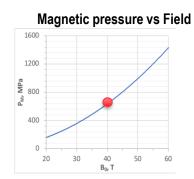


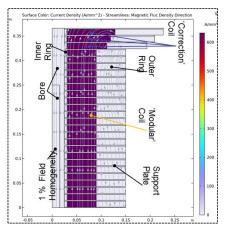
Mechanical concepts for 40T Final Cooling Solenoid for the Muon Collider

C. Accettura, A. Bertarelli, B. Bordini With several contributions from L. Bottura, A. Dudarev, A. Kolehmainen, F. Sanda

> Muons Magnets Working Group https://indico.cern.ch/e/1313020 14/12/2023, CERN

Index


- Introduction and motivation
- Pre-compression concepts
- FEA simulations for different concepts and parameters
- Conclusions and perspective

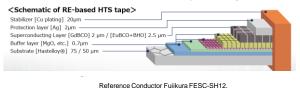


Introduction and Motivations

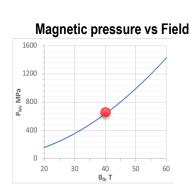
- Design proposed for the Final Cooling solenoid based on single and compact coil → critical stress management:
 - $P_M = B_0^2 / 2\mu_0 \sim 600 MPa$
 - Hoop stress~ 1.4-2.2P_M (compact coil)

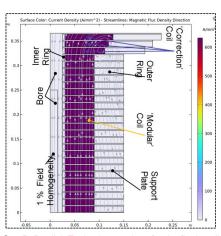
See B. Bordini, Technology options for the final coolin solenoids, IMCC Annual Meeting 2023, Orsay

Introduction and Motivations



- Design proposed for the Final Cooling solenoid based on single and compact coil → critical stress management:
 - $P_M = B_0^2 / 2\mu_0 \sim 600 MPa$
 - Hoop stress~ 1.4-2.2P_M (compact coil)
- Non- homogeneous and anisotropic material:

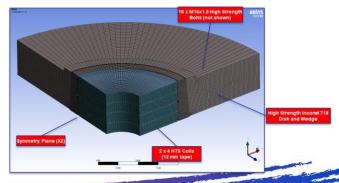

Maximum allowable stress very weak in certain direction



Reduced safety margin

Reference Conductor Fujikura FESC-SH12. https://www.fujikura.co.jp/eng/products/newbusiness/superconductors/01/superconductor.pdf

See B. Bordini, Technology options for the final cooling solenoids, IMCC Annual Meeting 2023, Orsay



Pre-compression

- How to obtain the pre-compression?
- Mechanical concept is based on encapsulating HTS pancake coils in an external structure, generating high radial compressive stresses. Three concepts analysed:
 - 1. Thermally-induced shrink fitting
 - 2. Adjustable shrink-discs with conical surfaces
 - 3. Hybrid solution (1+2)

Shrink Fitting

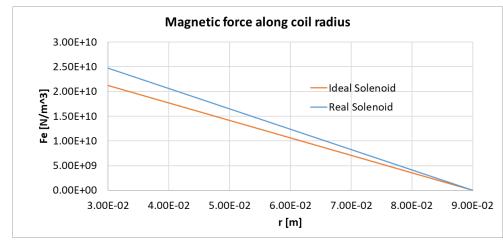
abratiCoil surrounded by a cylindrical shell with rin shell < rext coil

- Shell is pre-heated → fitting of the coil inside → cool-down of the shell and thermal contraction
- Simple analytical evaluation: σ_{hoop} =-500MPa → 200MPa → interference gap ~220μm → Tshell~170°C

$$\sigma_{\theta} = -\frac{\rho^2 + \beta^2}{\rho^2} \frac{1}{1 - \beta^2} p_e$$

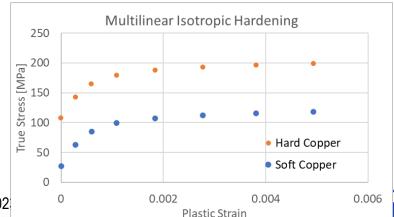
$$\delta = \delta_{i2} - \delta_{e1} = \left[\frac{1}{E_2} \left(\frac{1 + \beta_2^2}{1 - \beta_2^2} + v_2 \right) + \frac{1}{E_1} \left(\frac{1 + \beta_1^2}{1 - \beta_1^2} - v_1 \right) \right] r_{e1} p_f$$

