BSM physics from neutrons at

Aparajitha Karthikeyan **Particle Physics On The Plains** Oct 14-15, 2023

In collaboration with: Bhupal Dev, Bhaskar Dutta (advisor), Tao Han, Doojin Kim, Hyunyong Kim

PHYSICS AND ASTRONOMY

Motivation

BSM opportunities from **neutrons at FASER**

Examples at FASER: 1.Gauge bosons 2.Axion-like Particles

FASER 1 and FASER 2

Detector	Radius (m)	Depth (m)	Material, R (m)	Luminosity
FASER 1	0.1	1.5	TAN, 0.06	$150 fb^{-1}$
FASER 2	1	5	TAXN, 0.12	$3 ab^{-1}$

Detection:

- Scintillators to separate charged particle tracks
- Calorimeter in the end of the detector

Primary signal:

• High energy electrons, muons and photons

FASER 1 and FASER 2 : Existing studies

 $U(1)_X, U(1)_{B-L}$ gauge bosons;

FASER 1 and FASER 2: Neutrons

Unaffected by the presence of magnets.

FASER 1 and FASER 2 : Neutrons

- Unaffected by the presence of magnets.
- Neutron-TAN/TAXN interactions factory of particles

Neutrons

Neutron Bremsstrahlung

Initial State Radiation

Radiation from Non-Standard Diffractive (NSD) neutron processes

$$\frac{d^2 N_X}{dE_X d\cos \theta_X} = \int dE_n \frac{dN_n}{dE_n} n_T$$

Approximation for $dP_{n \to n'X}$: $E_n/2 < E_X < E_n$ $\cos\theta_{\rm v} \sim 1$

unit volume

neutron in material T

Generic model - proton and neutron couplings

Proton Bremsstrahlung:

- Enhanced due to high energy:
 - $\sqrt{s} = 14$ TeV
- Faces mild suppression from protonproton collision

Neutron Bremsstrahlung:

- Suppressed as $\sqrt{s} \sim 40 {\rm GeV}$
- Enhancement due to larger availability of target neutrons

Different form factors - features near the peak

See for Form factors: arxiv.org/abs/0910.5589

10⁰

Generic model - proton and neutron couplings

Anomaly free condition :

$$SU(2)_{L} \times SU(2)_{L} \times U(1)_{X}$$

$$\oint$$

$$q_{p} + q_{n} + q_{e} + q_{\nu_{e}} = 0$$

$$(q_{p} + q_{n}) = -q_{e}; \theta = (q_{p} - q_{n})$$

$$10^{-7} m_{X}$$

Neutron Bremsstrahlung: Protophobic Model

Protophobic model

 $\mathscr{L}_X = -\frac{1}{2}m_X^2 X_\mu X^\mu - g_X X_\mu \sum x_f \bar{f} \gamma^\mu f^{[1]}$

Sources:

- Neutral Bremsstrahlung 1.
- 2. Neutral meson decays (Dominantly η)
 - $BR(\pi^0 \to X\gamma) = 0$
 - At FASER, $N(\eta') < N(\eta)$

[1] Ilten, Soreq, et.al., <u>arxiv.org/abs/1801.04847</u>

 $x_p = 0$ $x_n = 1$

 χ_{f} -1/3 $\mathcal{U}, \mathcal{C}, \mathcal{T}$ d, s, b2/3 e, μ, τ _1 $\mathbf{\cap}$ u_e, ν_μ, ν_τ

X boson flux : Parent flux

- η mesons from IP [1] are higher in number and energy than those from n-TAN/TAXN [2]
- No. of neutrons \sim No. of η mesons
- We observe similar features at FASER 1, with around O(10) lesser magnitude

 [1] Neutron-TAN: GEANT4 simulations by Hyunyong Kim
 [2] IP: FORESEE package, Kling, Trojanowski <u>arxiv.org/</u> <u>abs/2105.07077</u>

X boson flux

- No. of X from η decays are higher in statistics
- X from neutron bremsstrahlung are higher in energy

