

PARTICLE PH, SICS # PLAINS UNIVERSITY OF KANSAS

Overview of recent LHC results

Flera Rizatdinova, Oklahoma State University

Introduction

- The Standard Model is a success, but there are solid reasons to believe it is incomplete
 - theoretical issues: mass hierarchy, strong CP problem
 - unexplained phenomena: gravity, dark matter, neutrino masses, matter-antimatter asymmetry
- ATLAS and CMS have comprehensive physics programs probing various aspects of the Standard Model
 - trying hard to find the cracks that would give us a hint of BSM physics
- In this talk:
 - latest LHC news: precise Higgs boson mass measurement, precise determination of the strong-coupling constant, search for magnetic monopoles
 - searches that resulted in ≥2 standard deviations from the SM: BSM Higgs, heavy resonances, lepton flavor violation

LHC news

Latest measurement of the Higgs boson mass

- A new measurement of the m_H combining the $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma \gamma$ decays
 - Helps to better understand H couplings to other elementary particles
- Precision achieved: 0.09%
 - Photon energy calibration, muon resolution calibration, statistics

A precise determination of the strong-coupling constant from the recoil of Z bosons

- Measurement of the strong coupling at *Q=m_Z*, based on 20.2/fb of 8 TeV data
 - $\alpha_s(m_Z)=0.1183\pm0.0009$
- Method: double-differential (p_T:y) Z cross-section measurement

submitted to Nature Phys.

Search for magnetic monopoles and HECO

- High ionization particles (HIPs): strange and up-down quark matter, Q-balls
 - Dirac monopole: fundamental magnetic charge $e/2\alpha = 68.5e$
- ATLAS can detect a HIP as a blob of many TRT hits in a region aligned with a narrow energy deposit in ECAL
 - $\times 3$ improvement on DY production in the 20<|z|<100 range

arXiv:2308.04835

Anomalies

- Generic search for $Y \rightarrow HX \rightarrow bbqq$ process
- Targets high-*Y* mass region (highly boosted *H*, *X*)
- Based on anomaly-detecting unsupervised learning (model trained on the BG-only data)
- NN-based bb tagger for boosted H, 1 large R or 2 small-R jets
- Main background: multi-jets.

Phys. Rev. D 108 (2023) 052009

- Highest significance at m_Y= 3.7 TeV:
 - Local: **3.8σ**
 - Global: **1.5σ**

Search for non-resonant and resonant SM Higgs pair production in association with vector bosons

- Final state: $bbbb + 0\ell$, 1ℓ , 2ℓ
- Models for resonant production:
 - A neutral heavy scalar resonance H with $m \in [260, 1000]$ GeV, $H \rightarrow hh$.
 - The production of a heavier neutral pseudoscalar resonance $A \rightarrow ZH$, with $m_A \in [360,800]$ GeV and $m_H \in [260-400]$ GeV.
- Main backgrounds: tt, V+jets
- BDTs for each channel to separate signal from background

Eur. Phys. J. C 83 (2023) 519

Search for SM Higgs pair production: results

• Non-resonant *Vhh* production:

- Observed (expected) 95% CL intervals of $-34.4 < \kappa_{\lambda} < 33.3 (-24.1 < \kappa_{\lambda} < 22.9)$ and $-8.6 < \kappa_{2V} < 10.0 (-5.7 < \kappa_{2V} < 7.1)$ for the two coupling modifiers
- Resonant *Vhh*:
 - *WH* search: at m_H = 315 GeV with a local (global) significance of 2.5 $\sigma(1.3 \sigma)$
 - *ZH* search: at m_H =550GeV with a local(global) significance of 2.7 σ (1.3 σ)
- Search for $A \rightarrow ZH$ production:
 - Excesses are observed at $(m_A, m_H) = (790,300)$ GeV with a local (global) significance of 3.9σ (2.1σ) in the NW scenario and at $(m_A, m_H) =$ (420,320) GeV with a local (global) significance of 3.8σ (2.8 σ) in the LW scenario.

