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Hypernuclei
2

F. Mazzaschi

● Hypernuclei: bound states of strange
baryons (hyperons) and ordinary nuclei

➢ Extend the nuclear chart to a third 
dimension, the strangeness one

➢ Poorly known bound states

      

➢ Unique probes for studying 
the interaction of hyperons 
with the ordinary matter

■ Relevant for the physics 
of the neutron stars

Hypernuclear database

https://hypernuclei.kph.uni-mainz.de/


Hypertriton (3ΛH)
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● Lightest known hypernucleus

➢ Bound state of a neutron, a proton and a Λ
➢ Discovered in early 50s by M.Danysz and J.Pniewski

■ Balloon-flown experiments 
1, 2

      

p
Mass: ~ 2.991 GeV/c2

Spin: ½  (?)
Lifetime: ~ 250 ps (cⲧ ~ 7.7 cm)

Mesonic charged decay channels:
3He + π    (B.R. ≅ 0.25)
 d + p + π (B.R. ≅ 0.40)

1 📕  M. Danysz et al., Philos. Mag. 44, (1953)
2 📕  Bonetti et al., Il Nuovo Cimento 11.2, (1954)



Hypertriton structure: BΛ
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● Λ - separation energy BΛ = m(d) + m(Λ) - m(3ΛH)
➢ Reflects the extension of the 3ΛH wave function

● Emulsion experiments1 : 3ΛH is a loosely bound nucleus
➢ BΛ = 130 ± 50 keV

1 📕 M.Juric et al., Nucl. Phys. B, 52, 1-30, (1973)

Recent pionless Effective 
Field Theory (EFT) 
calculations 2 show large 
separation (~11 fm) between 
the Λ and the “deuteron 
core” for BΛ = 130 keV

2 📕 F. Hildenbrand et al., Phys. Rev. , 100 (2019)



Hypertriton structure: BΛ
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● Recent measurement from the STAR Coll.
➢ BΛ = 0.41 ± 0.12 (stat.) ± 0.11 (syst.) MeV

1 📕 STAR, Nature Physics 16 (2020), 409–412
2 📕 Le et al., Phys.Lett.B 801 (2020) 135189

● More than 50 years after the first 
measurement, BΛ  has still large uncertainties

➢ Precision measurements needed! 



Hypertriton structure: lifetime
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● Lifetime  of the 3ΛH

➢ A low BΛ should imply a lifetime 
close to the free Λ hyperon one

➢ Many measurements performed, 
all with uncertainties > 10%

■ <τ> = 219 ± 13 ps

● Large theoretical uncertainties

➢ connection between τ and BΛ  
not well constrained even in 
state-of-the-art EFT models1, 2

1 📕 Hildenbrand F. et al., Physical Review C, vol. 102, no. 6 (2020)
2 📕 Pérez-Obiol A., Physics Letters B, vol. 811 (2020)



Probing the core of the neutron stars
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● Neutron stars (NSs) equation of state (EoS)

➢ Production of hyperons favourable
inside the innermost core of the NS 1,2

➢ Softening of the EoS, incompatible with
measured heavy NS
■  “Hyperon puzzle”

1 📕  D. Logoteta et al., Eur.Phys.J.A 55 (2019) 2 📕  D. Lonardoni et al., Phys. Rev. Lett. 114 (2019)
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● Neutron stars (NSs) equation of state (EoS)

➢ Introduction of Λ-N-N repulsion might
solve the hyperon puzzle

➢ Models need additional
experimental constraints!

