J. Isaacson, S. Höche, D. Lopez Gutierrez, and N. Rocco, Phys. Rev. D 105, 096006 (2022)

Novel event generator for the automated simulation of neutrino scattering

Diego Lopez Gutierrez

Particle Physics in the Plains 2023 October 14, 2023

Washington University in St. Louis Fermilab

Outline

- Simulation Pipeline
- Current Setup
- Theory Overview
- Nuclear Physics
- Leptonic Current
- Phase Space Integral
- Results
- Summary and Outlook

Collider physics

 $\mathscr{L}_{\mathrm{BSM}}$ + Feynman rules

Collider physics

Collider physics

- BSM calculations implemented manually into different event generators

- BSM calculations implemented manually into different event generators
 - Prone to errors
 - Time-consuming
 - Infeasible

- BSM calculations implemented manually into different event generators
 - Prone to errors
 - Time-consuming
 - Infeasible
- Need for a flexible tool in neutrino physics community.

- BSM calculations implemented manually into different event generators
 - Prone to errors
 - Time-consuming
 - Infeasible
- Need for a flexible tool in neutrino physics community.
 - Particle-level events generated fully differentially in phase space

- BSM calculations implemented manually into different event generators
 - Prone to errors
 - Time-consuming
 - Infeasible
- Need for a flexible tool in neutrino physics community.
 - Particle-level events generated fully differentially in phase space
 - Easy to implement as part of experimental analysis frameworks

- BSM calculations implemented manually into different event generators
 - Prone to errors
 - Time-consuming
 - Infeasible
- Need for a flexible tool in neutrino physics community.
 - Particle-level events generated fully differentially in phase space
 - Easy to implement as part of experimental analysis frameworks
 - Focused on arbitrary BSM models while also including nuclear effects

Theory Overview

• Single gauge boson:

Theory Overview

• Single gauge boson:

• Interference 1+ dominant boson. Easier to express:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left| \sum_{i} L_{\mu}^{(i)} W^{(i)\mu} \right|^{2}$$

$$\uparrow$$
allowed bosons

*Will calculate leptonic currents, but leptonic tensor is available

• BSM effects independent of exact nuclear model.

- BSM effects independent of exact nuclear model.
- Focus on quasielastic region for concreteness (impulse-approximation)

- BSM effects independent of exact nuclear model.
- Focus on quasielastic region for concreteness (impulse-approximation)

$$\mathcal{J} \propto \sum_{i} \mathcal{J}_{i}^{\mu} \qquad ; \qquad |\psi_{f}^{A}\rangle \to |\psi_{f}^{A-1}\rangle \otimes |p_{a}\rangle$$

- BSM effects independent of exact nuclear model.
- Focus on quasielastic region for concreteness (impulse-approximation)

$$\mathcal{J} \propto \sum_{i} \mathcal{J}_{i}^{\mu}$$
; $|\psi_{f}^{A}\rangle \rightarrow |\psi_{f}^{A-1}\rangle \otimes |p_{a}\rangle$

- \mathcal{J}_{i}^{μ} expressed in terms of process-dependent nuclear form factors:
 - UFO extended to interface with form factors used in neutrino event generators.
 - Express form factors of arbitrary models in terms of EM form factors.

- BSM effects independent of exact nuclear model.
- Focus on quasielastic region for concreteness (impulse-approximation)

$$\mathcal{J} \propto \sum_{i} \mathcal{J}_{i}^{\mu} \qquad ; \qquad |\psi_{f}^{A}\rangle \to |\psi_{f}^{A-1}\rangle \otimes |p_{a}\rangle$$

- \mathcal{J}_{i}^{μ} expressed in terms of process-dependent nuclear form factors:
 - UFO extended to interface with form factors used in neutrino event generators.
 - Express form factors of arbitrary models in terms of EM form factors.
- $W^{\mu}/W^{\mu\nu}$ calculated using impulse-approximation in the spectral function formalism; $S(\vec{p}_a, E_r)$ probability of removing nucleon with \vec{p}_a , E_r .