Sensitivity

Constraints:

- *Electron beam-dump:* E137, E141, E774, NA64, Orsay
- Proton beam-dump: CHARM
- e^+e^- collider: BaBar
- *pp colider:* LHCb
- Others: A1, APEX, Υ , η , B decays

Final states: e^+e^- , $\mu^+\mu^-$, hadrons

Sensitivity

Constraints:

- *Electron beam-dump:* E137, E141, E774, NA64, Orsay
- Proton beam-dump: CHARM
- e^+e^- collider: BaBar
- *pp colider:* LHCb
- Others: A1, APEX, Υ , η , B decays

Inferences:

- 1. η decays: Facilitates FASER 2 to explore lower couplings $O(10^{-6})$
- 2. Neutron Bremsstrahlung: Extends to larger coupling and heavier masses

BSM from neutrons-on-target

Neutron-on-target: e^{\pm}

 $N_{TAN} = 2.2 \times 10^{15}$

 $N_{TAXN} = 6.3 \times 10^{16}$

Neutrons are the **only source** of e^{\pm}

Electron, positron fluxes from neutrons[1]

[1] GEANT4 simulations by Hyunyong Kim

BSM from neutrons-on-target: Axion-like Particles

Axion-like Particles (ALPs)

Photon couplings

$$\mathcal{L}_{a\gamma} \supset -\frac{1}{2}m_a^2 a^2 - \frac{1}{4}g_{a\gamma\gamma}F^{\mu\nu}\tilde{F}_{\mu\nu}$$

ALP production: Primakoff process

- $\gamma N \rightarrow aN$
- Coherently enhancement $\sim Z^2$

ALP detection:

- Decays $a \rightarrow \gamma \gamma$
- Inverse primakoff $aN \rightarrow \gamma N$ subdminant for $m_a > 100 {\rm keV}$

Electron couplings

$$\mathcal{L}_{ae} \supset -\frac{1}{2}m_a^2 a^2 - g_{aee} \bar{e} \gamma^5 e$$

ALP production: ($\sim O(Z)$)

- Compton-like scattering $\gamma e^- \rightarrow a e^-$
- Associated production $e^+e^- \rightarrow a\gamma$

ALP detection:

- Decays $a \to e^+e^-$ for $m_a > 1 \text{MeV}$
- Scattering channels subdominant at FASER

See also:

- Feng, Galon, et.al, <u>arxiv.org/abs/1806.02348</u>
- Buonocore, Kling, Rottoli, <u>arxiv.org/abs/2309.12793</u>
- Kling, Quilez, arxiv.org/abs/2204.03599

ALP sensitivity : Photon couplings

No. events: 3 Cutoffs: $E_{\gamma} > 20 \text{MeV}$

FASER 1, n-TAN

Features:

- <u>Dotted lines</u>: Photons at IP (studied in [1]) \bullet
- Solid lines: Photons from neutron interactions.

Inferences:

- Larger neutron-induced photons \Rightarrow FASER 2 reaches below beam dump constraints
- Neutron-induced fluxes complement fluxes \bullet from IP

[1]Feng, Galon, et.al, arxiv.org/abs/1806.02348

10⁰

ALP sensitivity : Electron couplings

No. events: 3 Cutoffs: $E_{\gamma} > 20 \text{MeV}$

- **Dotted lines:** Photons at IP Compton-like \bullet scattering
- <u>Solid lines</u>: Photons, positrons from neutron interactions.

Inferences:

- S-channel Compton-like scattering favored for soft photons.
- Neutron-induced photons give maximum \bullet contribution
- Only FASER 2 can explore MeV scale ALPs \bullet with $O(10^{-6})$ couplings.