● Study Λ-N and Λ-N-N forces with ALICE

➢ p–Λ and p–p–Λ femtoscopy

➢ 3
ΛH is the most direct probe

■ BΛ of the 3ΛH employed to model 
the Λ–N interaction potential

Probing the core of the neutron stars

 📕  D. Lonardoni et al., Phys. Rev. Lett. 114 
(2015)

ALICE: precision measurements of 3ΛH lifetime and BΛ in heavy-ion collisions



(Hyper)Nucleosynthesis at collider: how?
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(Hyper)Nucleosynthesis at collider: how?
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Baryons close in phase space can form a nucleus
● Interplay between the configuration of the phase space 

of the nucleons and the wave function of the nucleus 

Coalescence  📕 J. I. Kapusta, Phys.Rev. C21, 1301 (1980)



 📕 B. Dönigus et al.,Nucl.Phys.A 987 (2019) 

(Hyper)Nucleosynthesis at collider: how?
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Baryons close in phase space can form a nucleus
● Interplay between the configuration of the phase space 

of the nucleons and the wave function of the nucleus 

Coalescence  📕 J. I. Kapusta, Phys.Rev. C21, 1301 (1980)

Hadrons emitted from the interaction 
region in statistical equilibrium when the 
system reaches a limiting temperature Teq

● Abundance of a species 
➢ ∝ Exp(-M/Teq )

● No dependency on the nuclear size

Thermal Models (SHMs)

https://www.sciencedirect.com/science/article/pii/S0375947419300405


Coalescence vs SHM
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● Production vs charged particle 
multiplicity
○  Dependence on the system size

● d/p ratio successfully described by 
both SHM and Coalescence from pp 
to Pb–Pb collisions

       Can we use hypernuclei to improve
                  our understanding?

📕
  P

hys. R
ev. C

 107 (2023) 064904

SHM
Coalescence 1
Coalescence 2



Hypertriton measurements at the LHC

📕 Phys. Rev. Lett. 131, 102302 (2023)

📕 Phys. Rev. Lett. 128, 252003 (2022)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.102302


The ALICE Run 2 detector
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📕
 JH

E
P 01, (2022) 106

LHC Run 3: ITS and TPC upgrades

https://iopscience.iop.org/article/10.1088/0954-3899/41/8/087002
https://iopscience.iop.org/article/10.1088/1748-0221/16/03/P03022


The ALICE Run 2 detector
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📕
 JH

E
P 01, (2022) 106

LHC Run 3: ITS and TPC upgrades

Inner Tracking System
● Track reconstruction
● Reconstruction of 

primary and decay 
vertices 

● Identification of 
low-momentum particles

https://iopscience.iop.org/article/10.1088/0954-3899/41/8/087002
https://iopscience.iop.org/article/10.1088/1748-0221/16/03/P03022


The ALICE Run 2 detector
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LHC Run 3: ITS and TPC upgrades

Inner Tracking System
● Track reconstruction
● Reconstruction of 

primary and decay 
vertices 

● Identification of 
low-momentum particles

Time Projection Chamber
● Tracking
● Identification of nuclei and 

hadrons via specific 
energy loss

https://iopscience.iop.org/article/10.1088/0954-3899/41/8/087002
https://iopscience.iop.org/article/10.1088/1748-0221/16/03/P03022


The ALICE Run 2 detector
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📕
 JH

E
P 01, (2022) 106

LHC Run 3: ITS and TPC upgrades

Time-Of-Flight 
detector

● Identification of nuclei 
and hadrons through 
their time-of-flight

Inner Tracking System
● Track reconstruction
● Reconstruction of 

primary and decay 
vertices 

● Identification of 
low-momentum particles

Time Projection Chamber
● Tracking
● Identification of nuclei and 

hadrons via specific 
energy loss

https://iopscience.iop.org/article/10.1088/0954-3899/41/8/087002
https://iopscience.iop.org/article/10.1088/1748-0221/16/03/P03022


The ALICE Run 2 detector
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📕
 JH

