Top Yukawa Coupling determination at High Energy Muon Colliders

Ishmam Mahbub University of Minnesota

In Collaboration with Zhen Liu, Kunfeng Lyu, and Lian-Tao Wang Reference: *arXiv:2308.06323v1*

Particle Physics on the Planes 2023, Oct 15th, 2023

- Motivation
- •Unitarity in the $W_L^+ W_L^- \rightarrow t\bar{t}$ process
- Muon Colliders
- Measurement
- Results
- Summary and Outlook

Outline

Objective

Precise measurement of top Yukawa coupling using Muon Colliders

Motivation

- holds significance for Higgs research
- ullet
- \bullet

Motivation

The Top Yukawa coupling is one of the least constrained parameters in the SM and

Recent LHC measurement for Top Yukawa is $y_t = 1.16^{+0.24}_{-0.35}$ [CMS Collaboration, ArXiv:2009.07123]

Precision measurement at hadron collider face constrains due to QCD background

High Energy Muon Collider (MuC) can be used for precision Higgs measurement.

Theoretical Framework

- Top Yukawa can be directly probed from final states $ht\bar{t}$
- One can indirectly probe Top Yukawa in $VV \rightarrow t\bar{t}$ process •

• The effective Lagrangian we consider:

• Partial wave unitarity then bounds the domain of validity of the effective theory

$\mathscr{L}_{eff} \subset (1 + \delta_{vt}) y_t \bar{t}th$

- At Large Energies, for (\pm, \mp) the contribution from the γ , Z and tchannel contribution grows as $\mathcal{O}(E^2/m_W^2)$, which cancels off due to gauge invariance
- Contribution from (\pm, \pm) grows as $\mathcal{O}(E/m_W)$

$$\mathscr{M}^{\gamma+Z+b}(W_L^+W_L^- \to t\bar{t}) = \frac{m_t}{v^2}\sqrt{s} \quad ;\sqrt{s}$$

- Higgs channel precisely cancels this growing energy behavior
- Can be understood from Goldstone boson equivalence theorem

$$\mathcal{M}_{W_L^+ W_L^- \to t\bar{t}} = \mathcal{M}_{\phi^+ \phi^- \to t\bar{t}} \left[1 + O\left(\frac{m_W^2}{E^2}\right) \right]$$

Unitarity in the $W^+W^- \rightarrow t\bar{t}$ **Process**

If the top yukawa-coupling deviates from Standard Model value by $\delta_{\mathrm{v}t}$:

$$y_t \rightarrow y_t(1 + \delta_{yt})$$

The scattering amplitude will scale as:

$$\mathcal{M}(W_L^+ W_L^- \to t\bar{t}) = \frac{m_t}{v^2} \sqrt{s} \delta_{yt} ; \sqrt{s}$$

Then Perturbative unitarity will be broken at some scale:

$$\Lambda < \frac{10 TeV}{\delta_{yt}}$$

I. Mahbub

Unitarity in the $W^+W^- \rightarrow t\bar{t}$ **Process**

- Can provide high precision and high energy
 - Muon being fundamental particle, full energy available in collision
 - Cleaner background
 - High mass suppresses synchrotron radiation
- The price to pay is the unstability of muons leading to neutrino radiation, beam induced background
 - Progress to overcome spearheaded by US Muon Accelerator Program (MAP), the Muon Ionization Cooling Experiment (MICE)

Muon Collider

$t\bar{t}$ production at muon colliders

Production Cross-section

$$\sigma(\mu^+\mu^- \to F + X) =$$

Luminosity Function is given by:

$$\frac{d\mathcal{L}_{ij}}{d\tau} = \frac{1}{1+\delta_{ij}} \int_{\tau}^{1} \frac{d\xi}{\xi} [f_i(\xi,\mu_f)f_j(\frac{\tau}{\xi},\mu_f) + i \leftrightarrow j]$$

I. Mahbub

Partonic Process: $W^+W^- \rightarrow t\bar{t}$, $ZZ \rightarrow t\bar{t}$ $\gamma\gamma \rightarrow t\bar{t}$, $Z\gamma \rightarrow t\bar{t}$ etc.

$$\int_{\tau_{\min}}^{\tau_{\max}} d\tau \sum_{ij} \frac{\mathcal{L}_{ij}}{d\tau} \ \hat{\sigma}(ij \to F)$$

[T. Han, Y. Ma, K. Xie , arXiv:2007.14300v4]

• W-Channel dominates the cross-section where we have the δ_{yt} signal

Cross-section for $\mu^+\mu^- \rightarrow t\bar{t} + X$ **10 TeV 10** ab^{-1} Muon Collider

- Signal referes to $|\mathcal{M}_{SM} + \mathcal{M}_{\delta_{vt}}|^2 |\mathcal{M}_{SM}|^2$
- Signal dominated by interference between \mathcal{M}_{SM} and $\mathcal{M}_{\delta_{M}}$

Interference Effects

For $\mu^+\mu^- \rightarrow \mu^+\mu^- t\bar{t}$, one cannot distinguish the intermediate neutral vector boson:

$$\mathcal{M} = \sum_{i,j} \mathcal{M}_{V_{+,i}V_{-,j}} =$$

 $=\mathcal{M}_{ZZ}+\mathcal{M}_{\gamma\gamma}+\mathcal{M}_{Z\gamma}+\mathcal{M}_{\gamma Z}$

• W-Channel dominates the cross-section

 \mathbf{a}

Cross-section for $\mu^+\mu^- \rightarrow t\bar{t} + X$ **3 TeV 1** ab^{-1} Muon Collider

Reduced significance at 3 TeV

 $\Delta \chi^2$ test is performed by binning $m_{t\bar{t}}$ with 50 GeV bins and angular distribution into 8 bins

Event Selection:

- Dilepton events are discarded after $t\bar{t}$ decay
- Angle Cut: $10^{\circ} < \theta < 170^{\circ}$

Results:

@68% C.L.

	δ_{yt}	δ_{yt}
$\sqrt{s} = 3 \text{ TeV}$	-6%	9%
$\sqrt{s} = 10 \text{ TeV}$	-1.3%	1.5%

$$\Delta \chi^2 = 2.0 \times 10^2 \delta_{yt}^2 - 1.2 \times 10^3 \delta_{yt}^3 + 3.9 \times 10^3 \delta_{yt}^4 \quad (3T)$$

$$\Delta \chi^2 = 5.6 \times 10^3 \delta_{yt}^2 - 4.8 \times 10^4 \delta_{yt}^3 + 2.6 \times 10^5 \delta_{yt}^4 \quad (10')$$

$\Delta \chi^2$ Analysis

TeV)

The Reach Plot for δ_{yt}

 $\delta_{
m yt}$

- Introduce single Top partner which is singlet under electroweak SU(2)
- Fermion field rotation of the form $t_L \rightarrow c_L t_L s_L T_L$ would modify gauge coupling and relative shift to Top Yukawa:

$$\delta_{yt} = -s_L^2 = -\frac{\left(\lambda_t^2 + \lambda_0^2\right)v^2/2 - m_t^2}{m_T^2 - m_t^2}.$$

VLQ Model

 s_L^2 $\sqrt{s} = 3 \text{ TeV}$ 0.5% $\sqrt{s} = 10 \text{ TeV}$ 0.1%

@68% C.L.

- Top Yukawa measurement
- Detector based study
- Future study of SMEFT operators for High Energy Muon Collider

Summary and Outlook

•Using indirect method presented, muon collider shows promising bounds on precision

THANK YOU!

Sensitivity of $W^+W^- \rightarrow t\bar{t}$ partonic process

