.9 and 1.8 standard deviations,486

for fit models using only q2 > 0 information and with q2 < 0 prior, respectively.487

Two-dimensional profile-likelihood contours for the Wilson coe�cients are shown in488

Fig. 6, where the 68% (95%) CL range is identified with the region where the �NLL is489

smaller than 1.15 (3.09). A shift of approximately 0.2 is observed in the central values of490

all the Wilson coe�cients between the two fit configurations, with the fit result with q2 > 0491

priors being closer to the SM. While from a theoretical perspective one could expect that492

non-local hadronic contributions would only a↵ect C9, the experimental determination of493

the Wilson coe�cients is a↵ected by the strong correlations of the system; a modification494

of the non-local hadronic contributions is found to influence the result on the form factors495

(as shown in Fig. 3), which in turn have an impact on the Wilson coe�cients. This496

behaviour has been studied with pseudoexperiments, where the same generated dataset is497

fitted with and without the constraints at negative q2 replicating the procedure adopted498

on data, and the variation measured in data is found to be compatible with what is499

observed in the pseudoexperiments.500
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Table 1: Central values and uncertainties used to constrain the CKM parameters in the fit. All
values are taken from CKMfitter group as of Summer 2019 [53].

CKM parameters CKMfitter Summer19

A 0.8235± 0.0145

� 0.224837± 0.000251

⌘̄ 0.3499± 0.0079

⇢̄ 0.1569± 0.0102

The validity of the obtained acceptance parameterisation is tested on a large set of227

simulated signal events generated based on the physics model provided by EvtGen [39,52].228

The di↵erential decay rate of Eq. 1 is multiplied by the acceptance function of Eq. 10 and229

the extracted signal parameters are found to be in good agreement with the generated230

values.231

5.2 Signal modelling232

The parameterisation of the signal is built from the five-dimensional di↵erential decay rate233

of Eq. 9 multiplied by the acceptance function of Eq. 10. The signal yields are directly234

extracted from the mK⇡µµ distribution being included as an additional dimension in the235

fit. The probability density function (p.d.f.) of mK⇡µµ for the signal is parameterised with236

the sum of two Gaussian functions with power-law tails on both sides of the function.237

The two Gaussian functions share the same mean and tail parameters but are allowed to238

have di↵erent widths. All the parameters of the signal mK⇡µµ model are fixed from the239

simulation with the exception of the mean and widths. Theses are determined from a fit240

to the mK⇡µµ invariant mass distribution of the B0 ! J/ K⇤0 control channel.241

The resulting six-dimensional signal p.d.f. depends on the four Wilson coe�cients242

C(0)
9 and C(0)

10 , which are varied freely in the fit, and on a large number of parameters that243

are constrained to di↵erent external inputs as described in the next subsections. These244

are the 4 CKM parameters, 19 and 9 local P- and S-wave form factor parameters and245

between 18 and 30 non-local hadronic parameters depending of the truncation order of246

H�(z). External constraints are applied in the fit by multiplying the likelihood function by247

multi-dimensional Gaussian functions. Finally, the two parameters describing the relative248

magnitude and phase between the P- and S-waves, as introduced in Appendix A.3, are249

also free to vary in fit.250

5.3 External inputs251

Several external inputs are used to constrain di↵erent parts of the signal decay amplitudes.252

The CKM elements VtbV ⇤
ts are expressed through the Wolfenstein parameterisation, whose253

parameters {�, A, ⇢̄, ⌘̄} are constrained to the values obtained from a SM fit of the unitarity254

triangle [53], as summarised in Table 1.255

Local form factors can be assessed either from first principles through lattice QCD256

(LQCD) simulations [54, 55], or from quark-hadron-duality arguments through QCD257

light-cone sum rules (LCSR) [56, 57]. In this analysis, B0 ! K⇤0 form factors F�(q2) are258

8

Table 2: Summary of external inputs from B0 !  nK⇤0 measurements used in the analysis.
When measurements from di↵erent experiments are available, these have been averaged taking
into account correlations. A shift of +⇡ is considered for the phase di↵erences � n

?,k to account

for the di↵erent convention between this analysis and Refs. [64, 66, 67].