E
P 01, (2022) 106

LHC Run 3: ITS and TPC upgrades

Time-Of-Flight 
detector

● Identification of nuclei 
and hadrons through 
their time-of-flight

Inner Tracking System
● Track reconstruction
● Reconstruction of 

primary and decay 
vertices 

● Identification of 
low-momentum particles

Time Projection Chamber
● Tracking
● Identification of nuclei and 

hadrons via specific 
energy loss

V0 detectors
● Trigger
● Centrality/multiplicity 

determination

https://iopscience.iop.org/article/10.1088/0954-3899/41/8/087002
https://iopscience.iop.org/article/10.1088/1748-0221/16/03/P03022


3
ΛH reconstruction
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● Pb–Pb collisions at √sNN = 5.02 TeV collected by ALICE during 2018
➢ 3

ΛH → 3He + π- 



3
ΛH reconstruction

20
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3He and ⲡ- identified through their 
specific energy loss in the TPC

 📕
 Phys. Rev. C

 107 (2023) 064904

● Pb–Pb collisions at √sNN = 5.02 TeV collected by ALICE during 2018



3
ΛH reconstruction
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● Pb–Pb collisions at √sNN = 5.02 TeV collected by ALICE during 2018

Secondary vertex reconstruction: loose 
pre-selections applied to the decay topology

 📕
 Phys. Rev. C

 107 (2023) 064904

3He and ⲡ- identified through their 
specific energy loss in the TPC



3
ΛH selection: machine learning approach

● BDT output
➢ Score related to the 

probability of the candidate 
to be signal or background

➢ Nine proper decay length 
intervals (1 to 35 cm)

Boosted Decision Trees Classifier (BDT) trained on a dedicated sample

22

XGBoost

https://xgboost.readthedocs.io/en/stable/


3
ΛH selection: machine learning approach

Boosted Decision Trees Classifier (BDT) trained on a dedicated sample

23

● Selection applied on the 
BDT score
➢ maximisation of the 

expected significance 
(assuming thermal 
production)

BDT threshold● BDT output
➢ Score related to the 

probability of the candidate 
to be signal or background

➢ Nine proper decay length 
intervals (1 to 35 cm)

XGBoost

https://xgboost.readthedocs.io/en/stable/


Signal extraction
24

● Signal extracted with an unbinned 
likelihood fit to the invariant mass 
spectrum of the selected candidates

➢ Kernel Density Estimation (KDE) 
function tuned on the MC to model 
the signal shape

➢ 1st order polynomial for the 
background component

● High significance from 1 to 35 cm

● Integral of the signal function (N raw) for the 
lifetime, mass peak position (μ) for the BΛ

  📕 Phys. Rev. Lett. 131, 102302 (2023)

F. Mazzaschi

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.102302


Lifetime measurement
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● Corrected ct spectrum:

● εpres : topology reconstruction and pre-selection efficiencies

● εBDT : BDT selection efficiency

● fabs : fraction of 3ΛH that are absorbed in the ALICE detector material

➢ simulated with GEANT4, cross-section from 

■ 📕 M.V. Evlanov, Nucl. Phys. A 632 (1998)

 



Lifetime measurement
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● Corrected ct spectrum:

● Fitted with an exponential 
function

● Lifetime value from the fit

➢ Statistical uncertainty ~ 4%

➢ Value compatible within 1σ 
with free Λ lifetime

  📕 Phys. Rev. Lett. 131, 102302 (2023)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.102302


Towards the BΛ measurement
27

● M(3ΛH) : extracted from the mean value μ of the signal pdf in each ct interval 
● M(3ΛH) = μ - 𝛿MC  - 𝛿data

BΛ = M(d) + M(Λ) - M(3ΛH)

F. Mazzaschi



Towards the BΛ measurement
28

● M(3ΛH) : extracted from the mean value μ of the signal pdf in each ct interval 
● M(3ΛH) = μ - 𝛿MC  - 𝛿data

BΛ = M(d) + M(Λ) - M(3ΛH)

𝛿MC

● Reconstruction shift observed in the 
MC due to missing energy loss 
corrections applied to the 3ΛH 
daughter tracks

