Ultralight Dark Matter Detection with Levitated Superconductors

Saarik Kalia

w/ Gerard Higgins and Zhen Liu

Particle Physics on the Plains 2023

October 14, 2023

Based on arXiv:231X.XXXXX

Introduction

Introduction

- Ultralight dark matter coupled to EM:
	- Kinetically mixed dark photon
	- Axionlike particle
- Magnetic field signal inside experimental apparatus
- Most experiments utilize EM resonances $\rightarrow f_{\rm DM} \gtrsim k \rm Hz$ $(m_{\rm DM} \gtrsim 10^{-12} \, \rm eV)$
- Can use mechanical resonance for lower frequencies
- Mechanical system + sensitive to magnetic fields \rightarrow magnetic levitation

Outline

- Levitated superconductors
- Dark matter signal
- Noise sources
- Sensitivity

- Surface currents screen external magnetic field
- Magnetic field exerts force on currents \rightarrow net restoring force

$$
\mathbf{F} = -\frac{3}{2}V(\mathbf{B}\cdot\nabla)\mathbf{B}
$$

- Surface currents screen external magnetic field
- Magnetic field exerts force on currents \rightarrow net restoring force

$$
\mathbf{F} = -\frac{3}{2}V(\mathbf{B}\cdot\nabla)\mathbf{B}
$$

• Alternatively, potential for superconductor

 $U \propto V|\mathbf{B}|^2$

- Surface currents screen external magnetic field
- Magnetic field exerts force on currents \rightarrow net restoring force

$$
\mathbf{F} = -\frac{3}{2}V(\mathbf{B}\cdot\nabla)\mathbf{B}
$$

• Alternatively, potential for superconductor

 $U \propto V|\mathbf{B}|^2$

• Harmonic oscillator w/ trapping frequency

 $f_0 \sim \partial B/\sqrt{\rho}$

• DM magnetic field signal will drive this oscillator

Dark matter candidates

- Dark photon: massive vector $A^{\prime\mu}$
	- Non-relativistic \rightarrow \textbf{A}' uniform in space, oscillates with frequency $m_{A'}$
	- Coupled to EM via $\varepsilon m_{A'}^2 A'^{\mu} A_{\mu}$

Dark matter candidates

• Dark photon: massive vector $A^{\prime\mu}$

• Non-relativistic \rightarrow \textbf{A}' uniform in space, oscillates with frequency $m_{A'}$

• Coupled to EM via
$$
\varepsilon m_{A'}^2 A'^{\mu} A_{\mu} \rightarrow J_{\text{eff}}^{\mu} = -\varepsilon m_{A'}^2 A'^{\mu}
$$

Dark matter candidates

- Dark photon: massive vector $A^{\prime\mu}$
	- Non-relativistic \rightarrow A^{\prime} uniform in space, oscillates with frequency $m_{A^{\prime}}$
	- Coupled to EM via $\epsilon m_{A'}^2 A'^{\mu} A_{\mu} \rightarrow J_{\text{eff}}^{\mu} = -\epsilon m_{A'}^2 A'^{\mu}$
- Axion: massive pseudoscalar a
	- Coupled to EM via $g_{a\gamma} a F \tilde{F} \rightarrow \mathbf{J}_{\text{eff}} = ig_{a\gamma} m_a a \mathbf{B}_0$
	- Trap can act as $B_0!$

Dark matter signal

• Dark-photon or axion DM can source EM fields

 $\nabla \times \mathbf{B} - \partial_t \mathbf{E} = \mathbf{J}_{\text{eff}}$

Dark matter signal

• Dark-photon or axion DM can source EM fields

$$
\nabla \times \mathbf{B} - \partial_{\textbf{z}} \textbf{E} = \mathbf{J}_{\text{eff}}
$$

• When λ_{DM} larger than apparatus, **E** negligible \rightarrow only **B** signal

Dark matter signal

• Dark-photon or axion DM can source EM fields

$$
\nabla \times \mathbf{B} - \partial \mathbf{E} = \mathbf{J}_{\mathrm{eff}}
$$

• When $\lambda_{\rm DM}$ larger than apparatus, E negligible \rightarrow only B signal

• Oscillating **B** perturbs equilibrium \rightarrow superconductor oscillates position

• Resonant if $m_{\rm DM} \approx 2\pi f_0$

Noise sources

• Thermal: kicks from gas molecules

Noise sources

- Thermal: kicks from gas molecules
- Imprecision: flux noise \rightarrow position
- Back-action: current noise \rightarrow force
- Trade-off based on readout coupling

[Jofer et al., Phys. Rev. Lett. **131,** 043603 (2023)]

Noise sources

- Thermal: kicks from gas molecules
- Imprecision: flux noise \rightarrow position
- Back-action: current noise \rightarrow force
- Trade-off based on readout coupling
	- Resonant: back-action = thermal
	- \circ Broadband: back-action = low- f imprecision