- Berends-Giele recursive relations:
 - Full tree-level amplitude determined from off-shell currents:

- Berends-Giele recursive relations:
 - Full tree-level amplitude determined from off-shell currents:

 J_4^{σ}

 J_5^γ

 J_3^{lpha}

Etc.

- Berends-Giele recursive relations:
 - Full tree-level amplitude determined from off-shell currents:

- Initial (on-shell, external) currents:

$$J_{\alpha_i}(p_i) = 1 \qquad \qquad J_{\alpha_i}(p_i) = u(p_i) , v(p_i) \qquad \qquad J_{\alpha_i}(p_i) = \varepsilon_{\alpha}(p_i, k)$$

$$J_{2}^{\nu}$$

$$J_{3}^{\alpha}$$

$$J_{4}^{\sigma}$$

$$J_{5}^{\gamma}$$

- Berends-Giele recursive relations:
 - Full tree-level amplitude determined from off-shell currents:

- Initial (on-shell, external) currents:

$$J_{\alpha_i}(p_i) = 1 \qquad \qquad J_{\alpha_i}(p_i) = u(p_i) , \ v(p_i) \qquad \qquad J_{\alpha_i}(p_i) = \varepsilon_{\alpha}(p_i,k)$$

– For *n* particles, $\mathcal{O}(3^n)$ instead of $\mathcal{O}(n!)$

- Interface to Comix matrix element generator
 - Handles N-point vertices, interfaces to UFO files.

- Interface to Comix matrix element generator
 - Handles *N*-point vertices, interfaces to UFO files.
 - Comix must calculate full matrix element. Point-like nucleons for bookkeeping purposes.

$$L_{\mu\nu}^{(i)}(1,\ldots,m) = J_{\mu\nu}^{(i)}(1,\ldots,m)$$
$$L_{\mu\nu}^{(ij)}(1,\ldots,m) = J_{\mu\nu}^{(i)}(1,\ldots,m) J_{\nu\nu}^{(j)\dagger}(1,\ldots,m)$$

- Interface to Comix matrix element generator
 - Handles *N*-point vertices, interfaces to UFO files.
 - Comix must calculate full matrix element. Point-like nucleons for bookkeeping purposes.

$$L_{\mu\nu}^{(i)}(1,\ldots,m) = J_{\mu\nu}^{(i)}(1,\ldots,m)$$
$$L_{\mu\nu}^{(ij)}(1,\ldots,m) = J_{\mu\nu}^{(i)}(1,\ldots,m) J_{\nu\nu}^{(j)\dagger}(1,\ldots,m)$$

- Limitations:
 - Handle spin ≤ 1 particles

Implement necessary external states and propagators

- Interface to Comix matrix element generator
 - Handles *N*-point vertices, interfaces to UFO files.
 - Comix must calculate full matrix element. Point-like nucleons for bookkeeping purposes.

$$L_{\mu\nu}^{(i)}(1,\ldots,m) = J_{\mu\nu}^{(i)}(1,\ldots,m)$$
$$L_{\mu\nu}^{(ij)}(1,\ldots,m) = J_{\mu\nu}^{(i)}(1,\ldots,m) J_{\nu\nu}^{(j)\dagger}(1,\ldots,m)$$

- Limitations:
 - Handle spin ≤ 1 particles
 - Vector particles probe nucleus

- Implement necessary external states and propagators
 - Update nuclear physics code to include appropriate form factors for different spin

- Interface to Comix matrix element generator
 - Handles *N*–point vertices, interfaces to UFO files.
 - Comix must calculate full matrix element. Point-like nucleons for bookkeeping purposes.

$$L_{\mu\nu}^{(i)}(1,\ldots,m) = J_{\mu\nu}^{(i)}(1,\ldots,m)$$
$$L_{\mu\nu}^{(ij)}(1,\ldots,m) = J_{\mu\nu}^{(i)}(1,\ldots,m) J_{\nu\nu}^{(j)\dagger}(1,\ldots,m)$$

- Limitations:
 - Handle spin ≤ 1 particles
 - Vector particles probe nucleus
 - Tree-level diagrams