● ct dependent, from -0.1 to 0.8 MeV/c 2

F. Mazzaschi



Towards the BΛ measurement
29

● M(3ΛH) : extracted from the mean value μ of the signal pdf in each ct interval 
● M(3ΛH) = μ - 𝛿MC  - 𝛿data

BΛ = M(d) + M(Λ) - M(3ΛH)

● Data driven correction due to
➢ Residual misalignment
➢  B-field uncertainty

● Shift wrt the PDG value of the Λ mass
➢ Same analysis procedure
➢ ~ 60 keV / c 2

𝛿data

F. Mazzaschi



BΛ measurement
30

● Weighted average / pol0 fit of the 
different ct interval values

● Extremely precise mass measurement

➢ o(100 keV) precision at the LHC

● Low BΛ , in agreement with early 
emulsion experiments

F. Mazzaschi

  📕 Phys. Rev. Lett. 131, 102302 (2023)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.102302


Final results
31

● Most precise measurements to date of τ and BΛ of the 3ΛH
➢ τ = 253 ± 11 (stat.) ± 6 (syst.) ps
➢ BΛ = 102 ± 63 (stat.) ± 67 (syst.) keV

Compatible with 
all the theoretical 
predictions 
assuming 3ΛH as 
weakly bound

F. Mazzaschi



Final results
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● Most precise measurements to date of τ and BΛ of the 3ΛH
➢ τ = 253 ± 11 (stat.) ± 6 (syst.) ps
➢ BΛ = 102 ± 63 (stat.) ± 67 (syst.) keV

● Weakly-bound nature of the 3ΛH 
finally confirmed
➢ 3

ΛH could be approximated 
as a shallow d-Λ state with a 
wide d-Λ radius of ~ 10 fm 

● How does this reflect on its 
production?

F. Mazzaschi
  📕 Phys. Rev. Lett. 131, 102302 (2023)

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.102302


3
ΛH synthesis at the LHC
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● Weakly bound state 
➢ 3

ΛH / Λ → large separation between 
SHM 1 and coalescence 2 predictions at 
low charged-particle multiplicity 
density → coalescence is sensitive to 
the interplay between the size of the 
collision system and the spatial 
extension of the nucleus wave function

● 3
ΛH production in pp and p–Pb collisons: a 

key to understand the nuclear production 
mechanism at the LHC

1 📕 Vovchenko, et al., Phys. Lett., B 785, 171-174, (2018)
2 📕 Sun. et al., Phys. Lett. B 792, 132–137, (2019)
3 📕 Phys. Lett. B 754, 360–372, (2016) 

pp and p–Pb collisions



3
ΛH signal in pp and p–Pb collisions
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📕 Phys. Rev. Lett. 128, (2022) 252003

● Data samples:

➢ pp collisions at √s = 13 TeV and 
p–Pb collisions at √sNN = 5.02 TeV 
collected during Run 2

● 3
ΛH selection in pp: trigger on high 

multiplicity events using V0 detectors  
+ topological selections on triggered 
events

● 3
ΛH selection in p–Pb: 40% most central 

collisions + BDT Classifier

● Significance > 4σ both in pp and p–Pb



Production yields
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● First measurement of 3ΛH/Λ in pp and 
p–Pb collisions
➢ good agreement with 2-body 

coalescence
➢ tension with SHM at low 

charged-particle multiplicity 
density
■ VC = 3 dV/dy excluded: 

deviation > 6σ
■ First significant constraint to 

SHM possible configurations

● Coalescence quantitatively describes 
the 3ΛH suppression in small systems

➢ the nuclear size matters at low 
charged-particle multiplicity (and 
we can measure it!)