Conclusion

- Levitated superconductors can probe ultralight DM with $m_{\rm DM} \lesssim 10^{-12} \, {\rm eV}$
- Superconductor settles at center of quadrupole trap
- Ultralight DM sources magnetic field \rightarrow perturbs equilibrium
- Resonant and broadband schemes
- Existing setups already comparable to DPDM experiments
- Dedicated setup can be leading laboratory probe of ultralight DM

Backup Slides

Physical considerations

• Vertical displacement:

$$
\Delta z = \frac{g}{4\pi^2 f_z^2} \sim 3 \,\text{cm} \cdot \left(\frac{3 \,\text{Hz}}{f_z}\right)^2
$$

• Maximum magnetic field:

$$
B_{\text{max}} \sim b_0 \mathcal{R} \sim 80 \,\text{mT} \cdot \left(\frac{m}{1 \,\text{g}}\right)^{1/3} \left(\frac{\rho}{0.1 \,\text{g/cm}^3}\right)^{1/6} \left(\frac{f_0}{100 \,\text{Hz}}\right)
$$

• Pb and Ta have critical fields of $\sim 80 \,\mathrm{mT}$

Sources of dissipation

• Gas collisions:

$$
\gamma \sim \frac{PA}{m\bar{v}_{\rm gas}} \sim 2\pi \cdot 10^{-8} \,\mathrm{Hz} \cdot \left(\frac{P}{10^{-7} \,\mathrm{Pa}}\right) \left(\frac{1 \,\mathrm{g}}{m}\right)^{1/3} \cdot \left(\frac{0.1 \,\mathrm{g/cm}^3}{\rho}\right)^{2/3} \sqrt{\left(\frac{m_{\rm gas}}{4 \,\mathrm{Da}}\right) \left(\frac{10 \,\mathrm{mK}}{T}\right)}
$$

• Flux creep: movement of unpinned flux lines in type-II SC \rightarrow use type-I SC

• Eddy current damping in nearby conductors \rightarrow use only SCs and dielectrics

DPDM magnetic field signal

$$
BR \sim \oint \mathbf{B} \cdot d\ell = \iint \mathbf{J}_{\mathrm{eff}} \cdot d\mathbf{A} \sim \varepsilon m_{A'}^2 R^2 A'
$$

Noise trade-off

• Imprecision and back-action noise determined by coupling η :

$$
S_{BB}^{\text{imp}} = \frac{2\rho S_{\phi\phi}}{3m^2\omega_0^2\eta^2|\chi(\omega)|^2} \qquad S_{BB}^{\text{back}} = \frac{2\rho\eta^2 S_{JJ}}{3m^2\omega_0^2}
$$

• Flux and current noise satisfy uncertainty relation $\sqrt{S_{\phi\phi}S_{JJ}} = \kappa \ge 1$

• Can define
$$
\tilde{\eta} = \eta \sqrt[4]{\frac{S_{JJ}}{S_{\phi\phi}}}
$$
, so that
\n
$$
S_{BB}^{\text{imp}} = \frac{2\rho\kappa}{3m^2\omega_0^2} \cdot \tilde{\eta}^{-2} |\chi(\omega)|^{-2} \qquad S_{BB}^{\text{back}} = \frac{2\rho\kappa}{3m^2\omega_0^2} \cdot \tilde{\eta}^2
$$

Signal-to-noise ratio

• Coherent:

$$
\text{SNR} = \frac{B_{\text{DM}}^2}{S_{BB}^{\text{tot}}/t_{\text{int}}}
$$

• Incoherent:

$$
\text{SNR} = \frac{B_{\text{DM}}^2}{S_{BB}^{\text{tot}}/t_{\text{coh}}} \cdot \sqrt{\frac{t_{\text{int}}}{t_{\text{coh}}}}
$$

• Multiple scans:

$$
\text{SNR}^2 = \sum_i \text{SNR}_i^2
$$

Bandwidth

• Bandwidth defined by:

$$
S_{BB}^{\text{tot}}\left(\omega_0 + \frac{\delta \omega}{2}\right) = 2S_{BB}^{\text{tot}}(\omega_0)
$$

• For resonant coupling,

$$
\delta\omega = \frac{4\sqrt{2}\gamma T}{\kappa\omega_0} \sim 2\pi \cdot 0.2 \,\mathrm{Hz} \left(\frac{\gamma}{2\pi \cdot 10^{-8}\,\mathrm{Hz}} \right) \cdot \left(\frac{T}{10 \,\mathrm{mK}} \right) \left(\frac{5}{\kappa} \right) \left(\frac{10 \,\mathrm{Hz}}{f_0} \right)
$$

• Total scan takes

$$
\sum_{i} t_{\text{int},i} = \frac{\kappa \pi}{2\sqrt{2}\gamma T v_{\text{DM}}^2} \Delta \omega \sim 1 \text{ yr} \left(\frac{\kappa}{5}\right) \left(\frac{2\pi \cdot 10^{-8} \text{ Hz}}{\gamma}\right) \cdot \left(\frac{10 \text{ mK}}{T}\right) \left(\frac{\Delta f}{74 \text{ Hz}}\right)
$$