Probing the (anti)hypertriton properties with ALICE at the LHC

Francesco Mazzaschi CERN-LHC Seminar, 12/12/23

Hypernuclei

- Hypernuclei: bound states of strange baryons (hyperons) and ordinary nuclei
 - Extend the nuclear chart to a third dimension, the strangeness one
 - Poorly known bound states
 - Unique probes for studying the interaction of hyperons with the ordinary matter
 - Relevant for the physics of the neutron stars

Hypernuclear database

2

Hypertriton (³_AH)

- ALICE

- Lightest known hypernucleus
 - > Bound state of a neutron, a proton and a Λ
 - Discovered in early 50s by M.Danysz and J.Pniewski
 - Balloon-flown experiments ^{1, 2}

```
Mass: ~ 2.991 GeV/c<sup>2</sup>
Spin: ½ (?)
Lifetime: ~ 250 ps (cτ ~ 7.7 cm)
```

Mesonic charged decay channels: ³He + π (B.R. \approx 0.25) d + p + π (B.R. \approx 0.40) Delayed Disintegration of a Heavy Nuclear Fragment: 1*

By M. DANYSZ and J. PNIEWSKI Institute of Experimental Physics, University of Warsaw \dagger

[Received December 1, 1952]

A REMARKABLE coincidence of two events recorded in a photographic emulsion has recently been observed in this laboratory. It occurred in a G5 emulsion, $600 \ \mu$ thick, which had been exposed to cosmic radiation at an altitude of 85 000 feet, $1 \ and consists of two stars marked A and B in the photo-micrograph reproduced in Plate 13. The centre of the star B coincides with the end of the track of a heavy fragment ejected from the star A. If this coincidence is not accidental, it must be considered as an example of the delayed disintegration of a heavy fragment. The pro-$

Hypertriton structure: B

- Λ separation energy $B_{\Lambda} = m(d) + m(\Lambda) m({}^{3}_{\Lambda}H)$ > Reflects the extension of the ${}^{3}_{\Lambda}H$ wave function
- Emulsion experiments¹: ³_ΛH is a loosely bound nucleus
 B_Λ = 130 ± 50 keV

From the observation of 82 examples of ${}^{3}_{\Lambda}$ H, the binding energy of this hypernucleus is found to be 0.15 ± 0.08 MeV. An accurate determination of the binding energy of the ${}^{3}_{\Lambda}$ H hypernucleus is of great importance to estimate the strength of the Λ N interaction in the singlet state. Combining the result obtained in this experiment with the data compiled by Bohm et al. [2], reanalysed using the methods and selection criteria defined in the present work, the best estimate for the binding energy of ${}^{3}_{\Lambda}$ H is found to be $B_{\Lambda} = 0.13 \pm 0.05$ MeV.

Hypernucleus	Decay mode	No of events	$\frac{B_{\Lambda} \pm \Delta B_{\Lambda}}{(MeV)}$
·			
$^{3}_{\Lambda}$ H	π^{-} + ¹ H + ² H	24	0.23 ± 0.11
	π^- + ³ He	58	0.06 ± 0.11
	total	82	0.15 ± 0.08

Recent pionless Effective Field Theory (EFT) calculations ² show large separation (~11 fm) between the Λ and the "deuteron core" for B_{Λ} = 130 keV

² 📕 F. Hildenbrand et al., Phys. Rev. , 100 (2019)

¹ 📕 M.Juric et al., Nucl. Phys. B, 52, 1-30, (1973)

Hypertriton structure: B_A

B₄ (MeV)

F. Mazzaschi

Le et al., Phys.Lett.B 801 (2020) 135189

Hypertriton structure: lifetime

- Lifetime of the ${}^{3}_{\Lambda}H$
 - > A low B_{Λ} should imply a lifetime close to the free Λ hyperon one
 - Many measurements performed, all with uncertainties > 10%
 - <*t*> = 219 ± 13 ps
- Large theoretical uncertainties
 - connection between *τ* and B_Λ not well constrained even in state-of-the-art EFT models^{1, 2}

ALICE

6

F. Mazzaschi

Hildenbrand F. et al., *Physical Review C*, vol. 102, no. 6 (2020) Figure Pérez-Obiol A., *Physics Letters B*, vol. 811 (2020)