📕 Phys. Rev. Lett. 128, (2022) 252003



First hypertritons seen by LHCb! 
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● LHCb observed the (anti-)hypertriton on Run 2 pp data: link
➢ ∼ 100 anti-3

ΛH analysing 5.5 fb-1

➢ Innovative method for tagging 3He nuclei 
➢ Allows for complementary measurements with ALICE in the forward region

https://cds.cern.ch/record/2868251/files/LHCb-CONF-2023-002.pdf


Hypernuclei in the Run 3 era



ALICE in Run 3: going to A > 3
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● LHC Run 3: continuous readout + ITS and TPC upgrades
➢ O(103) and O(102)  larger with respect to minimum bias pp and Pb–Pb samples
➢ Dedicated trigger on 3He and 4He 
➢ Precision measurements of 3ΛH in small colliding systems

● Extend ALICE hypernuclear program to A > 3 hypernuclei in all collision systems

p
n

Λ p
n

Λ

n



The upgraded Inner Tracking System
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● ITS2: 7 layers based on Monolithic Active Pixel Sensors (MAPS)

Reduced material budget and higher spatial resolution:  (r𝜑, z) = 5x5 μm²

● 24120 chips, 12.5 Gpixel
➢ Largest MAPS-based detector  

in High-Energy Physics 

● 3 Inner Barrel layers (IB)
➢ radii from 2.2 to 3.8 cm

● 4 Outer Barrel layers (OB)
➢ radii from 19 to 39 cm 



Back to the origin: direct tracking of hypernuclei
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● Hypernuclei (cτ ∼ 7cm) can be directly tracked with the ITS2 !
➢ Possibility to reconstruct the full decay chain → silicon MHz bubble chamber

3
ΛH

3He

π-

 📕  Bonetti et al., Il Nuovo Cimento 11.2, (1954)



The strangeness tracking algorithm
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1. Matches the 3ΛH ITS track with the decay daughter tracks
2. Final kinematic fit of the decay topology (WIP)



The strangeness tracking algorithm
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1. Matches the 3ΛH ITS track with the decay daughter tracks
2. Final kinematic fit of the decay topology (WIP)

Before strangeness tracking

y 
(c

m
)

x (cm)



The strangeness tracking algorithm
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1. Matches the 3ΛH ITS track with the decay daughter tracks
2. Final kinematic fit of the decay topology (WIP)

Outstanding background suppression!
x (cm)

y 
(c

m
)

After strangeness tracking



Conclusions



Conclusions
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● 3
ΛH in large systems:
➢ Precise measurements of lifetime and BΛ in Pb–Pb collisions

■ Weakly bound nature of 3ΛH confirmed

● First measurement of the 3ΛH production in p–Pb collisions:
➢ 3

ΛH / Λ favours coalescence expectation
➢ Nuclear size matters at low-charged particle multiplicity

● Run 3:
➢ Large sample + strangeness tracking → new era for light-hypernuclei with A < 5



Additional material



(Hyper)nuclei at the LHC
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● (Hyper)nuclei at the LHC observed in all 
the collision systems
○ pp, p–Pb, Pb–Pb
○ Pb–Pb: complex dynamics and 

Quark Gluon Plasma (QGP) 
formation

● Nuclei and hypernuclei produced in the 
latest stages of the collision evolution
○ Chemical and kinetic freeze outs

● BΛ  ≅100 keV  ,  Tch  ≅ 100 MeV
○ which is the formation mechanism of 

these objects at the LHC energies ? 



The Statistical Hadronisation Model (SHM) 
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● Hadrons emitted from the interaction 
region in statistical equilibrium when 
the system reaches the chemical 
freeze-out temperature

● Abundance of a species 
○ ∝ Exp(-m/Tchem )

● Mainly used for Pb–Pb, it can be used 
in smaller systems (pp and p–Pb) by 
using the canonical ensemble

1 📕 A. Andronic et al., Nature 561, (2018) 3210
2 📕 Vovchenko et al., Phys. Lett. B 785, (2018) 171



Coalescence Models
49
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1 📕 Sun et al., Phys. Lett. B 792, (2019) 132
2 📕 Horst et al. , arXiv:2302.12696