B0 ! J/ K⇤0 B0 !  (2S)K⇤0

f0 - 0.455 ± 0.057 [65]

fk 0.227 ± 0.006 [64,66,67] 0.22 ± 0.06 [64]

f? 0.209 ± 0.005 [64,66,67] 0.30 ± 0.06 [64]

�k 0.20 ± 0.03 [64, 66,67] 0.34 ± 0.4 [64]

�? �0.21 ± 0.03 [64, 66,67] �0.34 ± 0.3 [64]

B(B0 !  nK⇤0) (1.19 ± 0.08)⇥ 10�3 [66] (5.55 ± 0.87)⇥ 10�4 [65]
B(B0! (2S)K⇤0)
B(B0!J/ K⇤0) 0.487 ± 0.021 [68]

5.4 Constraints from branching fraction determination296

The estimation of the signal yield can be easily incorporated in the amplitude analysis297

by performing an extended unbinned maximum likelihood fit. In addition, the observed298

signal yield in the k2 and q2 mass windows299

Nsig = NJ/ K⇡ ⇥
Bwin(B0 ! K⇤0µ+µ�)⇥

�
2
3

�
⇥ F �1

P

B(B0 ! J/ K+⇡�)⇥ fB0!J/ K⇡
±100MeV ⇥ B(J/ ! µ+µ�)

⇥R" (14)

can be conveniently related to the signal branching fraction via300

Bwin(B
0 ! K⇤0µ+µ�) =

⌧B
~

Z q2max

q2min

Z k2max

k2min

d2�P

dq2dk2
dq2dk2 , (15)

where ⌧B is the lifetime of the B0 meson and the two-dimensional di↵erential decay rate301

is obtained by integrating the full P-wave decay rate over the three angles. The (23) factor302

stands for the squared Clebsch–Gordan coe�cients related toK⇤0 ! K⇡ while the term FP,303

built from the fraction of the P-wave over the total P- and S-wave decay rates, is introduced304

to correct for the S-wave contribution observed in the signal region. Similarly, the observed305

yield in the control channel, NJ/ K⇡, which is determined from a fit to the K+⇡�µ+µ�
306

invariant mass distribution as shown in Fig. 2, includes a combination of P- and S-wave as307

well as contributions of exotic nature, such as B0 ! Zc(4430)�K+ and B0 ! Zc(4200)�K+
308

decays, with Z�
c decaying to J/ ⇡�. The observed NJ/ K⇡ yield is found to be 348 500±600309

and 328 500± 600 for Run1 and 2016, respectively, where uncertainties are statistical only.310

Contamination from B0
s ! J/ K⇤0 decays are found to be of the order of 1%. Since an311

unbiased estimation of the P-wave B0 ! J/ K⇤0 component can only be achieved by a312

dedicated amplitude analysis that comprises the J/ ⇡� invariant mass dimension [65],313

the signal branching fraction of Eq. 15 is normalised to the inclusive branching fraction314

of B0 ! J/ K+⇡� decays. This is taken from Ref. [65] and is scaled by a correction315

factor, fB0!J/ K⇡
±100MeV , which takes into account the fraction of B0 ! J/ K+⇡� decays that316

fall into the mK⇡ window of this analysis. This correction factor is estimated with a series317

10

Table 20: Mean values µi (in units of 10�4), and standard deviations �i (in units of 10�4) of the
theory constraints at negative q2 (in units of GeV2/c4). The values in the table (together with
their correlations) come from private communications with the authors of Ref. [2], approximate
numbers can be found in the o�cial publication.

Re[H?]/F? Re[Hk]/Fk Re[H0]/F0

q
2 �7.0 �5.0 �3.0 �1.0 �7.0 �5.0 �3.0 �1.0 �7.0 �5.0 �3.0 �1.0

µ 3.087 3.182 3.172 3.041 2.846 2.919 2.886 2.731 -0.019 0.113 0.154 0.085

� 0.162 0.175 0.200 0.237 0.138 0.146 0.164 0.194 0.080 0.057 0.038 0.016

Im[H?]/F? Im[Hk]/Fk Im[H0]/F0

q
2 �7.0 �5.0 �3.0 �1.0 �7.0 �5.0 �3.0 �1.0 �7.0 �5.0 �3.0 -1.0

µ 0.103 0.117 0.138 0.168 0.094 0.106 0.124 0.15 -0.018 -0.015 -0.012 -0.005

� 0.010 0.013 0.016 0.021 0.009 0.011 0.013 0.018 0.004 0.003 0.002 0.001

where f
⇤
 n

are decay constants [38] and A n

� are the transversity amplitudes of the1030

charmonium channels. Therefore, it is possible to impose additional constraints to1031

these amplitudes [38, 80], and in turn to {↵(�)
k }, by the polarisation fractions and1032

relative phases1033

f
 n

� =
|A n

� |2

|A n
0

|2 + |A n

k |2 + |A n

? |2
, �k,? = arg

A
 n

k,?

