Hawking Radiation, Superradiance, and Dark Sector

in collaboration with

Kaustubh Agashe, Jae Hyeok Chang, Steven J. Clarks, Bhaskar Dutta, Yuhsin Tsai arXiv: 2212.11980

James B. Dent, Bhaskar Dutta in preparation

Tao Xu University of Oklahoma October 15, 2023

tao.xu@ou.edu

Motivations

Can we use black holes to probe dark sector?

Outline

Black Holes

evaporation, lensing, gravitational waves, dynamical effects, accretion, CMB distortion, large scale structure

Detect BHs via Hawking Radiation

Hawking radiation rate of particle *i* from a non-rotating BH:

$$\frac{\partial N_i}{\partial E_i \partial t} = \frac{g_i}{2\pi} \frac{\Gamma_i}{e^{E_i/T_{\text{PBH}}} \pm 1}$$

• particle mass **kinematically allowed** $m_i \lesssim E_i \lesssim T_{\text{PBH}}$

Asteroid-mass BHs can produce MeV or lighter particles

- production via gravity, only depends on degree of freedom g_i, not coupling
 Hawking radiation is good at producing weakly coupled particles in the spectrum
- how to detect the effect?
 - energy scale determined by Hawking temperature
 - large BSM particle production rate, modify the radiation spectrum
 - clear SM "background" spectrum from Hawking radiation calculation

ALP from BHs

- If exists an Axion-Like-Particle in the particle spectrum
- Gamma-ray spectrum is modified by ALPs: double peak

Identification of ALPs

If f_{PBH} is larger than the detection limit, enough statistics to **distinguish** the ALP. We will be able to know if ALP exists from the shape of gamma-ray spectrum.

Kaustubh Agashe, Jae Hyeok Chang, Steven J. Clarks, Bhaskar Dutta, Yuhsin Tsai, <u>TX</u>

2212.11980

8

Identification of ALPs

ALP parameter space that can be probed with BHs.

Kaustubh Agashe, Jae Hyeok Chang, Steven J. Clarks, Bhaskar Dutta, Yuhsin Tsai, TX 2212.11980 9

Superradiance

So far we only talked about BH mass, how about BH spin?

1501.06570

BH can produce massive bosons with BH angular momentum when $\omega_a < m \, \Omega$

 Ω : BH angular velocity *m*: azimuthal quantum number

- Gravitational coupling between BH and axion: $\alpha = G_N M m_a$
- Frequency of axion mode bounded by BH: $\omega = \omega_R + i\omega_I$

$$\omega_R = m_a (1 - \frac{\alpha^2}{2n^2})$$
 $N_a(t) \simeq N_0 e^{2\Gamma_{nlm}t}$ $\Gamma_{nlm} = 2\omega_I$

The rotational energy of a BH is **depleted** into the axion cloud,

James B. Dent, Bhaskar Dutta, TX in preparation

Spin-down of BH

Galactic Center searches for BHs are only sensitive to the **final spin** of the Kerr BH. Constraints becomes weaker with superradiance.

Extra-galactic flux can be correlated to test BH spin evolution at higher redshift.

- Reduction in gamma-ray flux happens as BHs lose spin due to superradiance process
- Heavier axion spin down sooner, $\Gamma \propto \alpha^{4l+4}$, flux drops earlier at low energies

keV Line Search

Axions produced with BH superradiance can contribute to keV lines with decay.

$$g_{a\gamma\gamma} = \frac{\alpha_{\rm EM}}{2\pi f_a}$$

- Direct axion production signal within reach of future X-ray observations
- Signal strength depends on f_a for both axion decay width and superradiance dynamics

Summary

- Black holes can be particle factories with gravitational production. Hawking radiation and superradiance combined create interesting searches for new physics.
- To correlate a particle physics energy scale to BH physics
 - Hawking radiation: Particle mass comparable to Hawking temperature or below.
 - Superradiance: Particle wavelength matches BH radius. Timescale of superradiance in the observation window.
- To test the idea with asteroid-mass BHs, we use ALP as an example
 - Modification of Hawking radiation spectrum from galactic center
 - Spin evolution of BHs from galactic and extra-galactic signals
 - Decay signal from the superradiance cloud
 - Outlook: a variety of possible correlative channels to probe dark sector.

Thank you!