Probing the core of the neutron stars

- Neutron stars (NSs) equation of state (EoS)
 - Production of hyperons favourable inside the innermost core of the NS^{1,2}
 - Softening of the EoS, incompatible with measured heavy NS
 - "Hyperon puzzle"

Probing the core of the neutron stars

- Neutron stars (NSs) equation of state (EoS)
 - > Introduction of Λ -N-N repulsion might solve the hyperon puzzle
 - Models need additional experimental constraints!
- Study Λ -N and Λ -N-N forces with ALICE
 - > $p-\Lambda$ and $p-p-\Lambda$ femtoscopy
 - $> {}^{3}_{\Lambda}H$ is the most direct probe
 - B_{Λ} of the ${}^{3}_{\Lambda}H$ employed to model the Λ -N interaction potential

2.0 PSR J1614-2230 $\Lambda N + \Lambda NN$ (II) M [M_] 1.6 1.36(5)M 1.2 $\Lambda N + \Lambda NN (I)$ 0.8 0.66(2)M₀ 0.4 ΛN 0.0 11 12 13 14 15 10 R [km]

2.45(1)M₀

2.8 (2015)

2.4

D. Lonardoni et al., Phys. Rev. Lett. 114

2.09(1)M

PSR J0348+0432

PNM

ALICE: precision measurements of $^3{}_\Lambda H$ lifetime and B_Λ in heavy-ion collisions

16

(Hyper)Nucleosynthesis at collider: how?

10

Coalescence

J. I. Kapusta, Phys.Rev. C21, 1301 (1980)

Baryons close in phase space can form a nucleus

 Interplay between the configuration of the phase space of the nucleons and the wave function of the nucleus

(Hyper)Nucleosynthesis at collider: how?

Coalescence

J. I. Kapusta, Phys.Rev. C21, 1301 (1980)

Baryons close in phase space can form a nucleus
Interplay between the configuration of the phase space of the nucleons and the wave function of the nucleus

Thermal Models (SHMs)

Hadrons emitted from the interaction region in statistical equilibrium when the system reaches a limiting temperature T_{eq}

- Abundance of a species > $\infty \text{ Exp}(-M/T_{eq})$
- No dependency on the nuclear size

Coalescence vs SHM

- Production vs charged particle multiplicity
 - Dependence on the system size
- d/p ratio successfully described by both SHM and Coalescence from pp to Pb–Pb collisions

Can we use hypernuclei to improve our understanding?

Hypertriton measurements at the LHC

📕 Phys. Rev. Lett. 131, 102302 (2023)

Phys. Rev. Lett. 128, 252003 (2022)

LHC Run 3: ITS and TPC upgrades

16

Time Projection Chamber

- Tracking
- Identification of nuclei and hadrons via specific energy loss

Inner Tracking System

• Track reconstruction

- Reconstruction of primary and decay vertices
- Identification of low-momentum particles

LHC Run 3: ITS and TPC upgrades

.....

.....

17

Time-Of-Flight detector

 Identification of nuclei and hadrons through their time-of-flight

Time Projection Chamber

- Tracking
- Identification of nuclei and hadrons via specific energy loss

Inner Tracking System

• Track reconstruction

- Reconstruction of primary and decay vertices
- Identification of low-momentum particles

LHC Run 3: ITS and TPC upgrades

.........

V0 detectors

determination

Centrality/multiplicity

Trigger

Time-Of-Flight detector

 Identification of nuclei and hadrons through their time-of-flight

Time Projection Chamber

- Tracking
- Identification of nuclei and hadrons via specific energy loss

Inner Tracking System

• Track reconstruction

- Reconstruction of primary and decay vertices
- Identification of low-momentum particles

LHC Run 3: ITS and TPC upgrades

F. Mazzaschi

18

³ H reconstruction

• Pb-Pb collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV collected by ALICE during 2018 > $^{3}_{\Lambda}H \rightarrow ^{3}He + \pi^{-}$

³ H reconstruction

20

• Pb–Pb collisions at $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV collected by ALICE during 2018

 ^{3}He and $\pi^{\text{-}}$ identified through their specific energy loss in the TPC

³ H reconstruction

• Pb–Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV collected by ALICE during 2018

 ^{3}He and $\pi^{\text{-}}$ identified through their specific energy loss in the TPC