- Some practical aspects must be considered:
 - Differential contraction during cooldown
 - Strength of the cylinder
 - Impact of the joints
 - Plasticity
 - Mechanical tolerances: 1MPa/µm lost
 - Buckling
 C. Accettura et al., Muons Magnets Working Group, 14/12/2023


FEA simulations at different levels of complexity

Assumptions

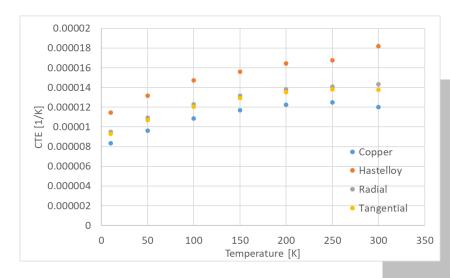
- 2D axisymmetric
- Electromagnetic Forces
 - Ideal Solenoid ($J_{ideal} = \frac{B_{MAX}}{\mu_0(r_{co} r_{ci})} = 531 \text{ A/mm2}$)
 - Real Solenoid ($J_{real} = J_{ideal} = \frac{t_{coil} + t_{supportplate}}{t_{coil}} = 620 \text{ A/mm2}$)

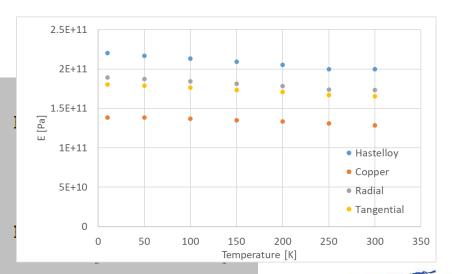

Reference model

Needed to keep the pre-compression. Soft copper was resulting in a lower pre-compression

Ha to avoid radial tensile and shear stress after cooldown

C. Accettura et al., Muons Magnets Working Group, 14/12/202

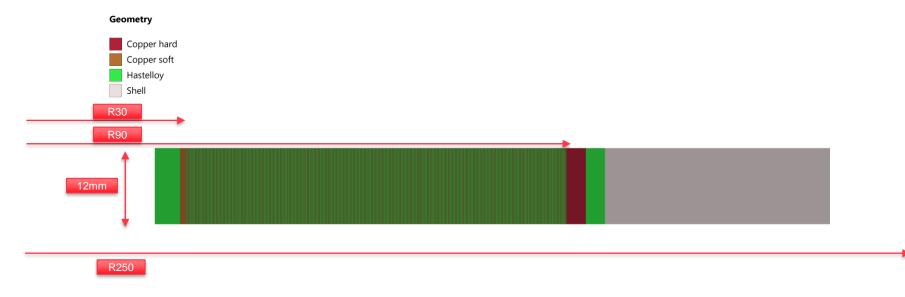

Homogeneization



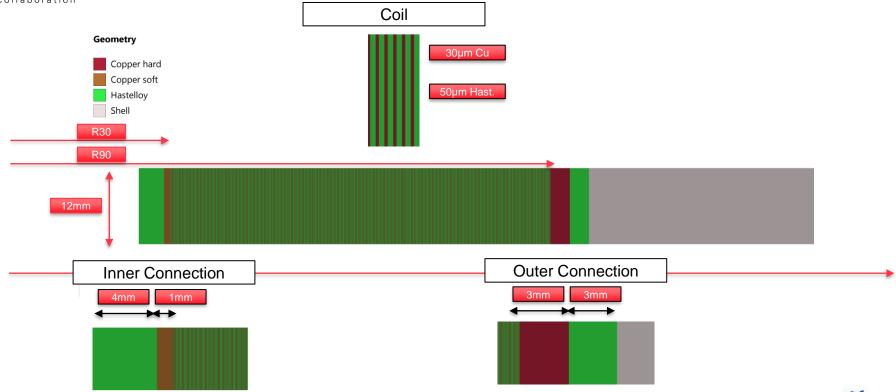
- Radial direction → springs in series
- Tangential direction → springs in parallel