- → Implement necessary external states and propagators
 - Update nuclear physics code to include appropriate form factors for different spin
- → Automation of one-loop diagrams discussed elsewhere

- Interface to Comix matrix element generator
 - Handles *N*-point vertices, interfaces to UFO files.
 - Comix must calculate full matrix element. Point-like nucleons for bookkeeping purposes.

$$L_{\mu\nu}^{(i)}(1,\ldots,m) = J_{\mu\nu}^{(i)}(1,\ldots,m)$$
$$L_{\mu\nu}^{(ij)}(1,\ldots,m) = J_{\mu\nu}^{(i)}(1,\ldots,m) J_{\nu\nu}^{(j)\dagger}(1,\ldots,m)$$

- Limitations:
 - Handle spin ≤ 1 particles
 - Vector particles probe nucleus
 - Tree-level diagrams
 - Only colorless particles

- ---> Implement necessary external states and propagators
 - Update nuclear physics code to include appropriate form factors for different spin
 - ➔ Automation of one-loop diagrams discussed elsewhere
- Unsolvable. Assumption of QCD d.o.f. as protons, neutrons

Phase Space Integral

- Recursive phase space:
 - In $2 \rightarrow n$, full phase space can be written:

$$d\Phi_{n}(a, b; 1, ..., n) = d\Phi_{n-m+1}(a, b; \pi, m+1, ..., n) \frac{ds_{\pi}}{2\pi} d\Phi_{m}(\pi, 1, ..., m)$$

Phase Space Integral

- Recursive phase space:
 - In $2 \rightarrow n$, full phase space can be written:

$$d\Phi_{n}(a, b; 1, ..., n) = d\Phi_{n-m+1}(a, b; \pi, m+1, ..., n) \frac{ds_{\pi}}{2\pi} d\Phi_{m}(\pi, 1, ..., m)$$

– Each d Φ can be written in a way that optimally samples *s*– or *t*– channel processes

Phase Space Integral

- Recursive phase space:
 - In $2 \rightarrow n$, full phase space can be written:

$$d\Phi_{n}(a, b; 1, ..., n) = d\Phi_{n-m+1}(a, b; \pi, m+1, ..., n) \frac{ds_{\pi}}{2\pi} d\Phi_{m}(\pi, 1, ..., m)$$

- Each $d\Phi$ can be written in a way that optimally samples s- or t- channel processes.
- Optimal integrator:
 - Recursive phase space
 - Multichannel technique (s- and t-channels)
 - Adaptive multidimensional Vegas algorithm

Some choices:

- Choose monochromatic lepton beam, but straightforward to include fluxes.
- No final-state interactions.
- Leptons considered massless.
- Full propagator for W^{\pm} , Z bosons.

$$\begin{pmatrix} \alpha \\ G_F \\ M_Z \end{pmatrix} = \begin{pmatrix} 1/137 \\ 1.16637 \times 10^5 \,\text{GeV} \\ 91.1876 \,\text{GeV} \end{pmatrix}$$

• 961 MeV e⁻ scattering of carbon-12 at an angle of 37.5 deg.

Data: R. M. Sealock et al., Phys. Rev. Lett. 62, 1350 (1989) **SF IA:** N. Rocco, S. X. Nakamura, T. S. H. Lee, and A. Lovato, Phys. Rev. C 100, 045503 (2019)

- 961 MeV e⁻ scattering of carbon-12 at an angle of 37.5 deg.
- Difference in QE region peak due to final-state interaction effects.

- 961 MeV e⁻ scattering of carbon-12 at an angle of 37.5 deg.
- Difference in QE region peak due to final-state interaction effects.
- High-energy tail due to two-body currents, resonance production, DIS.

Data: R. M. Sealock et al., Phys. Rev. Lett. 62, 1350 (1989) **SF IA:** N. Rocco, S. X. Nakamura, T. S. H. Lee, and A. Lovato, Phys. Rev. C 100, 045503 (2019)

- 1300 MeV e⁻ scattering of carbon-12 at an angle of 37.5 deg.
- Difference in QE region peak due to final-state interaction effects.
- High-energy tail due to two-body currents, resonance production, DIS.

