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Introduction

» Ultralight dark matter coupled to EM:

» Kinetically mixed dark photon

 Axionlike particle
» Magnetic field signal inside experimental apparatus
- Most experiments utilize EM resonances = foum = kHz (mpy = 10712 eV)
» Can use mechanical resonance for lower frequencies

* Mechanical system + sensitive to magnetic fields = magnetic levitation



Outline

* Levitated superconductors

» Dark matter signal
» Noise sources

* Sensitivity



Levitated superconductors
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Levitated superconductors

* Surface currents screen external magnetic field

* Magnetic field exerts force on currents = net restoring force

F— —gV(B V)B




Levitated superconductors

* Surface currents screen external magnetic field

* Magnetic field exerts force on currents = net restoring force
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» Alternatively, potential for superconductor

U x V|B|?



Levitated superconductors

* Surface currents screen external magnetic field

* Magnetic field exerts force on currents = net restoring force
F— —%V(B V)B
» Alternatively, potential for superconductor
U x V|B|?
» Harmonic oscillator w/ trapping frequency

fo~0B/\/p

- DM magnetic field signal will drive this oscillator



Dark matter candidates

- Dark photon: massive vector A’

- Non-relativistic > A uniform in space, oscillates with frequency 1 4+

- Coupled to EM via em?%, A A,,
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Dark matter candidates

- Dark photon: massive vector A’

- Non-relativistic > A" uniform in space, oscillates with frequency 1 4+
- Coupled to EM via em?4, A* A, > Jh = —em?, A

» AXion: massive pseudoscalar a
> Coupled to EM via ga,yaFF > Jef = 1gaymeaBg

> Trap can act as B!



Dark matter signal

* Dark-photon or axion DM can source EM fields

VXB—atEZJeﬂ-‘




Dark matter signal

* Dark-photon or axion DM can source EM fields

VXB—@E:LQ

* When Apw larger than apparatus, E negligible = only B signal




Dark matter signal

* Dark-photon or axion DM can source EM fields

VXB—@E:LQ

* When Apw larger than apparatus, E negligible = only B signal

» Oscillating B perturbs equilibrium = superconductor oscillates position

- Resonant if mpwm = 27 fo



Noise sources

» Thermal: kicks from gas molecules




Noise sources

» Thermal: kicks from gas molecules

* Imprecision: flux noise = position

» Back-action: current noise = force

» Trade-off based on readout coupling

[Jofer et al., Phys. Rev. Lett. 131, 043603 (2023)]



Noise sources

- Thermal: kicks from gas molecules O
10~
- Imprecision: flux noise = position o
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Dark photon sensitivity
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AXion sensitivity
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Conclusion

- Levitated superconductors can probe ultralight DM with mpy < 10”2 eV

» Superconductor settles at center of quadrupole trap

» Ultralight DM sources magnetic field = perturbs equilibrium
» Resonant and broadband schemes

» Existing setups already comparable to DPDM experiments

* Dedicated setup can be leading laboratory probe of ultralight DM
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Physical considerations

» Vertical displacement:

2
g 3 Hz
/_\z=47T2fz2~3cm-( 7 )

» Maximum magnetic field:

o\ 1/3 ) 1/6 £,
Buax ~ bR ~ 80mT - (E) (0.1g/cm3) (100 HZ)

* Pb and Ta have critical fields of ~ 80mT




Sources of dissipation

» (3as collisions:

PA

1/3 3\ 2/3
27T 10_8 HZ P 5 0]' g/Cm (mgas) ].0 mKk
M0gas 107" Pa )\ m p iDa) \" T

* Flux creep: movement of unpinned flux lines in type-Il SC - use type-| SC

~J

 Eddy current damping in nearby conductors = use only SCs and dielectrics



DPDM magnetic field signal
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Noise trade-off

* Imprecision and back-action noise determined by coupling n:

gimp _ 2pS¢¢ ghack _ 2pn° S5

3m2win?|x(w)[? - 3m%wg

* Flux and current noise satisfy uncertainty relation /S¢sSs7=x2>1

. . LS
- Can define 7= n¢/ =22, so that
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Signal-to-noise ratio

» Coherent:
B\
SNR =
SEB/tint
* Incoherent:
B2 tn
SNR, = —_—DM !
SBB/tcoh tcoh

» Multiple scans:




Bandwidth

- Bandwidth defined by:

)
siot (wO i 7‘“) _ 2519 (wo)

» For resonant coupling,
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