Secondary vertex reconstruction: loose pre-selections applied to the decay topology

³ H selection: machine learning approach

Boosted Decision Trees Classifier (BDT) trained on a dedicated sample

- BDT output
 - Score related to the probability of the candidate to be signal or background
 - Nine proper decay length intervals (1 to 35 cm)

ALI-SIMUL-316844

XGBoost

³ H selection: machine learning approach

Boosted Decision Trees Classifier (BDT) trained on a dedicated sample

- BDT output
 - Score related to the probability of the candidate to be signal or background
 - Nine proper decay length intervals (1 to 35 cm)
- Selection applied on the BDT score
 - maximisation of the expected significance (assuming thermal production)

24

- Signal extracted with an unbinned likelihood fit to the invariant mass spectrum of the selected candidates
 - Kernel Density Estimation (KDE) \succ function tuned on the MC to model the signal shape
 - 1st order polynomial for the background component
- High significance from 1 to 35 cm
- Integral of the signal function (N^{raw}) for the lifetime, mass peak position (μ) for the B_{Λ}

Phys. Rev. Lett. 131, 102302 (2023) Events / (0.001 GeV/c² ALICE, Pb-Pb $1 \le ct < 2$ cm 35 -0–90%, √*s*_{ℕℕ} = 5.02 TeV χ^2 / NDF = 0.80 $2 \le p_{\tau} < 9 \text{ GeV}/c$ $S = 87 \pm 10$ 30 $S/\sqrt{S+B}$ (3 σ) = 7.6 ± 1.1 $\oint {}^{3}_{\Lambda}H + {}^{3}_{\overline{\Lambda}}\overline{H}$ $\mu_{\frac{3}{4}H} = 2991.15 \pm 0.21 \text{ MeV}/c^2$ 25 Signal + Background 20 Background 15 2.96 2.97 2.98 2.99 3 3.01 3.02 3.03 3.04 $M(^{3}\text{He} + \pi^{-} \text{ and c.c.})$ (GeV/ c^{2})

ALI-PUB-562090

Lifetime measurement

• Corrected
$$ct$$
 spectrum: $rac{\mathrm{d}N}{\mathrm{d}(ct)} = rac{1}{\Delta ct} rac{1}{\epsilon_{\mathrm{pres}}} rac{1}{\epsilon_{\mathrm{BDT}}} rac{1}{(1-f_{\mathrm{abs}})} imes N^{\mathrm{raw}}(ct)$

- ϵ_{pres} : topology reconstruction and pre-selection efficiencies
- ϵ_{BDT} : BDT selection efficiency
- f_{abs} : fraction of ${}^{3}_{\Lambda}H$ that are absorbed in the ALICE detector material
 - ➤ simulated with GEANT4, cross-section from
 - M.V. Evlanov, Nucl. Phys. A 632 (1998)

25

Lifetime measurement

• Corrected *ct* spectrum:

$$rac{\mathrm{d}N}{\mathrm{d}(ct)} = rac{1}{\Delta ct} rac{1}{\epsilon_{\mathrm{pres}}} rac{1}{\epsilon_{\mathrm{BDT}}} rac{1}{(1-f_{\mathrm{abs}})} imes N^{\mathrm{raw}}(ct)$$

- Fitted with an exponential function
- Lifetime value from the fit
 - Statistical uncertainty ~ 4%
 - > Value compatible within 1σ with free Λ lifetime

ALICE

Towards the B_{Λ} measurement

27

$B_{\Lambda} = M(d) + M(\Lambda) - M(^{3}_{\Lambda}H)$

- $M(^{3}_{\Lambda}H)$: extracted from the mean value μ of the signal pdf in each *ct* interval
- $M({}^{3}_{\Lambda}H) = \mu \delta^{MC} \delta^{data}$

$B_{\Lambda} = M(d) + M(\Lambda) - M({}^{3}_{\Lambda}H)$

 $M(^{3}_{\Lambda}H)$: extracted from the mean value μ of the signal pdf in each *ct* interval $M(^{3}_{A}H) = \mu - \delta^{MC} - \delta^{data}$

- Reconstruction shift observed in the MC due to missing energy loss corrections applied to the 3 H daughter tracks
- ct dependent, from -0.1 to 0.8 MeV/ c^2

