# Physics at Muon Colliders — **SM and Beyond**











**CLUSTER OF EXCELLENCE** QUANTUM UNIVERSE

P. Bredt, W. Kilian, JRR, P. Stienemeier arXiv: 2208.09438 [JHEP]

K. Mękała/JRR/A.F. Żarnecki, arXiv: 2301.02602 [PLB] + 231x.xxxx



K. Korshynska, M. Löschner, M. Marinichenko, K. Mękała/JRR arXiv: 240x.xxxx



### **Multi-Bosons: Elusive couplings**





J. R. Reuter, DESY





# **Elusive SM couplings**



- Higgs properties at high precision utmost priority
- Higgs potential and Higgs couplings to all SM particles
- Higgs muon Yukawa coupling connected to muon mass [in the SM!]
  - Evidence for muon Yukawa coupling at LHC (not yet  $5\sigma$ ) [ATLAS: 2007.07830; CMS: 2009.04363]
  - Projections for the high-luminosity LHC (HL-LHC): (model-dependent) sensitivity with precision of 5-10% [ATLAS-PHYS-PUB-2014-016]

- Model-independent test for this coupling
- Direct access not relying on decays
- Sensitivity to the sign (and maybe phase) of coupling
- use high-luminosity muon collider

J. R. Reuter, DESY

Particle mass [GeV]

ESU2020 document

Challenges / wishlist:



MuC Physics Benchmark Workshop, Pittsburgh, 17.11.2023





$$-i\frac{k!}{\sqrt{2}}\left[Y_{\ell}\delta_{k,1}-\sum_{n=n_{k}}^{M-1}\frac{C_{\mu\varphi}^{(n)}}{\Lambda^{2n}}\begin{pmatrix}2n+1\\k\end{pmatrix}\frac{v^{2n+1-k}}{2^{n}}\right]=$$



J. R. Reuter, DESY



# **Multi-boson final states**

Subtle cancellation between Yukawa coupling and multi-boson final states





[hep-ph/0106281]

- Analytical calculations checked independently by 3 groups
- Validation of analytic calculation with 2 different MCs
- Final simulation: using UFO files in WHIZARD

### States with multiplicity 2

- Different cases: dim 6 alone, dim 8 alone, dim 6+8 combined
- Matched case: combination such that Yukawa coupling is zero
- (c) HEFT contains in principle all orders: matched is zero Yukawa

|          |                  | $\Delta\sigma^X/\Delta\sigma^{W^+W^-}$ |                          |                                 |                               |                                  |  |  |  |  |
|----------|------------------|----------------------------------------|--------------------------|---------------------------------|-------------------------------|----------------------------------|--|--|--|--|
|          |                  |                                        | SMEFT                    | HEFT                            |                               |                                  |  |  |  |  |
| X        | dim <sub>6</sub> | $\dim_8$                               | $\dim_{6,8}$             | $\dim_{6,8}^{\mathrm{matched}}$ | $\dim_{\infty}$               | $\dim^{\mathrm{matched}}_\infty$ |  |  |  |  |
| $W^+W^-$ | 1                | 1                                      | 1                        | 1                               | 1                             | 1                                |  |  |  |  |
| ZZ       | 1/2              | 1/2                                    | 1/2                      | 1/2                             | 1/2                           | 1/2                              |  |  |  |  |
| ZH       | 1                | 1/2                                    | 1                        | 1                               | $R_{(2),1}^{\mathrm{HEFT}}$   | 1                                |  |  |  |  |
| HH       | 9/2              | 25/2                                   | $R_{(2),1}^{ m SMEFT}/2$ | 0                               | $2 \hat{R}_{(2),2}^{ m HEFT}$ | 0                                |  |  |  |  |



J. R. Reuter, DESY









- Analytical calculations checked independently by 3 groups
- Validation of analytic calculation with 2 different MCs
- Final simulation: using UFO files in WHIZARD

### States with multiplicity 3

- Different cases: dim 6 alone, dim 8 alone, dim 6+8 combined
- Matched case: combination such that Yukawa coupling is zero
- HEFT contains in principle all orders: matched is zero Yukawa

|                    |          | $\Delta\sigma^X/\Delta\sigma^{W^+W^-H}$ |                             |                                 |                         |                                  |  |  |  |  |
|--------------------|----------|-----------------------------------------|-----------------------------|---------------------------------|-------------------------|----------------------------------|--|--|--|--|
|                    |          |                                         | SMEFT                       | HEFT                            |                         |                                  |  |  |  |  |
| $\mu^+\mu^- \to X$ | $\dim_6$ | $\dim_8$                                | $\dim_{6,8}$                | $\dim_{6,8}^{\mathrm{matched}}$ | $\dim_\infty$           | $\dim^{\mathrm{matched}}_\infty$ |  |  |  |  |
| WWZ                | 1        | 1/9                                     | $R^{ m SMEFT}_{(3),1}$      | 1/4                             | $R_{(3),1}^{ m HEFT}/9$ | 1/4                              |  |  |  |  |
| ZZZ                | 3/2      | 1/6                                     | $3 R_{(3),1}^{ m SMEFT}/2$  | 3/8                             | $R_{(3),1}^{ m HEFT}/6$ | 3/8                              |  |  |  |  |
| WWH                | 1        | 1                                       | 1                           | 1                               | 1                       | 1                                |  |  |  |  |
| ZZH                | 1/2      | 1/2                                     | 1/2                         | 1/2                             | 1/2                     | 1/2                              |  |  |  |  |
| ZHH                | 1/2      | 1/2                                     | 1/2                         | 1/2                             | $2R^{ m HEFT}_{(3),2}$  | 1/2                              |  |  |  |  |
| HHH                | 3/2      | 25/6                                    | $3  R^{ m SMEFT}_{(3),2}/2$ | 75/8                            | $6R_{(3),3}^{ m HEFT}$  | 0                                |  |  |  |  |