$$E_{radial} = \frac{E_{Cu} \cdot t_{Cu} + E_{Ha} \cdot t_{Ha}}{t_{tot}}$$

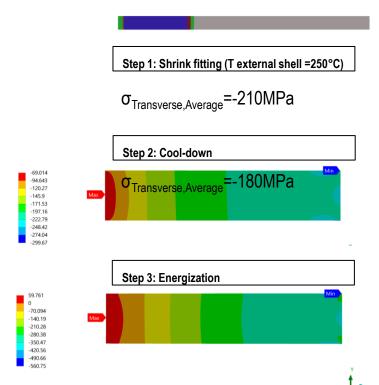
$$E_{tangential} = t_{tot} \cdot \left(\frac{t_{Cu}}{E_{Cu}} + \frac{t_{Ha}}{E_{Ha}}\right)^{-1}$$

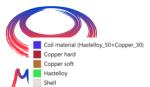


Layered model

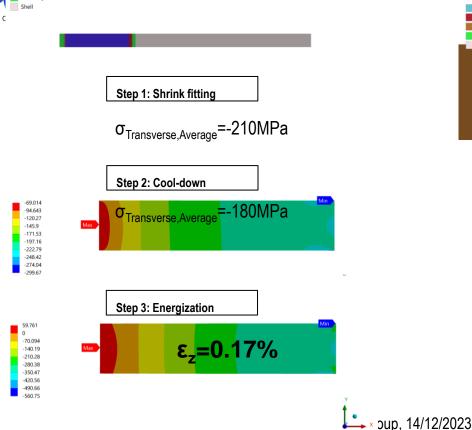


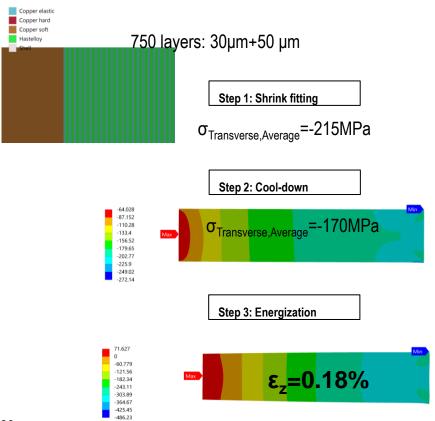
Geometry and Materials



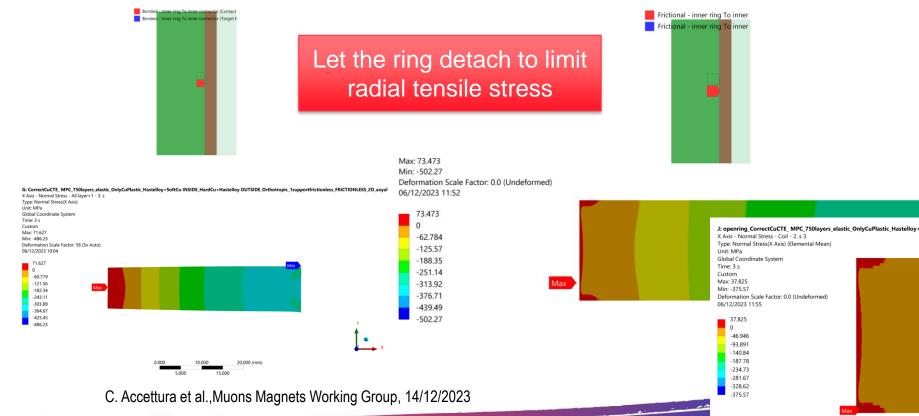

C. Accettura et al., Muons Magnets Working Group, 14/12/2023

Validity of homogeneous model



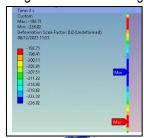


Validity of homogeneous model



Effect of the inner joint properties

Effect of the tape plasticity



	σ _x -radial[MPa]		ε _z -hoop	
step	min	max	ave	max
1	-289	-57	-210	
2	-224	-67	-164 (200*)	
3	-416	77	-213	0.30%
1	-308	-54	-214	
2	-272	-63	-171 (210*)	
3	-502	73	-224	0.22%