SM Higgs decaying to pseudoscalars

- Search for Higgs decay $H \rightarrow aa \rightarrow bb\mu\mu$
 - Narrow dimuon resonance $m_{\mu\mu} \in [16,62]$ *GeV*.
- Major backgrounds: Z+jets, ttbar
- Used BDT to separate signal from the SM background
- Highest significance:
 - For $m_{\mu\mu} = 52$ GeV, local (global) significance is 3.3 (1.7) σ

Phys. Rev. D 105 (2022) 012006

LFV Higgs decays

- Search for SM Higgs decays $H \rightarrow e(\mu)\tau$ performed by both ATLAS and CMS.
- ATLAS:
 - Main backgrounds: fake e, μ, τ datadriven methods. Two independent searches, $e\tau, \mu\tau$ with leptonic and hadronic τ decays
 - Used multi-class NN classification to separate signal and background
- CMS:
 - The observed (expected) upper limits on the branching fractions are, respectively, $B(H \rightarrow \mu \tau) < 0.15 \ (0.15)\%$ and $B(H \rightarrow e \tau)$ $< 0.22 \ (0.16)\%$ at 95% confidence level.

<u>JHEP 07 (2023) 166</u>

Phys. Rev. D 104 (2021) 032013

Search for resonant WZ production in three-lepton channel

- Models tested:
 - Heavy Vector Triplet, with the resonance produced by WZ fusion or the Drell-Yan process (a, b)
 - Charged Higgs of the Georgi-Machacek model, produced by WZ fusion (c)
- Evaluation of the BG:
 - WZ, ZZ normalization from CR
 - Fake leptons data-driven methods
 - Other from MC
- Used ANN to separate signal from BG
 - 17 signal regions; several control regions to verify (c) the performance
 <u>Eur. Phys. J. C 83 (2023) 633</u>

10/14/2023

Search for resonant WZ production in three-lepton channel: results

F. Rizatdinova, PPP'23

The maximum local significances for signals of a heavy vector W' boson or a H^{\pm} (at 375 GeV) are 2.5σ and 2.8σ , respectively.

nts / 50 Ge

a/Post-fit

1.2

0.8

400

20

ATLAS

Post-fit VBF SR

The respective global significances calculated considering the look-elsewhere effect are 1.7σ and 1.6σ

With no evidence of heavy W' vector-resonance production, limits on the production times branching ratio for the heavy vector triplet VBF production process have been obtained as a function of mass.

14

Search for heavy scalar with FCNH couplings in multilepton channel with b-tagged jets

- Model tested:
 - General two-Higgs-doublet-model involving an additional scalar with couplings to the top-quark and the three up-type quarks $(\rho_{tt}, \rho_{tc}, \text{ and } \rho_{tu})$. The targeted signals lead to final states with either a same-sign topquark pair, three top-quarks, or four topquarks.
- Main backgrounds:
 - ttW/Z, VV production
 - HF evaluated using normalization to data in the CR; Charge flip – using data-driven methods
- Analysis strategy:
 - Used DNN to separate signal and backgrounds. (17 SR's)

arXiv:2307.14759

Search for heavy scalar with FCNH couplings: results

- A mild excess is observed over the Standard Model expectation corresponding to a local significance of 2.81 σ for a signal with m_H =1000 GeV and ρ_{tt} =0.32, ρ_{tc} =0.05, and ρ_{tu} =0.85.
- Exclusion limits at 95% confidence are set on the mass and couplings of the heavy Higgs boson.
- Masses of an additional scalar boson m_H between 200-630 (200-840) GeV with couplings ρ_{tt} =0.4, ρ_{tc} =0.2, and ρ_{tu} =0.2 are observed (expected) to be excluded at 95% CL.