Data: R. M. Sealock et al., Phys. Rev. Lett. 62, 1350 (1989) **SF IA:** N. Rocco, S. X. Nakamura, T. S. H. Lee, and A. Lovato, Phys. Rev. C 100, 045503 (2019)

νC scattering

- Only compare to theory calculations due to lack of high-energy monochromatic neutrino beam.
- Only CC interactions.
- Outgoing nucleon momentum greater than 225 MeV for fair comparison with theory calculation.

SF IA: N. Rocco, C. Barbieri, O. Benhar, A. De Pace, and A. Lovato, Phys. Rev. C 99, 025502 (2019)

νC scattering

- Only compare to theory calculations due to lack of high-energy monochromatic neutrino beam.
- Only CC interactions.
- Outgoing nucleon momentum greater than 225 MeV for fair comparison with theory calculation.
- Incoming E_{ν} set to 1 GeV.
 - Fixed outgoing lepton angle: 30 deg (top), 70 deg (bottom)

SF IA: N. Rocco, C. Barbieri, O. Benhar, A. De Pace, and A. Lovato, Phys. Rev. C 99, 025502 (2019)

- $\nu_{\mu}C \rightarrow \nu_{\mu}e^+e^-X$
- Interference terms (γ, Z) and $2 \rightarrow 4$

- $\nu_{\mu}C \rightarrow \nu_{\mu}e^+e^-X$
- Interference terms (γ, Z) and $2 \rightarrow 4$
- Assumptions:
 - Fixed E_{ν} to 1 GeV
 - $-\Delta \theta_{ee} > 5 \deg$
 - $-E_e > 30 \,\mathrm{MeV}$
 - $-\theta$ with beam axis > 10 deg.

- $\nu_{\mu}C \rightarrow \nu_{\mu}e^+e^-X$
- Interference terms (γ, Z) and $2 \rightarrow 4$
- Assumptions:
 - Fixed E_{ν} to 1 GeV
 - $-\Delta \theta_{ee} > 5 \deg$
 - $-E_e > 30 \,\mathrm{MeV}$
 - $-\theta$ with beam axis > 10 deg.
- Important background for multiple lepton final state BSM explanations of MiniBooNE excess.

- $\nu_{\mu}C \rightarrow \nu_{\mu}e^+e^-X$
- Interference terms (γ, Z) and $2 \rightarrow 4$
- Assumptions:
 - Fixed E_{ν} to 1 GeV
 - $-\Delta \theta_{ee} > 5 \deg$
 - $-E_e > 30 \,\mathrm{MeV}$
 - $-\theta$ with beam axis > 10 deg.
- Important background for multiple lepton final state BSM explanations of MiniBooNE excess.
- Total $\sigma = 3.973 \times 10^{-11} \pm 2.764 \times 10^{-14} \,\mathrm{pb}$

(Consistent with P. Ballett, M. Hostert, S. Pascoli, Y. F. Perez-Gonzalez, Z. Tabrizi, and R. Zukanovich Funchal, J. High Energy Phys. 01 (2019) 119.)

• Angular separation $\Delta \theta_{ee}$ of both electrons. Ability of next-generation experiments to observe this process.

• Leading (left) and subleading (right) electron energies.

- Invariant mass of electron pair. Potentially distinguish trident processes from BSM scenarios with an electron pair in the final state.

Summary and Outlook

• We have developed an event generator framework for the automated simulation of neutrino scattering at next-generation experiments.

Summary and Outlook

- We have developed an event generator framework for the automated simulation of neutrino scattering at next-generation experiments.
- Main output is in the form of **leptonic currents/tensors of arbitrary BSM Lagrangians**.

- We have developed an event generator framework for the automated simulation of neutrino scattering at next-generation experiments.
- Main output is in the form of **leptonic currents/tensors of arbitrary BSM Lagrangians**.
- BSM effects independent of nuclear model; chose to focus on QE region (impulse-approximation) using the spectral function formalism for concreteness.