Plastic

Elastic

*Average on the external edge

L: openingring_CorrectCuCTE_MPC_750layers_plastic_OnlyCuPlastic_Hastelloy +SoftCu INSIDE_HardCu+Hastelloy OUTSIDE_Orthotropic_1supportfrictionless_FRICTIONLESS_2D_axyalsym_1coil_cot X Axis - Normal Stress - All layer+1 - 3. s

Type: Normal Stress(X Axis) Unit: MPa Global Coordinate System Time: 3 s

Global Coordinate Syster Time: 3 s Custom Obsolete Max: 77.203

Min: -415.95 Deformation Scale Factor: 56 (5x Auto)

Effect of the tape properties

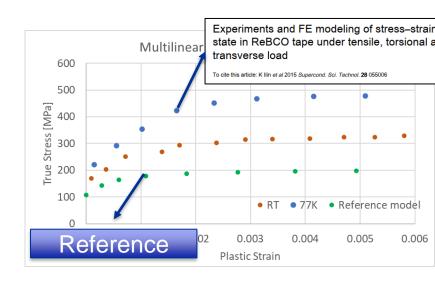
	σ	_x -radial[MPa	a]	ε _z -hoop
step	min	max	ave	max
1	-291	-55	-208	
2	-264	-60	-171 (215*)	
3	-484	75	-218	0.24%
1	-289	-57	-210	
2	-224	-67	-164 (200*)	
3	-416	77	-213	0.30%

^{*}Average on the external edge

Experiments and FE modeling of stress–strain state in ReBCO tape under tensile, torsional and transverse load

To cite this article: K Ilin et al 2015 Supercond. Sci. Technol. 28 055006

Reference



Effect of the tape properties

	σ	_x -radial[MPa	a]	ε _z -hoop
step	min	max	ave	max
1	-291	-55	-208	
2	-264	-60	-171(215*)	
3	-484	75	-218	0.24%
1	-289	-57	-210	
2	-224	-67	-164 (200*)	
3	-416	77	-213	0.30%

^{*}Average on the external edge

Effect of the tape properties

	σ_{x} -radial[MPa] ϵ_{z} -hoop			
step	min	max	ave	max
1	-291	-55	-208	
2	-264	-60	-171(215)	
3	-484	75*	-218	0.24%