A
 n
0

, (75)

from Babar [56], Belle [57, 81] and LHCb [58], 8 and by the branching fraction1034

B(B ! K
⇤0
 n) =

⌧B

} � with � =

p
�B nK⇤

2⇡mB
G

2

F |VcbV
⇤
cs|2

X

�

|A n

� |2 (76)

from Belle [57,81] and LHCb [84], where �B nK⇤ = �(m2

B, m
2

K⇤0 , m
2

 n
) and �(a, b, c) ⌘1035

a
2+b

2+c
2�2ab�2ac�2bc. All the external inputs from B

0 ! K
⇤0
 n measurements1036

are summarized in Table 21 and 22. Note that, due to the di↵erent angular convention1037

between this analysis and Refs. [56–58] discussed in Sec. 9.2.1, the phase di↵erences1038

 ?,k of Eq. 75 receive a shift of +⇡.1039

While these constraints are su�cient to have a good parametrisation of the non-local1040

contributions, there is still a model dependence associated to the choice of the truncation1041

of the {↵(�)
k } expansion, which is further discussed in Sec. 10.3 and 13.2.1042

10.2 Branching ratio information1043

An interesting feature of this measurement is that the information on the B
0 ! K

⇤0
µ
+
µ
�

1044

branching ratio is naturally embedded in the formalism. In fact, the total signal yield1045

(P+S waves) directly enters in the extended likelihood as shown in Eq. 71 and can be1046

expressed as1047

Nsig = NJ/ ⇥ B±100MeV(B0 ! K
⇤0

µ
+
µ
�)/(1 � F

sig
S )

B(B0 ! J/ K+⇡�) ⇥ 3

2
⇥ f

B0!J/ K⇡
±100MeV

⇥ B(J/ ! µ+µ�)
⇥ R" . (77)

8Note that the nominal set of measurements used as constraints in our analysis di↵ers from Ref. [1],
which uses old inputs from BaBar [82] and Belle [83]; i.e. no exotic state such as Zc(4400)+ is seen in the
given statistics. This alternative choice is also investigated as possible systematics in our analysis.
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Appendices631

A Formalism632

A.1 Angular coe�cients633

Ignoring scalar and tensor operators, the P-wave angular coe�cients entering in Eq. 1 are634
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where the negative sign in front of I4,6s,7,9 is due to the adoption of the LHCb angular635

notation opposite to the theory convention [75] and �l =
p
1� 4m2

l /q
2, with ml the mass636

of the lepton. Similarly, the introduction of the S-wave contribution gives origin to the637

following additional set of angular coe�cients638
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ference terms. As above, the negative sign in front of Ĩ4,7 results from the transformation641
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Ĩ5 =

r
8

3
�2
l Re

h
AL

S0AL
?
⇤ � (L ! R)

i
,
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where the functions F (T )
� (form factors) and H� encode the local and non-local hadronic66
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ts are elements of the Cabibbo-Kobayashi-Maskawa (CKM)70

quark-mixing matrix, GF is the Fermi constant and ↵e is the fine structure constant.71

The exact definition of the form factors F (T )
� (q2, k2) is given in Appendix A.2, while72

the definition of the non-local functions H�(q2) follows what has been proposed in73

Refs. [16, 23–25] where the analytic properties of the hadronic matrix elements are74

exploited through the mapping [28,29]75
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where t+ = 4M2
D, with MD the D0 meson mass, and t0 can be arbitrarily chosen such76

that z(q2 = t0) = 0. After this transformation,2 the non-local hadronic functions can be77

expressed as78

H�(z) =
1� zzJ/ 
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1� zz (2S)
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where the first and second terms remove the singularities due to the J/ and  (2S) poles.79

The Ĥ�(z) are analytic functions which can be further decomposed as80
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↵�,kz
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where ��1
� (z) are so-called outer functions that ensure the correct kinematic depen-81

dence [24], e.g. H0(q2 = 0) = 0, and ↵�,k are the coe�cients of a polynomial expansion.82