Search for resonant and non-resonant production of pairs of dijet resonances

- Generic search for pair production of a dijet resonance decaying to two jets
- Benchmark processes:
 - diquark decaying into a pair of VLQ $uu \rightarrow S \rightarrow \chi \chi \rightarrow (ug)(ug)$
 - RPV SUSY $\tilde{t}\tilde{t} \to (\bar{d}\bar{s})(ds)$
- Detection: correlations between four-jet mass and dijet masses
- Background: data driven

JHEP 07 (2023) 161

Search for pairs of dijet resonances: results

- Diquarks excluded up to 7.6 TeV
- Pair production of top squarks excluded for masses $0.50 < m_{stop} < 0.52$ TeV and 0.58<m_{stop}<0.77 TeV
- Two events in the tails with m(4j)=8 TeV and average m(2j)=2 TeV
- Local (global) significance: **3.9(1.6)** σ

Search for narrow trijet resonances

- Generic search for resonances decaying to three jets
- Benchmark processes:
 - right-handed Z boson $Z_R \rightarrow ggg$
 - KK gluon $G_{KK} \rightarrow \Phi(gg)g$
 - excited quark $q^* \rightarrow V(qq)q$
- Background: QCD, evaluated as a smooth m(jjj) fit

 Z_R →ggg scenario: largest deviation observed at m(Z_R)=4.1 TeV, local (global) significance of 2.2(0.25) σ

X→Y(gg)g scenario: largest deviation observed at m_X =4.1 TeV, local (global) significance of 2.2(0.36) σ

10/14/2023

Search for new heavy resonances decaying to VV/VH in the all-jets final state

CMS

- Search for VV/VH resonances with masses 1.3<m<6 TeV produced via Drell-Yan / gluon fusion / vector boson fusion
- Benchmark processes:
 - graviton/radion \rightarrow WW/ZZ
 - $Z' \rightarrow ZH / W' \rightarrow WH$
 - $Z' \rightarrow WW / W' \rightarrow WZ$
- Require at least two large-R jets with p_T>200 GeV, m(JJ)>1.25 TeV
- Background: QCD, V+jets (simulated)
- Signal extraction: 3D (m_{jj}, m_{j1}, m_{j2}) template fit

Phys. Lett. B 844 (2023) 137813

F. Rizatdinova, PPP'23

10^{-5} $\begin{bmatrix} 1 \\ 1.5 \end{bmatrix}$ 2

Search for VV/VH \rightarrow all-jets resonances: **results**

- Spin 1 Z' / W' excluded with masses below 4.8 TeV at 95% CL
- Spin 2 gravitons (spin 0 radions) excluded with masses below 1.4(2.7) TeV at 95% CL
- Excess of $3.6(2.3)\sigma$ local (global) significance observed at m_{jj} of 2.1 and 2.9 TeV

DUIK

21

Search for pair-produced vector-like leptons in final states with third-generation leptons and ≥3 b-jets

- Search for vector-like leptons in the context of the "4321 model"
 - aimed at explaining B-physics measurements in tension with SM
- Final states: $\geq 3 \text{ b-jets} + \tau \tau / \tau \nu_{\tau} / \nu_{\tau} \nu_{\tau}$
- Background: ttbar (estimated with simulation), QCD (data driven)
- 12 VLL mass hypotheses (500 to 1050 GeV)
- Signal extracted using DNN_{QCD} and $\text{DNN}_{\text{ttbar}}$ classifiers

arXiv:2208.09700

Search for VLP pairs to $\tau\tau/\tau v_{\tau}/v_{\tau}v_{\tau} + \geq 3$ b-jets: results

- Observed data shows consistent excess in the highest DNN_{tthar} bins
- As DNN_{tthar} is not very sensitive to the signal mass, the excess is present for all mass points
- At representative VLL mass of 600 GeV, the excess is 2.8σ
- The excess holds when including Z' production of VLL pairs

Conclusion

- ATLAS and CMS Collaborations have an extensive physics search program
 - Various original analyses
 - Expanding coverage thanks to reinterpretation of existing results
- A lot of interesting results obtained with data collected during Runs 1 and 2
 - Some of them reveal hints of tension with SM
 - More is coming!
- Looking forward to taking more data with Run 3 that recently started!

Thank you!

And special thanks to:

DOE for supporting this research