*Localized effect

 ε_z =0.24% $\overline{\checkmark}$

0.0017623

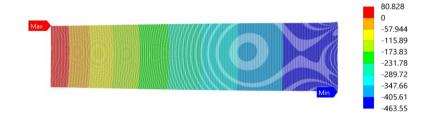
0.0014966 0.001231

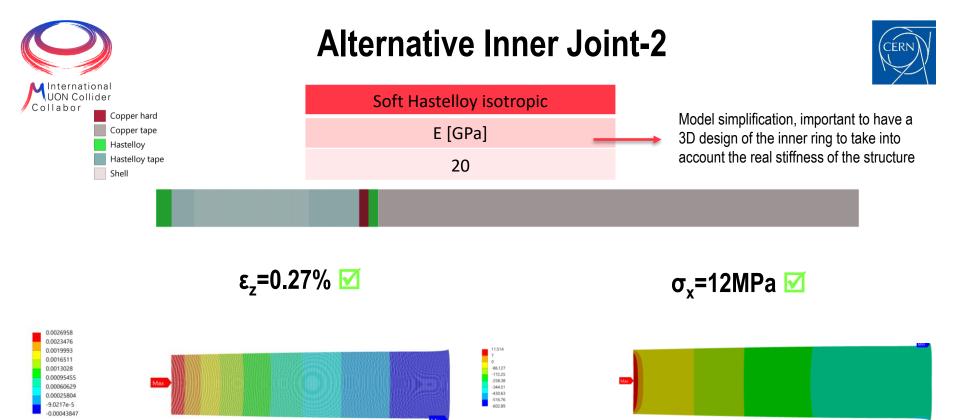
0.00096528

0.00069961 0.00043394

0.00016827

Alternative Inner Joint-1





Shrink Fitting

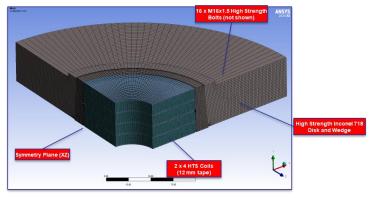
abratiCoil surrounded by a cylindrical shell with rin<rext_coil

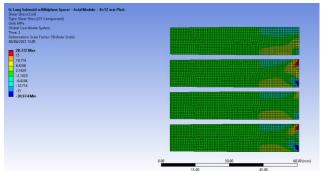
- Shell is pre-heated → fitting of the coil inside → cool-down of the shell and thermal contraction
- Simple analytical evaluation: 600MPa→200MPa→interference gap ~300µm→ ~250°C

$$\sigma_{\theta} = -\frac{\rho^2 + \beta^2}{\rho^2} \frac{1}{1 - \beta^2} p_e$$

$$\delta = \delta_{i2} - \delta_{e1} = \left[\frac{1}{E_2} \left(\frac{1 + \beta_2^2}{1 - \beta_2^2} + V_2 \right) + \frac{1}{E_1} \left(\frac{1 + \beta_1^2}{1 - \beta_1^2} - V_1 \right) \right] r_{e1} p_f$$

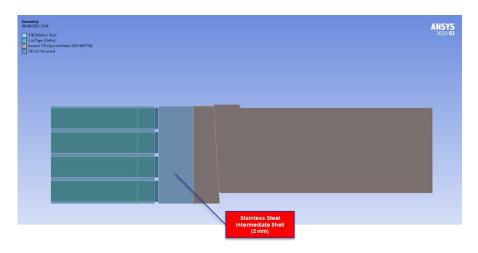
- Some practical aspects must be considered:
 - Differential contraction during cooldown
 - Strength of the cylinder
 - Impact of the joints
 - Plasticity
 - Mechanical tolerances: 2MPa/µm lost
 - Buckling
 - C. Accettura et al., Muons Magnets Working Group, 14/12/2023


FEM simulations at different levels of complexity



Mechanical considerations - Second concept

- 2 Load Steps:
 - Shrink Disk displacement (5 mm)
 - Energization
- Max. Hoop Stress (after energization):
 620.4 MPa
- Max. Hoop Strain (after energization): 0.344 %
- Shear Stresses globally lower than 15 MPa
- However, locally they can reach after energization ~ |30| MPa

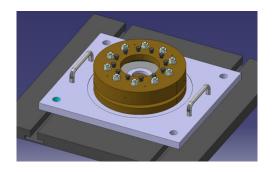


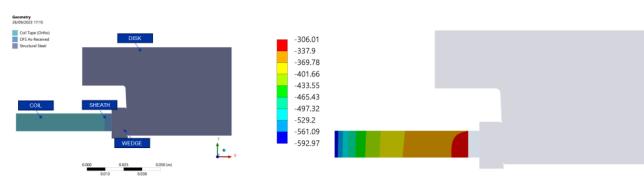
Mechanical considerations - Third concept

- To limit shear stresses, an intermediate steel shell is added (ID 184 mm; OD 224 mm)
- ~ 150 µm interference with coil pack created by differential heating
- 3 Load Steps: 1. Shell/Coil Interference; 2.
 Shrink Disk Displacement (2.2 mm); 3.
 Energization
- Min. Hoop Stress after shrinking: -426 MPa
- Max. Hoop Stress after energization: 598
 MPa
- Max. Hoop Strain after energization: 0.332
- Local peak shear stress ~ 10 MPa
- Max Shear after energization |9.2| MPa

