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0. Factorization?

1. Outline of factorization in an unbroken gauge theory

2. A “broken gauge theory”: what happens when your beam is all one color?

3. Just a comment on fragmentation

Questions, corrections, discussion

One view of how concepts underlying factorization perturbative QCD can be thought

of at as applying at a very high-energy lepton collider. Quite frankly based on an

incomplete consultation of the literature, & non-expert interpretation of what I’ve

seen so far. Discussion (& correction) is very much welcome. What’s correct below

has surely appeared in the literature.
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0. Factorization?

• The template: At the LHC (and before):

σpp→Q(Q) =
∑

i,j=u,d,s...G

∫
dx1dx2 fi/P (x1, µ) σ̂ij→Q(x1p1, x2ps, µ) fj/P (x2, µ)

where fi/P (x1, µ) is not perturbatively calculable, but evolves in a calculable way:

d

d ln(µ)
fi/P (x1, µ) = Pik ⊗ fk/P (x1, µ)

which enables us to extrapolate in energy.

• This factorization also holds with incoming, color-averaged partonic reactions (p→
u, d, s . . . G), which is how we compute σ̂, using dimensional or other regularization.

(Not QCD, but has the same short-distance structure. Actually, close to the topic

at hand . . . )

• What about at a lepton collider? We ought to have:

σll̄→Q(Q) =
∑

i,j=u,d,s...G

∫
dx1dx2 fi/l(x1, µ) σ̂ij→Q(x1p1, x2ps, µ) fj/l̄(x2, µ)

where now we can compute everything in principle! We know our initial state

really well, and EW theory is perturbative in the Standard Model.

• But it’s natural to ask, when we calculate in EW theory, will it really have this

form? Let’s go down this road, starting with a QCD-like example.
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1. Outline of factorization in an unbroken gauge theory

• Suppose we had an unbroken SU(2) Dirac-gauge theory, with massless “quarks” of

two colors. The quarks have EM charge, not part of the gauge group.

• How would factorization go? Say for qq̄ → γ∗(Q2) + X (“Drell Yan-like”)

• Strategy (to be illustrated next slide):

– Locality and analyticity: separate loop momentum and phase space into sep-

arate regions that give long-distance behavior in an arbitrary diagram. Call

each such region a “part”, defined using a mass scale. A single part includes a

number of final states. Work on each part and then combine them.

• Unitarity: Sum over diagrams that have the same “parts” :

cancels “final state” singularities.

• Causality and gauge invariance: use gauge invariance to isolate soft-collinear-hard

subprocesses.

• Causality and gauge invariance: Cancel soft so only collinear-hard is left.

• Combine different “parts” to get the whole: factorized cross section

• Demand independence of the mass scale used to define the “parts”: evolution.
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The process

Simple but typical parts

k

k

k

p

p
1

2

All three parts appear in both diagrams

k may be collinear to p  or p  or soft.
1 2

+
Q

Q−k

• Take pµ1 = Qδµ+, pµ2 = Qδµ−, so p2
1 = p2

2 = 0, but suppose m2
vector = m2.

• Let’s concentrate on k parallel to p1: k+ > k⊥, Q � k−. Also require k⊥ < µ to

“define the part”.
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• The two integrals are almost identical:

The process

Simple but typical parts

k

k

k

p

p
1

2

All three parts appear in both diagrams

k may be collinear to p  or p  or soft.1 2

+
QQ−k

• Take pµ
1 = Q�µ+, pµ

2 = Q�µ�, so p2
1 = p2

2 = 0, but m2
vector = m2.

• Let’s concentrate on k parallel to p1: k+ > k?, Q � k� The two integrals are almost

identical:

3

Real + Virtual = Q2
∫ d4k

(2π)4
(2π)δ

(
2k+k− − k2

⊥ −m2
)
θ(Q− k−) θ(k+ − k⊥) θ(µ− k⊥)

×
 1

2k−(k+ −Q)− k2
⊥


 1

−2Qk+


 1

2Q(Q− k+)
− 1

Q2



≈ Q2

(2π)2

∫ µ2
m2

dk2
⊥

k2
⊥ + m2

∫ Q
k⊥

dk+

2k+

 1

2Q(Q− k+)
− 1

Q2



• Or, defining x = k+/Q, this is just like a parton distribution convoluted with a

smooth function (1/x, in this simpified case).

Real + Virtual ≈ ln
µ2

m2

∫ dx

[1− x]+

1

x

• Other “parts” follow suit, and can be reassembled into the whole factorized cross

section. d/dµ→ 0 on the cross section implies evolution.
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• Call our SU(2) gauge field B, and our 2-color “quark field”, L:

L =

 ν
e



• In the cross section, we always average over our “colors” ν and e,

and get four terms
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• Cancellations occur between top left, bottom left and top right, bottom right to

get “parton distriutions” as above in the k collinear to p1 region. Nice!

• This is how factorization works. Then evolution follows from independence of µ.
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2. Broken gauge theories: what happens when your beam is all one color?

• But suppose, we could only build a beam of “e-quarks”. We’d only have one of

the processes.
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• From this one diagram, we get just the “virtual” integral from the k collinear to

p1 region, which doesn’t have the cancellation we found before:

Virtual alone ≈ − 1

(2π)2

∫ µ2
m2

dk2
⊥

k2
⊥ + m2

∫ Q
k⊥

dk+

2k+

≈ − 1

2(2π)2
ln
µ2

m2
ln
Q2

m2

• A typical “Sudakov” double log – we haven’t allowed our “e-quark” to radiate,

because in the opposing “ē-quark” beam, this radiation can’t be absorbed – you

need a “ν̄-quark” beam!
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• What to do? Very schematically . . .

• Add the ν̄-quark beam, and then subtract it. And while we’re at it, add a ν-quark

beam, and then subtract that too.

• In other words, rewrite the eē beam is a fully symmetric cross section plus cross

sections cross sections in which there are one or two antisymmetric components.

• Like this . . .

σeē =
1

4

(
σ(e+ν)(ē+ν̄) + σ(e−ν)(ē+ν̄) + σ(e+ν)(ē−ν̄) + σ(e−ν)(ē−ν̄)

)

• The first term is “the unbroken theory” and factorizes into parton distributions

that evolve according to familiar DGLAP equations.

• The other three always involve a difference rather than a sum of real and virtual:

Virtual − Real ≈ −2× 1

2(2π)2
ln
µ2

m2
ln
Q2

m2

• Terms like σ(e−ν)(ē−ν̄) should all be suppressed by exponentials of double logs at

large Q, but at finite Q/�v provide the approach to asymptotic behavior.

8



• The factorization procedure outlined at the start can be applied to the “antisym-

metric” terms.

• I expect an analogy to QT -resummation factorization in impact parameter space,

but with 1/mB replacing the impact parameter.

• I believe these effects are built into more practical treatments: Ciafaloni, Ciafaloni

and Comelli (hep-ph/0505047; Bauer, Ferland & Webber (1703.08562), Han, Ma

& Xi (2007.14300) . . .

3. Just a few comments on fragmentation

• Once organized as above, inclusive sums over final states should result in “stan-

dard” jet and fragmentation functions.

• In particular, fragmentation functions will have the same “universality” properties

if defined as single-particle inclusive

• With observed “colors” in the final state, however, ν vs. e, etc., some of the

features familiar from parton distributions should recur, as noted in Chien & Li

(1801.00395) Baumgarten, Erdogan, Rothstein & Vaidya (1811.04120).

Questions, corrections or discussion? . . .
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