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What is Dark SRF?

A dark photon search experiment using state-of-the-art superconducting 

radiofrequency (SRF) cavities, with quality factors (Q) of 1010  

Oscillating EM fields are a source of dark photons and vice versa

Experimental setup: Light-shining-through-wall (LSW) experiment

Kinetic mixing parameterDark photon

Interaction 

w/ ordinary

EM fields



Light shining through walls (LSW)

“Walls” are impenetrable to ordinary light, but penetrable to dark photons

After passing through the wall, some dark photons convert back to ordinary 
photons observed by a detector

Emitter Receiver
A’ A’



SRF for Dark Photon

Power it up:

• 40 MV/m (26 J stored energy)

• ~1025 photons

Emission cavity
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Power it up:

• 40 MV/m (26 J stored energy)

• ~1025 photons

SM photon does not penetrate the 

superconducting wall.

But dark photons can!

Emission cavity

Dark photon field:

Induced effective current

Receiver field:

Receiver cavity



Dark SRF: 

Pathfinder 

results

Our pathfinder run results 

already explore new territory!



Dark SRF: 

Pathfinder 

results

Our pathfinder run results 

already explore new territory…

But it could be even better!



High-Q cavities: Finicky friends

SRF Applications: accelerators, cavities, quantum 
computing architectures, free electron lasers

Advantages

➢ High energy storage with minimal power loss to cavity walls

➢ Narrow bandwidth for precision experiments

Disadvantages

➢ Vulnerable to frequency drift

➢ Vulnerable to microphonics SRF technology

Resonator Quality factor 

(Q)

Resonant (LC) circuit ~102-106

Microwave/RF cavity (copper) ~106

Superconducting radiofrequency (SRF) cavity (e.g. niobium) ~1010



Microphonics and frequency drift

6Hz

100 mins

Search run time: 

~30mins

1Hz Initial conservative estimate of 

frequency drift and microphonics:

• δω = 7.8 Hz, fixed offset from ω0

• Power suppression: 7.7x10-6

> 100,000-fold loss of signal!



Is the true penalty from microphonics this 

severe?

Let’s try to model microphonics more accurately 

and find out



A Deceptively Simple Model: Driven, Damped Oscillator

➢               :     natural frequency of the receiver cavity (without microphonics)

➢               :     damping factor

➢               :     driving frequency (emission cavity frequency sourcing dark photons)

➢               :     microphonics perturbations to the receiver frequency

➢               :     jittering time

Parameter Scale:



Initial Results: 10,000-fold better than estimated!

Power retention using 

microphonics modeling: 14.67%

Previous estimate of power 

retention: < 0.0001%
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Rate of jittering has a huge impact
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Summary and Conclusions

• SRF cavities offer great precision and sensitivity for dark sector searches, but are 

vulnerable to frequency instability due to microphonics

• The precise impact of microphonics in dark SRF experiments had not previously 

been quantified

• Correct microphonics modeling could improve SNR by 105 

• Microphonics effects may be dictated by the accumulated relative phase between 

the receiver and the dark photon source



Thank you!



Dark photon Lagrangian



Equations of Motion (Maxwell and Proca)

[Graham, et. al., 2014]



E and B Fields



E & B Fields: Transverse vs Longitudinal Modes



Longitudinal Mode: Epsilon, mass dependence





Phase vs Power Gradient

Trial 1 Trial 2 Trial 3



Relative Phase Change (tjit dependence)

Tjit=0.03; t = 30s
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Initial Results: 10,000-fold better than estimated!

Power Retention: 14.67%
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Rate of jittering has a huge impact

Tjit= 0.03

Power 

Suppression

Tjit= 0.015 Tjit= 0.0075

Power 
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The Model: Driven, Damped Oscillator

A simple starting point: consider discrete time intervals (on the order of 

20-30 milliseconds) with constant frequency mismatch

Plan: Obtain a solution for a single time interval explicitly in terms of 

boundary conditions, and then stitch the solutions together

Intermediate steps

– Solve the homogeneous equation for a single time interval

– Obtain a particular solution for the sourced (inhomogeneous) 

equation

– Write the general solution as a sum of the particular solution and a 

linear combination of the homogeneous solution set



Analytic Solution for a Single Interval

Homogeneous Equation:

Solution:

Inhomogeneous Equation:

Solution:



Analytic vs. Numerical Comparison

Parameters:

• omega0= omegaF=100

• gamma=0.1

• tjit=0.1

• delOmega=3

• Microphonics: 

RandomVariate[NormDist[0,3],nu

m]

• Time: 100 s (1.66 min)

• # of intervals: 1000 Numerical

Analytic



Analytic Physical Model:30 min runs



Analytic Physical Model (1 hr runs)

Average Power Suppression Factor: 0.13-0.14

Why? What is driving the power suppression? Why is the suppression tjit-dependent?



Tjit-Dependence (5 min runs); Rand[NormDist[0,3]]
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Tjit-Dependence (5 min runs); 
Rand[NormDist[0,3]]
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Fixed Offset– Power Suppression



Phase vs Power, Tjit Dependence
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Tjit Dependence of Relative Phase
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Tjit Dependence of Relative Phase
Tjit=0.1 Tjit=0.27

Tjit=0.81

Tjit=2.43
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