Top Yukawa Coupling determination at High Energy Muon Colliders

Ishmam Mahbub University of Minnesota

In Collaboration with Zhen Liu, Kunfeng Lyu, and Lian-Tao Wang Reference: *arXiv:2308.06323v1*

Particle Physics on the Planes 2023, Oct 15th, 2023

Outline

- •Motivation
- Unitarity in the $W^+_L W^-_L \to t\bar t$ process
- •Muon Colliders
- •Measurement
- •Results
- •Summary and Outlook

Motivation

- holds significance for Higgs research
- Recent LHC measurement for Top Yukawa is
-
-

• The Top Yukawa coupling is one of the least constrained parameters in the SM and

 $y_t = 1.16^{+0.24}_{-0.35}$ [CMS Collaboration, ArXiv:2009.07123]

• Precision measurement at hadron collider face constrains due to QCD background

• High Energy Muon Collider (MuC) can be used for precision Higgs measurement.

Objective

• Precise measurement of top Yukawa coupling using Muon Colliders

Motivation

Theoretical Framework

- Top Yukawa can be directly probed from final states $ht\bar{t}$
- One can indirectly probe Top Yukawa in $VV \rightarrow t\bar{t}$ process

• The effective Lagrangian we consider:

• Partial wave unitarity then bounds the domain of validity of the effective theory

 $\mathscr{L}_{eff} \subset (1 + \delta_{yt}) y_t$ *tth*

- At Large Energies, for (\pm, \mp) the contribution from the γ , Z and tchannel contribution grows as $\mathscr{O}(E^2/m_W^2)$, which cancels off due to gauge invariance
- Contribution from (\pm, \pm) grows as $\mathcal{O}(E/m_W)$

$$
\mathcal{M}^{\gamma+Z+b}(W_L^+W_L^- \to t\bar{t}) = \frac{m_t}{v^2}\sqrt{s} \quad ; \sqrt{s}
$$

- Higgs channel precisely cancels this growing energy behavior
- Can be understood from Goldstone boson equivalence theorem

$$
\mathcal{M}_{W_L^+W_L^- \to t\bar{t}} = \mathcal{M}_{\phi^+\phi^- \to t\bar{t}} \left[1+O\left(\frac{m_W^2}{E^2}\right)\right]
$$

Unitarity in the W^+W^- → *tt* Process

If the top yukawa-coupling deviates from Standard Model value by δ_{vt} :

$$
y_t \to y_t(1 + \delta_{yt})
$$

Then Perturbative unitarity will be broken at some scale:

$$
\Lambda < \frac{10 \, TeV}{\delta_{yt}}
$$

I. Mahbub 6

Unitarity in the W^+W^- → *tt* Process

The scattering amplitude will scale as:

$$
\mathscr{M}(W_L^+ W_L^- \to t\bar{t}) = \frac{m_t}{v^2} \sqrt{s} \delta_{yt} ; \sqrt{}
$$

Muon Collider

- Can provide high precision and high energy
	- Muon being fundamental particle, full energy available in collision
	- Cleaner background
	- High mass suppresses synchrotron radiation
- The price to pay is the unstability of muons leading to neutrino radiation, beam induced background
	- Progress to overcome spearheaded by US Muon Accelerator Program (MAP), the Muon Ionization Cooling Experiment (MICE)

tt ¯ **production at muon colliders**

Production Cross-section

$$
\sigma(\mu^+\mu^- \to F + X) = \Bigg)
$$

i (*ξ*, *μf*)*f j* (*τ ξ* $, \mu_f$ $+ i \leftrightarrow j$]

Luminosity Function is given by:

$$
\frac{d\mathcal{L}_{ij}}{d\tau} = \frac{1}{1+\delta_{ij}} \int_{\tau}^{1} \frac{d\xi}{\xi} [f]
$$

Partonic Process: $W^+W^-\to t\bar{t}$, $ZZ\to t\bar{t}$ $\gamma\gamma\to t\bar{t}$, $Z\gamma\to t\bar{t}$ etc.

[T. Han, Y. Ma, K. Xie , arXiv:2007.14300v4] I. Mahbub ⁸

Cross-section for

10 TeV 10 ab^{-1} Muon Collider $\mu^+ \mu^- \rightarrow t\bar{t} + X$ *ab*−¹

- Signal referes to $|M_{SM} + M_{\delta_{yt}}|^2$ $|M_{SM}|^2$
- Signal dominated by interference between \mathscr{M}_{SM} and $\mathscr{M}_{\delta_{yt}}$

• W-Channel dominates the cross-section where we have the $\delta_{\mathrm{y}t}$ signal

Interference Effects

 $={\cal M}_{ZZ}+{\cal M}_{\gamma\gamma}+{\cal M}_{Z\gamma}+{\cal M}_{\gamma Z}$

For $\mu^+ \mu^- \to \mu^+ \mu^- t \bar t$, one cannot distinguish the intermediate neutral vector boson:

$$
\mathcal{M}=\sum_{i,j}\mathcal{M}_{V_+,iV_-,j}=
$$

Cross-section for *ab*−¹

• W-Channel dominates the cross-section • Reduced significance at 3 TeV

3 TeV 1 ab^{-1} **Muon Collider** $\mu^+ \mu^- \rightarrow t\bar{t} + X$

 $\Delta \chi^2$ test is performed by binning $m_{t\bar{t}}$ with 50 GeV bins and angular distribution into 8 bins

- Dilepton events are discarded after $t\bar{t}$ decay
- Angle Cut: 10[∘] < *θ* < 170[∘]

$$
\Delta \chi^2 = 2.0 \times 10^2 \delta_{yt}^2 - 1.2 \times 10^3 \delta_{yt}^3 + 3.9 \times 10^3 \delta_{yt}^4 \quad (3 \text{TeV})
$$

$$
\Delta \chi^2 = 5.6 \times 10^3 \delta_{yt}^2 - 4.8 \times 10^4 \delta_{yt}^3 + 2.6 \times 10^5 \delta_{yt}^4 \quad (10 \text{TeV})
$$

$Δχ²$ Analysis

Event Selection:

Results:

@68% C.L.

The Reach Plot for $\delta_{\nu t}$

 $\delta_{\rm yt}$

VLQ Model

0.5% 0.1% *s*2 *L* \sqrt{s} = 3 TeV \sqrt{s} = 10 TeV

- •Introduce single Top partner which is singlet under electroweak SU(2)
- Fermion field rotation of the form $t_L \to c_L t_L s_L T_L$ would modify gauge coupling and relative shift to Top Yukawa:

$$
\delta_{yt} = -s_L^2 = -\frac{\left(\lambda_t^2 + \lambda_0^2\right)v^2/2 - m_t^2}{m_T^2 - m_t^2}.
$$

@68% C.L.

Summary and Outlook

•Using indirect method presented, muon collider shows promising bounds on precision

- Top Yukawa measurement
- •Detector based study
- •Future study of SMEFT operators for High Energy Muon Collider

THANK YOU!

${\bf Sensitivity\ of\ }W^+W^-\rightarrow t\bar{t}\ \ {\bf partonic\ process}$