● Original idea:
○ Nucleons close in phase space at 

the freeze-out can form a nucleus 
via coalescence

● Today: Wigner function formalism1, 2

○ Overlap between nucleus 
wave-function and nucleon 
phase-space distribution

○ Dynamic description, but yield 
predictions only relative to the 
nucleon ones

https://arxiv.org/abs/2302.12696


Results
50
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📕 Phys. Rev. Lett. 128, (2022) 252003

● S3
 : strangeness population factor

● S3 in small systems:
○ same conclusions as for 3ΛH / Λ 

but with a lower sensitivity
○ More measurements to come 

will explore the multiplicity 
dependence of the S3



EFTs
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● Chiral EFT

Strong BΛ dependence

● Pionless EFT

Mild BΛ dependence

 📕 Pérez-Obiol A., Physics Letters B, 
vol. 811 (2020)

 📕 Hildenbrand F. et al., Physical Review C, 
vol. 102, no. 6 (2020)



Boosted Decision Trees
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● Simple (apparently) supervised learning model  well 
suited for classification and regression problems

● Building block → Decision Tree (DT)

○ A sequence of simple tests on the variables of the 
hypertriton candidate

○ Combining all the tests one gets an output as a 
function of the variables of the single candidate

● Training a DT:

○ each test is built to maximise the separation 
between the signal and the background classes DT applied to the Titanic dataset: 

was the passenger survived?



Boosted Decision Trees
53
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     Boosting

○ Many simple (shallow) trees built 
sequentially

○ Each tree is built to compensate 
the errors of the previous one

      Ensemble model

○ predictions are made combining 
the output of all the trees

○ Very resilient to overfitting
Do they like computer games? 

Score based approach to evaluate it

● DT: poor performances on independent samples → overfitting



● Production yield: 

● Multi-trial for systematic uncertainty due to signal selection and extraction
○ BDT selection: BDT efficiency variations of ± 5%
○ Signal extraction: signal and background fit function variations

● Absorption correction: cross section variations up to  ± 50%

● Branching ratio (B.R.): never measured experimentally, data driven uncertainty 
based on the measurement of a derived quantity (R3)

● Input pT distribution: using different shapes that describe the 3He spectrum

Systematics
54
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Systematic uncertainties
55

● Common: multi trial approach to evaluate uncertainty on
○ BDT selection: BDT efficiency variations of ± 10%
○ Signal extraction: signal and background fit function variations

● Lifetime
○ Absorption cross section: cross section variations up to  ± 50%

● BΛ
○ Data driven shift 𝛿data: evaluated on the Λ mass repeating the 

analysis splitted for matter and antimatter, B+ and B- fields

BΛτ

F. Mazzaschi



Beyond Run 3
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● ITS3 will be installed during LS3
➢ Truly cylindrical silicon pixel layers
➢ Reduced material budget, closer to the IP (1.8 cm)

Run 3 Run 4

Improved impact parameter resolution → S/B improves by a factor 3

https://cds.cern.ch/record/2868015?ln=en

https://cds.cern.ch/record/2868015?ln=en


Final results
57
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CERN news

Physics (PRL) 

PHYS.org

https://home.cern/news/news/physics/alice-pins-down-hypermatter-properties
https://physics.aps.org/articles/v16/s129
https://phys.org/news/2023-09-highly-precise-hypertriton-lifetime.html


● Femtoscopic measurement of the proton - deuteron interaction in pp collisions
○ Access to the strong interaction and short-range dynamics between hadrons (~ 1-2 fm)

● Two particle correlation function 1:

○ emitting source (anchored to p-p correlation in ALICE data) 2

○ two-particle wave function  

Beyond the synthesis: nuclear interactions 58
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2 📕 PLB 811 (2020) 135849
  📕 Nature 588 (2020) 232-238

p p n
d

1 📕 Koonin, Physics Letters B 70 (1977) 43-47