Conclusion

- Neutrons have been studied in the context of backgrounds, but they can provide considerable insights into BSM physics.
- Neutron Bremsstrahlung More applications in Baryonic models containing scalars, gauge bosons.
- Neutrons beyond ALPs Flavor-specific scalars, gauge bosons

Backup

Protophobic model

Sources:

1. Neutral meson decays $\pi^{0}, \eta, \eta' = \pi^{0}$

 $BR(\pi^0 \to X\gamma) = 0; \text{ For the choice of } x_u, x_d$ $BR(\eta, \eta' \to X\gamma) = 2BR(\eta, \eta' \to \gamma\gamma)\beta_{\eta, \eta'} \left(1 - \frac{m_X^2}{m_{n n'}^2}\right)^3$

$$\beta_{\eta} = 0.26$$

 $\beta_{\eta'} = 1.22$

 $BR(\eta \to \gamma \gamma) = 0.39$ $BR(\eta' \to \gamma \gamma) = 0.02$

[1] Ilten, Soreq, et.al., <u>arxiv.org/abs/1801.04847</u>

X: Protophobic gauge boson

 $\mathscr{L}_X = -\frac{1}{2}m_X^2 X_\mu X^\mu - g_X X_\mu \sum_f x_f \bar{f} \gamma^\mu f$

f	X_{f}
<i>U</i> , <i>C</i> , <i>t</i>	-1/3
<i>d</i> , <i>s</i> , <i>b</i>	2/3
e, μ, τ	-1
$ u_e, \nu_\mu, \nu_\tau $	0

Generic model - proton and neutron couplings Anomaly condition : $SU(2)_L \times SU(2)_L \times U(1)_X \Rightarrow q_p + q_n + q_e + q_{\nu_e} = 0$

Another scenario where $q_e = -0.5$

g

X boson flux : Parent flux

- η mesons from IP are higher in number and energy than those from n-TAN/TAXN
- No. of neutrons \sim No. of η mesons

[1] Neutron-TAN: GEANT4 simulations by Hyunyong Kim [2] IP: FORESEE package, Kling, Trojanowski <u>arxiv.org/</u> abs/2105.07077

Calculating the beta factor for protophobic gauge bosons

$$\eta_{0} = \frac{1}{\sqrt{3}} (u\bar{u} + d\bar{d} + s\bar{s}) \quad ; \quad \eta_{8} = \frac{1}{\sqrt{6}} (u\bar{u} + d\bar{d} - 2s\bar{s}) \quad \Rightarrow \begin{bmatrix} \eta \\ \eta' \end{bmatrix} = \begin{bmatrix} \cos\theta_{p} & -\sin\theta_{p} \\ \sin\theta_{p} & \cos theta_{p} \end{bmatrix} \begin{bmatrix} \eta_{8} \\ \eta_{0} \end{bmatrix}$$

$$\phi_{\eta}(x_{u}, x_{d}, x_{s}) = (\cos\theta_{p}(x_{u}q_{u} + x_{d}q_{d} - 2x_{s}q_{s}) - \sqrt{2}\sin\theta_{p}(x_{u}q_{u} + x_{d}q_{d} + x_{s}q_{s}))^{2}$$

$$\phi_{\eta}(x_{u}, x_{d}, x_{s}) = (\sin\theta_{p}(x_{u}q_{u} + x_{d}q_{d} - 2x_{s}q_{s}) + \sqrt{2}\cos\theta_{p}(x_{u}q_{u} + x_{d}q_{d} + x_{s}q_{s}))^{2}$$
Therefore:

$$\beta_{\eta}(x_u, x_d, x_s) = \frac{\phi_{\eta}(x_u, x_d, x_s)}{\phi_{\eta}(q_u, q_d, q_s)} \quad ; \quad \beta_{\eta'}(x_u, x_d, x_s) = \frac{\phi_{\eta'}(x_u, x_d, x_s)}{\phi_{\eta'}(q_u, q_d, q_s)}$$

This is the proportionality of the meson couplings to the gauge boson X with the meson couplings to QED photon

Motivation

BSM physics from **neutrons at FASER**:

- Unaffected by the presence of magnets.
- Iron atoms at TAN/TAXN factory of SM and BSM particles

Examples: 1.Gauge bosons 2.Axion-like Particles

