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• BSM calculations implemented manually into different event generators
– Prone to errors
– Time-consuming
– Infeasible

• Need for a flexible tool in neutrino physics community.
– Particle-level events generated fully differentially in phase space
– Easy to implement as part of experimental analysis frameworks
– Focused on arbitrary BSM models while also including nuclear effects
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• Single gauge boson:

• Interference 1+ dominant boson. Easier to express:

Theory Overview
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dσ
dΩ

∝ LμνWμν

BSM effects Nuclear physics (model-dependent)

dσ
dΩ

= ∑
i

L(i)
μ W (i)μ

2

allowed bosons

*Will calculate leptonic currents, but leptonic tensor is available
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𝒥 ∝ ∑
i

𝒥μ
i |ψ A

f ⟩ → |ψ A−1
f ⟩ ⊗ |pa⟩;

•  expressed in terms of process-dependent nuclear form factors:
– UFO extended to interface with form factors used in neutrino event 

generators.
– Express form factors of arbitrary models in terms of EM form factors.

•  calculated using impulse-approximation in the spectral function 
formalism;  probability of removing nucleon with  , .

𝒥μ
i

Wμ/Wμν

S( ⃗pa, Er) ⃗pa Er
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Jαi
(pi) = 1 Jαi

(pi) = u(pi) , v(pi) Jαi
(pi) = εα(pi, k)

– For  particles,  instead of n 𝒪(3n) 𝒪(n!)

– Initial (on-shell, external) currents:
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• Interface to Comix matrix element generator
– Handles point vertices, interfaces to UFO files.
– Comix must calculate full matrix element. Point-like nucleons for 

bookkeeping purposes.

N−
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• Limitations:
– Handle spin  particles
– Vector particles probe nucleus
– Tree-level diagrams
– Only colorless particles

≤ 1

L(i)
μ (1, . . . , m) = J(i)

μ (1, . . . , m)
L(ij)

μν (1, . . . , m) = J(i)
μ (1, . . . , m)J( j)†

ν (1, . . . , m)

Implement necessary external states and propagators 

Update nuclear physics code to include appropriate 
form factors for different spin

Automation of one-loop diagrams discussed elsewhere

Unsolvable. Assumption of QCD d.o.f. as protons, 
neutrons
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• Recursive phase space:
– In , full phase space can be written:2 → n

Phase Space Integral
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– Each  can be written in a way that optimally samples  or 
channel processes.

dΦ s− t−

dΦn(a, b; 1, . . . , n) = dΦn−m+1(a, b; π, m + 1,..., n)
dsπ

2π
dΦm(π,1, . . . , m)

• Optimal integrator:
– Recursive phase space
– Multichannel technique (  and channels)
– Adaptive multidimensional Vegas algorithm

s− t−



Some choices:
• Choose monochromatic lepton beam, but straightforward to include 

fluxes.
• No final-state interactions.
• Leptons considered massless.
• Full propagator for  bosons.W±, Z

Results
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α
GF
MZ

=
1/137

1.16637 × 105 GeV
91.1876 GeV
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• Only compare to theory calculations 
due to lack of high-energy 
monochromatic neutrino beam.

• Only CC interactions.
• Outgoing nucleon momentum greater 

than 225 MeV for fair comparison with 
theory calculation.

 scatteringνC
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• Only compare to theory calculations due 
to lack of high-energy monochromatic 
neutrino beam.

• Only CC interactions.
• Outgoing nucleon momentum greater 

than 225 MeV for fair comparison with 
theory calculation.

• Incoming  set to .
– Fixed outgoing lepton angle: 30 deg 
(top), 70 deg (bottom)

Eν 1 GeV

 scatteringνC
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N. Rocco, C. Barbieri, O. Benhar, A. De Pace, and A. Lovato, 
Phys. Rev. C 99, 025502 (2019)

SF IA:

Energy transfer to nucleus

https://journals.aps.org/prc/abstract/10.1103/PhysRevC.99.025502
https://journals.aps.org/prc/abstract/10.1103/PhysRevC.99.025502
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•
• Interference terms  and 
• Assumptions:
– Fixed  to 
–
–
–  with beam axis .

• Important background for multiple lepton final 
state BSM explanations of MiniBooNE excess.

• Total 

νμC → νμe+e−X
(γ, Z ) 2 → 4

Eν 1 GeV
Δθee > 5 deg
Ee > 30 MeV
θ > 10 deg

σ = 3.973 × 10−11 ± 2.764 × 10−14 pb

Neutrino Trident
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(Consistent with P. Ballett, M. Hostert, S. Pascoli, Y. F. Perez-Gonzalez, Z. 
Tabrizi, and R. Zukanovich Funchal, J. High Energy Phys. 01 (2019) 119.)

https://link.springer.com/article/10.1007/JHEP01(2019)119
https://link.springer.com/article/10.1007/JHEP01(2019)119
https://link.springer.com/article/10.1007/JHEP01(2019)119


• Angular separation  of both electrons. Ability of next-generation 
experiments to observe this process.

Δθee

Neutrino Trident
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• Leading (left) and subleading (right) electron energies.

Neutrino Trident
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• Invariant mass of electron pair. Potentially distinguish trident processes 
from BSM scenarios with an electron pair in the final state.

Neutrino Trident
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• We have developed an event generator framework for the automated 
simulation of neutrino scattering at next-generation experiments.

• Main output is in the form of leptonic currents/tensors of arbitrary 
BSM Lagrangians.

• BSM effects independent of nuclear model; chose to focus on QE region 
(impulse-approximation) using the spectral function formalism for 
concreteness.

• Performed phase space integral to get cross sections to validate against 
carbon-12 electron and neutrino scattering data. Obtained first fully 
differential neutrino trident production in the QE region using SF formalism.

• By design, generator is easily interfaced with other neutrino event generators 
and allows the user choice over the nuclear model to use. 
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• Context: Our generator, though fully independent, 
is a module of the ACHILLES (A CHIcago Land 
Lepton Event Simulator) theory-driven lepton 
event generator.

• ACHILLES encompasses the full simulation 
pipeline from beams, hard interactions, 
intranuclear cascades, and decays of unstable 
particles.

• Our generator extends ACHILLES ability by 
enabling BSM calculations on  processes.2 → n

Summary and Outlook
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ACHILLES: J. Isaacson, W. Jay, A. Lovato, P. A. N. Machado, and N. Rocco, Phys. Rev. D 107, 033007 (2023)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.107.033007


Summary and Outlook
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Thank you!