Towards the B, measurement

 δ^{data}

29

$B_{\Lambda} = M(d) + M(\Lambda) - M({}^{3}_{\Lambda}H)$

- $M(^{3}_{\Lambda}H)$: extracted from the mean value μ of the signal pdf in each *ct* interval
- $M(^{3}_{\Lambda}H) = \mu \delta^{MC} \delta^{data}$

- Data driven correction due to
 - Residual misalignment \succ
 - B-field uncertainty \succ
- Shift wrt the PDG value of the Λ mass
 - > Same analysis procedure > $\sim 60 \text{ keV} / c^2$

B_{Λ} measurement

30

- B_{Λ} (keV/ \mathcal{C}^2 ALICE Pb–Pb, 0-90%, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ B_A = 102 ± 63 (stat.) ± 67 (syst.) keV 1.5 Fit Probability: 0.68 0.5 0 -0.55 10 15 20 25 30 35 *c*t (cm) Phys. Rev. Lett. 131, 102302 (2023) ALI-PUB-562070
- Weighted average / pol0 fit of the different *ct* interval values
- Extremely precise mass measurement
 - \succ o(100 keV) precision at the LHC
- Low B_{Λ} , in agreement with early emulsion experiments

Final results

- Most precise measurements to date of τ and B_{Λ} of the ${}^{3}_{\Lambda}H$ > $\tau = 253 \pm 11$ (stat.) ± 6 (syst.) ps
 - > $B_{\Lambda} = 102 \pm 63$ (stat.) ± 67 (syst.) keV

Compatible with all the theoretical predictions assuming ³ _AH as weakly bound

Final results

32

- Most precise measurements to date of τ and B_{Λ} of the ${}^{3}_{\Lambda}H$
 - ➤ T = 253 ± 11 (stat.) ± 6 (syst.) ps

>
$$B_{\Lambda} = 102 \pm 63$$
 (stat.) ± 67 (syst.) keV

- Weakly-bound nature of the ³_AH finally confirmed
 - > ${}^{3}_{\Lambda}$ H could be approximated as a shallow d- Λ state with a wide d- Λ radius of ~ 10 fm
- How does this reflect on its production?

³ H synthesis at the LHC

- Weakly bound state
 - > ${}^{3}_{\Lambda}$ H / Λ → large separation between SHM ¹ and coalescence ² predictions at low charged-particle multiplicity density → coalescence is sensitive to the interplay between the size of the collision system and the spatial extension of the nucleus wave function
- ³ A production in pp and p–Pb collisons: a key to understand the nuclear production mechanism at the LHC

³ H signal in pp and p–Pb collisions

- Data samples:
 - > pp collisions at √s = 13 TeV and p-Pb collisions at √s_{NN} = 5.02 TeV collected during Run 2
 - ³ A selection in pp: trigger on high multiplicity events using V0 detectors
 + topological selections on triggered events
- ³ A selection in p–Pb: 40% most central collisions + BDT Classifier
- Significance > 4σ both in pp and p–Pb

Phys. Rev. Lett. 128, (2022) 252003

Production yields

- First measurement of ${}^3_{\Lambda}$ H/ Λ in pp and p–Pb collisions
 - good agreement with 2-body coalescence
 - tension with SHM at low charged-particle multiplicity density
 - $V_{\rm C} = 3 \, {\rm d}V/{\rm d}y$ excluded: deviation > 6σ
 - First significant constraint to SHM possible configurations
- Coalescence quantitatively describes the ${}^3_{\Lambda}$ H suppression in small systems
 - the nuclear size matters at low charged-particle multiplicity (and we can measure it!)

First hypertritons seen by LHCb!

- LHCb observed the (anti-)hypertriton on Run 2 pp data: <u>link</u>
 - > ~ 100 anti- $^{3}_{\Lambda}$ H analysing 5.5 fb⁻¹
 - Innovative method for tagging ³He nuclei
 - > Allows for complementary measurements with ALICE in the forward region

Hypernuclei in the Run 3 era

ALICE in Run 3: going to A > 3

38

- LHC Run 3: continuous readout + ITS and TPC upgrades
 - > $O(10^3)$ and $O(10^2)$ larger with respect to minimum bias pp and Pb–Pb samples
 - > Dedicated trigger on 3 He and 4 He
 - > Precision measurements of ${}^{3}_{\Lambda}$ H in small colliding systems
- Extend ALICE hypernuclear program to A > 3 hypernuclei in all collision systems