The K+⇡� system in the final state can also appear in a scalar (S-wave) configuration,83

which introduces two additional amplitudes [30],84
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with three new form factors, f+, fT and f0 whose definitions can be found in Appendix A.2.85

In the following, contributions from non-local hadronic matrix elements to the scalar86

amplitudes are ignored. This assumption is studied as a source of systematic uncertainty87

in Sec. 7.88

2The functional form of H� defined in Eq. 5 is defined as function of the variable z. Throughout this
article, the expression H�(q2) implies H�(z(q2)), where the contracted form is used to improve legibility.
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In order to favour possible reinterpretation of the analysis, bootstrapped samples of signal666

parameters are uploaded as ancillary files to arxiv. These are obtained by sampling667

the data and repeating the fit for each bootstraped dataset, where the main sources of668

systematic uncertainty are included in the fit. The published set of parameters includes669

the Wilson coe�cients as well as P-wave local and non-local hadronic parameters. This670

sets of parameters can be employed to derive confidence intervals on any physical quantity671

of interest, i.e. checking the compatibility of the result of this analysis with alternative672

signal parametrisations.673
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Figure 12: Event distributions for the combined Run1 and 2016 data set in the upper mass-
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Figure 9: Angular observables (P -basis) obtained a posteriori from the fit results of the two fit
configurations; the subfigures isolate the contribution from non-local e↵ects to the given angular
observables. The LHCb result from Ref. [9] is overlaid for comparison, together with the SM
theory prediction from DHMV [14,15] and (for P 0

5) GRvDV [16].
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observables. The LHCb result from Ref. [9] is overlaid for comparison, together with the SM
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UKIPCN�TGIKQPU EQPVTQN�EJCPPGNU- Candidates selected in two q2 regions:  

‣ [1.1, 8.0] & [11, 12.5] GeV2 

- Control channels:  
‣  decays: [8, 11] GeV2 

‣  decays: [12.5, 14.5] GeV2 

- Low-q2 (<1.1 GeV2) not considered:  
‣ light resonances:  

‣ extra complications without real benefit 

‣ approaching photon pole, dominated by  

- High-q2 (>14.5 GeV2) not considered:  
‣ beyond validity of      parametrisation

B0 → J/ψK*0
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B → K*0γe.g. 

[ EPJC 77 (2017) 161 ]
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Global fits to  observablesb → sℓℓ
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JHEP 09 (2022) 133

JHEP 05 (2023) 087

EPJ C83 (2023) 648

PRD 107 (2023) 055036

arXiv:2310.05585

- Many global fits produced in the literature

‣ global fits from different groups use 
sub-sets of inputs, different statistical 
tools/theory assumptions, etc…

‣ constant long-distance 
QCD allowed

‣ suggest a flavour universal shift in C9
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What about LFU?

- Measuring ratios of branching fraction 
between  and 


‣ hadronic uncertainties cancels at 


‣ QED correction at 

b → sμ+μ− b → se+e−

𝒪(10−4)
𝒪(10−2)
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RK low-q2 = 0.994+0.094
°0.087
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RK§ low-q2 = 0.927+0.099
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RK§ central-q2 = 1.027+0.077
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Data
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✦  ratio extremely well predicted in SM 

‣ Cancellation of hadronic uncertainties at  

‣  QED correction 

‣ Statistically limited

RX
10-4

!(1%)

Lepton Flavour Universality (LFU) tests in b → sℓ+ℓ−

Renato Quagliani LHC Seminar, CERN 8

[Eur.Phys.J.C 76 (2016) 8]

(*)Illustration purposes

✦ Coherent pattern of tension to SM in 
LFU test with  transition:b → sℓ+ℓ−

✦ Any departure from unity is a clear 
sign of New Physics

4.7 fb-1, 1σ

9 fb-1, 1.4σ

9 fb-1, 1.5σ

9 fb-1, 3.1σ

3 fb-1, 2.4σ
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Analysis

(*) Measurements from Belle not shown (larger statistical uncertainties)
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RX =
B(b ! sµ+µ�)

B(b ! se+e�)

[JHEP,2020,40 (2020)]

[JHEP08(2017)055]

[PRL 128 (2022) 191802]

[PRL 128 (2022) 191802]

[Nat. Phys. 18, 277-282 (2022)]

- Latest LHCb results from December 2022 


‣ Compatible with SM within 5%

PRL 131 (2023) 051803
PRD 108 (2023) 032002
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CMS B+ → K+μ+μ−