Mechanical considerations - Third concept

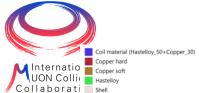
- To limit shear stresses, an intermediate steel shell is added (ID 184 mm; OD 224 mm)
- ~ 150 µm interference with coil pack created by differential heating
- 3 Load Steps: 1. Shell/Coil Interference; 2.
 Shrink Disk Displacement (2.2 mm); 3.
 Energization
- Min. Hoop Stress after shrinking: -426 MPa
- Max. Hoop Stress after energization: 598
 MPa
- Max. Hoop Strain after energization: 0.332
- Local peak shear stress ~ 10 MPa
- Max Shear after energization |9.2| MPa


61 UKS NOZTIB	
REBCO conductor	
Axial tensile stress	700MPa
Axial tensile strain	0.4%
Transverse compressive stress	>100MPa
Transverse tensile stress	10-100MPa
Max shear stress	>19MPa

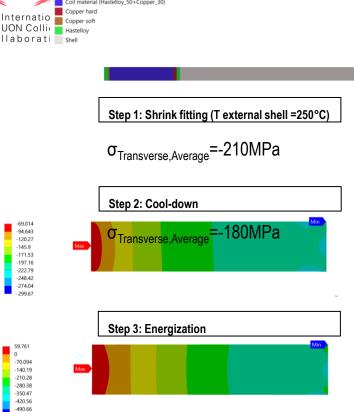

Preliminary is ok, but limited safety margins >
 Fundamental to have a good understanding of the material limits and failure mode

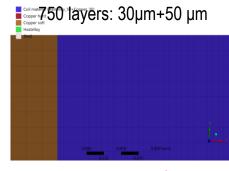
Testing

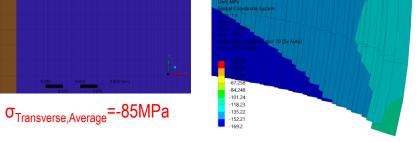
- σ_{hoop} ~-600MPa reached on the inner radius of the coil
- The required compression is achieved with 10 M16 bolts
- System equipped with strain gauges and digital image correlation to characterize the coil



Conclusion and next step


- The final cooling solenoid requires a pre-compression to operate at 40T:
 - Shrink fitting, mechanical jigs or a combined solution can provide the required pre-compressions
 - Tape properties impacting the results → important to benchmark them with experimental tests
 - The design of the inner and outer rings is critical: 2 possible solutions identified, more modelling work is needed to finalize the design
 - Different FEM models ready to investigate more options
 - Extensive work of design of the tooling for the experimental characterization of the tape


C. Accettura et al., Muons Magnets Working Group, 14/12/2023

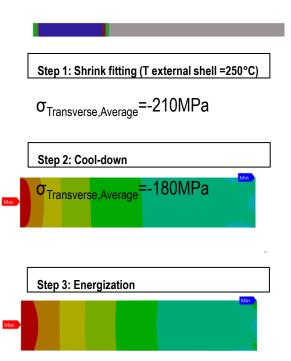


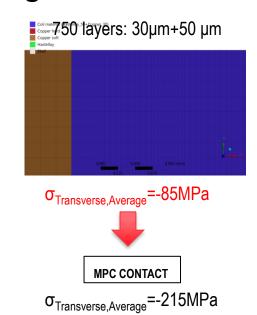
Validity of homogeneous model

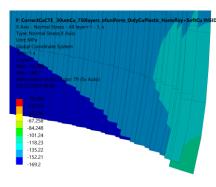
-69.014

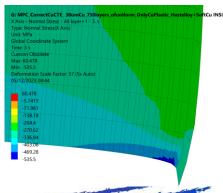
-94.643 -120.27 -145.9 -171.53 -197.16

-222.79 -248.42 -274.04


-70.094 -140.19 -210.28


-280.38 -350.47


-420.56 -490.66


Validity of homogeneous model