The upgraded Inner Tracking System

- ITS2: 7 layers based on Monolithic Active Pixel Sensors (MAPS)
- 24120 chips, 12.5 Gpixel
 Largest MAPS-based detector in High-Energy Physics
- 3 Inner Barrel layers (IB)
 radii from 2.2 to 3.8 cm
- 4 Outer Barrel layers (OB)
 - radii from 19 to 39 cm

Reduced material budget and higher spatial resolution: (r ϕ , z) = 5x5 μ m²

Back to the origin: direct tracking of hypernuclei

40

- Hypernuclei (ct ~ 7cm) can be directly tracked with the ITS2 !
 - \succ Possibility to reconstruct the full decay chain \rightarrow silicon MHz bubble chamber

Bonetti et al., Il Nuovo Cimento 11.2, (1954)

The strangeness tracking algorithm

ALICE

- 1. Matches the ${}^{3}_{\Lambda}$ H ITS track with the decay daughter tracks
- 2. Final kinematic fit of the decay topology (WIP)

The strangeness tracking algorithm

ALICE

- 1. Matches the ${}^{3}_{\Lambda}$ H ITS track with the decay daughter tracks
- 2. Final kinematic fit of the decay topology (WIP)

Before strangeness tracking

The strangeness tracking algorithm

ALICE

43

- 1. Matches the ${}^{3}_{\Lambda}$ H ITS track with the decay daughter tracks
- 2. Final kinematic fit of the decay topology (WIP)

After strangeness tracking

Outstanding background suppression!

Conclusions

- ${}^{3}_{\Lambda}$ H in large systems:
 - \blacktriangleright Precise measurements of lifetime and B_A in Pb–Pb collisions
 - Weakly bound nature of ³ H confirmed
- First measurement of the ${}^{3}_{\Lambda}$ H production in p–Pb collisions:
 - > ${}^{3}_{\Lambda}H / \Lambda$ favours coalescence expectation
 - Nuclear size matters at low-charged particle multiplicity
- Run 3:
 - > Large sample + strangeness tracking \rightarrow new era for light-hypernuclei with A < 5

Additional material

(Hyper)nuclei at the LHC

- (Hyper)nuclei at the LHC observed in all the collision systems
 - o pp, p–Pb, Pb–Pb
 - Pb–Pb: complex dynamics and Quark Gluon Plasma (QGP) formation
- Nuclei and hypernuclei produced in the latest stages of the collision evolution
 Chemical and kinetic freeze outs
- B_∧ ≅100 keV , T_{ch} ≅ 100 MeV
 - which is the formation mechanism of these objects at the LHC energies ?

¹ A. Andronic et al., Nature 561, (2018) 3210 ² Vovchenko et al., Phys. Lett. B 785, (2018) 171

F. Mazzaschi

The Statistical Hadronisation Model (SHM)

- Hadrons emitted from the interaction region in statistical equilibrium when the system reaches the chemical freeze-out temperature
- Abundance of a species
 - o ∝ Exp(-m/T_{chem})
- Mainly used for Pb–Pb, it can be used in smaller systems (pp and p–Pb) by using the canonical ensemble

F. Mazzaschi

Coalescence Models

Sun et al., Phys. Lett. B 792, (2019) 132

Horst et al., arXiv:2302.12696

- Original idea:
 - Nucleons close in phase space at Ο the freeze-out can form a nucleus via coalescence
- Today: Wigner function formalism^{1, 2}
 - Overlap between nucleus Ο wave-function and nucleon phase-space distribution
 - Dynamic description, but yield Ο predictions only relative to the nucleon ones

Results

- S_3 : strangeness population factor $(^3_{\Lambda} \mathrm{H}/^3 \mathrm{He})/(\Lambda/\mathrm{p})$
- S_3 in small systems:
 - $^{\circ}$ same conclusions as for $^{3}_{\Lambda}H / \Lambda$ but with a lower sensitivity
 - More measurements to come will explore the multiplicity dependence of the S_3

