

RF Surface Resistance Measurements on Planar Samples at STFC

10th IFAST WP9 Meeting 14th Sept 2023

Daniel Seal Lancaster University/Cockcroft Institute daniel.seal@cockcroft.ac.uk

Outline

- Continuing thin film optimisation studies with choke cavity
- Nb/Cu:
 - HiPIMS
 - Study effect of substrate temperature during deposition
 - Samples from 2 Nb targets
 - Further analysis (MFP, RRR, T_c , surface analysis) in progress
- Nb₃Sn/Cu:
 - DCMS, HiPIMS
 - Effect of target power
- NbTiN/Cu
 - DCMS, HiPIMS

RF measurements of Nb samples

Sample preparation

- Aim: investigate effect of substrate heating
- Substrate preparation:
 - Diamond turned Cu disks 10 cm diameter, 3 mm thick
 - Average roughness ~ 2-3 nm
- Sample preparation:
 - HiPIMS

Parameter	Target 1	Target 2
Substrate heater current (A)	0, 10, 15, 23, 30, 35	0, 10, 15*, 23*, 28, 32 35
Substrate heater temperature (A)	RT to ~ 650 °C	RT to ~ 650 °C
Expected thickness (µm)	3	3

* In progress

Optimising Nb/Cu surface resistance

Daniel Seal - 10th IFAST WP9 Meeting - 14th Sept 2023

Nb/Cu: surface resistance at 4.2 K

Nb/Cu: frequency shift

Variation in T_c due to Cu contamination

• *T*_c as expected for all samples

RF measurements of Nb₃Sn samples

Sample preparation

- Aim: investigate effect of target power/deposition method
- Substrate preparation:
 - Diamond turned Cu disks 10 cm diameter, 3 mm thick
 - Average roughness ~ 2-3 nm
- Sample preparation:
 - 3 DCMS, 1 HiPIMS

Parameter	DCMS	HiPIMS
Substrate heater current (A)	35 (~ 650 °C)	35 (~ 650 °C)
Target power (W)	200, 100, 50	100
Expected thickness (µm)	2.6	2.6

Daniel Seal - 10th IFAST WP9 Meeting - 14th Sept 2023

RF measurements of NbTiN samples

Sample preparation

- Substrate preparation:
 - Diamond turned Cu disk 10 cm diameter, 3 mm thick
 - Average roughness ~ 2-3 nm
- Sample preparation:
 - 1 DCMS, 1 HiPIMS

Parameter	DCMS	HiPIMS
Substrate heater current (A)	35 (~ 650 °C)	35 (~ 650 °C)
Target power (W)	300	300
Expected thickness (µm)	0.8	0.8

Nb, NbTiN, Nb₃Sn comparison

Daniel Seal - 10th IFAST WP9 Meeting - 14th Sept 2023

Next steps

From planar samples to real cavities

3 sets of samples:

- . Nb coated planar samples
 - Low power RF test with choke cavity
 - High power RF test with QPR
- 2. Split cavity deposited with planar magnetron & planar target
 - RF test

- Split cavity deposited with cylindrical magnetron & tubular target
 - RF test

Future plans

- Complete Nb/Cu substrate temperature study
 - Full substrate heater/temperature calibration
 - Surface analysis (STFC)
 - SC DC measurements (STFC & IEE?)
- FLASH on Nb/Cu samples (HZDR):
 - RT samples can flash replace the need for high temperature depositions?
 - Best sample can flash further improve the sample performance?
- Nb/Cu on chemically treated Cu disks to compare with split cavity
- Continue Nb₃Sn, NbTiN, V₃Si single layer studies
- Multilayers:
 - On Bulk Nb treated at INFN
 - On Nb/Cu deposited at DL
- Facility upgrades to increase B-field
 - IJCLab treated bulk Nb 2 choke cavity
 - TF on INFN treated Cu choke cavity
 - Test bunker

Acknowledgements

STFC/CI: O. B. Malyshev, T. Sian, R. Valizadeh, P. Goudket, S. Hitchen, L. Smith, J. Conlon, C. Benjamin, S. Wilde, K. Dumbell, N. Pattalwar, S. Pattalwar, A. Blackett-May, F. Lockwood-Estrin, A. Hannah, A. Vick, L. Cowie, S. Bibby-Trevor, R. McAllister, A. Palmer, A. Wooten, K. Morrow, M. Roper, M. Beardsley, L. Bushnell

Lancaster University/CI: G. Burt, N. Leicester, D. Turner, H. Marks

INFN: C. Pira, E. Chyhyrynets

IJCLAB: D. Longuevergne, O. Hryhorenko

CEA: C. Antoine

Thank you for listening

Daniel Seal Lancaster University/Cockcroft Institute daniel.seal@cockcroft.ac.uk