- We have developed an event generator framework for the automated simulation of neutrino scattering at next-generation experiments.
- Main output is in the form of **leptonic currents/tensors of arbitrary BSM Lagrangians**.
- BSM effects independent of nuclear model; chose to focus on QE region (impulse-approximation) using the spectral function formalism for concreteness.
- Performed phase space integral to get cross sections to validate against carbon-12 electron and neutrino scattering data. Obtained first fully differential neutrino trident production in the QE region using SF formalism.

- We have developed an event generator framework for the automated simulation of neutrino scattering at next-generation experiments.
- Main output is in the form of **leptonic currents/tensors of arbitrary BSM Lagrangians**.
- BSM effects independent of nuclear model; chose to focus on QE region (impulse-approximation) using the spectral function formalism for concreteness.
- Performed phase space integral to get cross sections to validate against carbon-12 electron and neutrino scattering data. Obtained first fully differential neutrino trident production in the QE region using SF formalism.
- By design, generator is easily interfaced with other neutrino event generators and allows the user choice over the nuclear model to use.

- Context: Our generator, though fully independent, is a module of the ACHILLES (A CHIcago Land Lepton Event Simulator) theory-driven lepton event generator.
- ACHILLES encompasses the full simulation pipeline from beams, hard interactions, intranuclear cascades, and decays of unstable particles.
- Our generator extends ACHILLES ability by enabling BSM calculations on $2 \rightarrow n$ processes.

ACHILLES: J. Isaacson, W. Jay, A. Lovato, P. A. N. Machado, and N. Rocco, Phys. Rev. D 107, 033007 (2023)

.d8b.	.088b.	db db	d888888b	db	db	d88888b	.d8888.
d8' `8b	d8P Y8	88 88	`88'	88	88	88'	88' YP
8800088	8P	8800088	88	88	88	8800000	`8bo.
88~~~88	8b	88~~~88	88	88	88	88~~~~	`Y8b.
88 88	Y8b d8	88 88	.88.	88booo.	88booo.	88.	db 8D
YP YP	`Y88P'	YP YP	Y888888P	Y88888P	Y88888P	Y88888P	`8888Y'
.d888888888888888888888888888888888888							
.d888888888888888888888888888888888888							
.d888888888888888888888888888888888888							
88888888888888888888888888888888888888							
`Y888888888888888888888888888888888888							
`Y888888888888888888888888888888888888							
	`Y88	88888888	888888888	88888888	88888888	88888888	3888
		Y8888888	888888888	88888888	888P Y8	88888888	38888
		`Y88	8888 8888	8 88Y'	Y	88888888	38888
		.d88888	888888888	888888b	• `	Y88888888	38888.
	. d	88888888	888888888	88888888	Bb.	8888888	388888
	.d88	88888888	888888888	88888888	8888b 8	88888888	888888
	.d8888	88888888	888888888	88888888	88888	88888888	38888D
	d88888	88888888	888888888	88888888	88888	88888888	38888
	d888888	88888888	888888888	88888888	88888	Y8888888	38888
(1888888P	d888	888888888	88888888	8888P	88888	3888
8	8888P	.d8888	888888888	88888888	888P	8888	388
8	888P	.d888888	888888888	88888888	88P	8888	3Y
8	888b .d	88888888	888888888	88888888	88	8888	3P
١	Y88 d88	88888888	888888888	88888888	888	888	3
	`8' d888	88888888	888888888	88888888	888	88	3
	8888	88888888	888888888	88888888	88P	8	3
	8888	88888888	8888P	Y888888	BP		
	d8888	88888888	8888	Y88888I	Р		
888888888888888888 Y888P							
	d88888	88888888	Р	Y8P			
88888888P 8							
	d888P						

ersion: {:56}|

Authors: Joshua Isaacson, William Jay, Alessandro Lovato, Pedro A. Machado, Noemi Rocco

Undergraduate Student Contributions: Diego Lopez Gutierrez, Sherry Wang, Russell Farnsworth

Summary and Outlook

Thank you!