• Chiral EFT

Λ _{UV} (MeV)	B_{Λ} (keV)	$\Gamma_{\Lambda}^{3}H \rightarrow {}^{3}He + \pi^{-}$ (GHz)	$ au(^3_{\Lambda}H)$ (ps)
800	69	0.975	234 ± 27
900	135	1.197	190 ± 22
1000	159	1.265	180 ± 21
_	410	1.403	163 ± 18

Strong B_{Λ} dependence

Pérez-Obiol A., *Physics Letters B*, vol. 811 (2020)

Pionless EFT

Mild B_{Λ} dependence

Hildenbrand F. et al., *Physical Review C*, vol. 102, no. 6 (2020)

Boosted Decision Trees

- Simple (apparently) supervised learning model well suited for classification and regression problems
- Building block \rightarrow Decision Tree (DT)
 - A sequence of simple tests on the variables of the hypertriton candidate
 - Combining all the tests one gets an output as a function of the variables of the single candidate
- Training a DT:
 - each test is built to maximise the separation between the signal and the background classes

DT applied to the Titanic dataset:

was the passenger survived?

Boosted Decision Trees

ALICE

53

• DT: poor performances on independent samples \rightarrow overfitting

Boosting

- Many simple (shallow) trees built sequentially
- Each tree is built to compensate the errors of the previous one

Ensemble model

- predictions are made combining the output of all the trees
- Very resilient to overfitting

Do they like computer games? Score based approach to evaluate it

Systematics

54

• Production yield:
$$rac{\mathrm{d}N}{\mathrm{d}y} = rac{1}{\epsilon_{\mathrm{pres}}} rac{1}{\epsilon_{\mathrm{BDT}}} rac{1}{\mathrm{N}_{\mathrm{ev}}} rac{1}{\mathrm{B.R.}} rac{1}{(1-f_{\mathrm{abs}})} imes N^{\mathrm{raw}}$$

- Multi-trial for systematic uncertainty due to signal selection and extraction
 - BDT selection: BDT efficiency variations of ± 5%
 - Signal extraction: signal and background fit function variations
- Absorption correction: cross section variations up to \pm 50%
- Branching ratio (B.R.): never measured experimentally, data driven uncertainty based on the measurement of a derived quantity (R_3)
- Input p_{T} distribution: using different shapes that describe the ³He spectrum

Systematic contribution	Value (%)
Signal selection and extraction	15 %
Choice of the p_{T} shape	7 %
Absorption in the detector	2 %
Branching ratio value	9 %
Total	19 %

Systematic uncertainties

55

- Common: multi trial approach to evaluate uncertainty on
 - BDT selection: BDT efficiency variations of ± 10%
 - Signal extraction: signal and background fit function variations
- Lifetime
 - Absorption cross section: cross section variations up to \pm 50%
- B_A
 - \circ Data driven shift δ^{data} : evaluated on the Λ mass repeating the analysis splitted for matter and antimatter, B⁺ and B⁻ fields

	-		

Systematic contribution	Value (ps)
Signal selection and extraction	5.2
Absorption in the detector	3
BDT hyperparameters	1
Input p_{T} shape	/
Linear selection vs ML	1
Total	6.0

B_{A}

Systematic contribution	Value (keV)
Signal selection and extraction	28
Data-MC mismatch	61
BDT hyperparameters	1
Input p_{T} shape	1
Linear selection vs ML	1
Total	67

Beyond Run 3

- ITS3 will be installed during LS3
 - Truly cylindrical silicon pixel layers
 - Reduced material budget, closer to the IP (1.8 cm)

Improved impact parameter resolution \rightarrow S/B improves by a factor 3

Final results

ALICE pins down hypermatter properties

The collaboration's latest study of a "strange", unstable nucleus known as the hypertriton offers new insight into the particle interactions that may take place at the hearts of neutron stars

20 SEPTEMBER, 2022 | By ALICE collaboration

Beyond the synthesis: nuclear interactions

- Femtoscopic measurement of the proton deuteron interaction in pp collisions
 - Access to the strong interaction and short-range dynamics between hadrons (~ 1-2 fm)

 $k^* = \frac{|\vec{p_i^*} - \vec{p_j^*}|}{2}$

- emitting source (anchored to p-p correlation in ALICE data)²
- two-particle wave function

PLB 811 (2020) 135849

Nature 588 (2020) 232-238

ALICE

¹ 📕 *Koonin,* Physics Letters B 70 (1977) 43-47