J. R. Reuter, DESY









- Analytical calculations checked independently by 3 groups
- Validation of analytic calculation with 2 different MCs
- Final simulation: using UFO files in WHIZARD

### States with multiplicity 4

- Different cases: dim 6 alone, dim 8 alone, dim 6+8 combined
- Matched case: combination such that Yukawa coupling is zero
- HEFT contains in principle all orders: matched is zero Yukawa

|                    |              |            | HEFT                           |                          |                               |                        |
|--------------------|--------------|------------|--------------------------------|--------------------------|-------------------------------|------------------------|
| $\mu^+\mu^- \to X$ | $\dim_{6,8}$ | $dim_{10}$ | $dim_{6,8,10}$                 | $dim_{6,8,10}^{matched}$ | $dim_\infty$                  | $dim^{matched}_\infty$ |
| WWWW               | 2/9          | 2/25       | $2 R_{(4),1}^{\text{SMEFT}}/9$ | 1/2                      | $R_{(4),1}^{HEFT}/18$         | 1/2                    |
| WWZZ               | 1/9          | 1/25       | $R_{(4),1}^{SMEFT}/9$          | 1/4                      | $R_{(4),1}^{HEFT}/36$         | 1/4                    |
| ZZZZ               | 1/12         | 3/100      | $R_{(4),1}^{SMEFT}/12$         | 3/16                     | $R_{(4),1}^{HEFT}/48$         | 3/16                   |
| WWZH               | 2/9          | 2/25       | $2 R_{(4),1}^{SMEFT}/9$        | 1/2                      | $R_{(4),2}^{HEFT}/8$          | 1/2                    |
| WWHH               | 1            | 1          |                                | 1                        |                               | 1                      |
| ZZZH               | 1/3          | 3/25       | $R_{(4),1}^{SMEFT}/3$          | 3/4                      | $R_{(4),2}^{HEFT}/12$         | 3/4                    |
| ZZHH               | 1/2          | 1/2        | 1/2                            | 1/2                      | 1/2                           | 1/2                    |
| ZHHH               | 1/3          | 1/3        | 1/3                            | 1/3                      | $3 R_{(4),3}^{HEFT}$          | 1/3                    |
| НННН               | 25/12        | 49/12      | $25 R_{(4),2}^{SMEFT}/12$      | 1225/48                  | $12 R_{(4),4}^{H\acute{E}FT}$ | 0                      |



J. R. Reuter, DESY





|   | Ξ |
|---|---|
|   | 9 |
|   | 4 |
|   | ٠ |
|   |   |
|   | 1 |
|   |   |
|   | 4 |
|   | = |
|   | 1 |
|   |   |
|   | 4 |
|   | + |
|   | + |
|   |   |
| - | Ξ |
|   | 4 |
|   | H |
|   |   |
|   |   |
|   | ] |
|   | 1 |
|   |   |
|   | Ξ |
|   | 7 |
|   | - |
|   | - |
|   | 1 |
|   | 1 |
|   |   |
|   |   |
| - | - |
|   | = |
|   | - |
|   | 7 |
|   | 1 |
|   |   |
|   |   |
|   |   |
|   | Ξ |
|   | 1 |
|   |   |
|   | 1 |
|   |   |
|   | - |
|   |   |
|   | - |
|   |   |
|   | + |
|   | t |
|   | 1 |
|   | ۲ |
|   | 4 |
|   |   |
|   | 4 |
|   | 4 |
|   | Ⅎ |
|   |   |
|   | + |
|   | + |
|   | + |
|   | J |
|   | _ |



- Analytical calculations checked independently by 3 groups
- Validation of analytic calculation with 2 different MCs
- Final simulation: using UFO files in WHIZARD

### States with multiplicity 4

- Different cases: dim 6 alone, dim 8 alone, dim 6+8 combined
- Matched case: combination such that Yukawa coupling is zero
- HEFT contains in principle all orders: matched is zero Yukawa

|                    |             |            | SMEFT                          |                          | Γ |
|--------------------|-------------|------------|--------------------------------|--------------------------|---|
| $\mu^+\mu^- \to X$ | $dim_{6,8}$ | $dim_{10}$ | $dim_{6,8,10}$                 | $dim_{6,8,10}^{matched}$ | Γ |
| WWWW               | 2/9         | 2/25       | $2 R_{(4),1}^{\text{SMEFT}}/9$ | 1/2                      | Γ |
| WWZZ               | 1/9         | 1/25       | $R_{(4),1}^{SMEFT}/9$          | 1/4                      |   |
| ZZZZ               | 1/12        | 3/100      | $R_{(4),1}^{SMÉFT}/12$         | 3/16                     |   |
| WWZH               | 2/9         | 2/25       | $2 R_{(4),1}^{SMEFT}/9$        | 1/2                      | Γ |
| WWHH               | 1           | 1          |                                | 1                        |   |
| ZZZH               | 1/3         | 3/25       | $R_{(4),1}^{SMEFT}/3$          | 3/4                      |   |
| ZZHH               | 1/2         | 1/2        | 1/2                            | 1/2                      |   |
| ZHHH               | 1/3         | 1/3        | 1/3                            | 1/3                      |   |
| НННН               | 25/12       | 49/12      | $25 R_{(4),2}^{SMEFT}/12$      | 1225/48                  |   |



J. R. Reuter, DESY



MuC Physics Benchmark Workshop, Pittsburgh, 17.11.2023





# Variations of cross sections with $\kappa$





J. R. Reuter, DESY



# **Kinematic separation of signal**

Kinematic separation between multi-boson direct production and VBF, e.g. 10 TeV:



- WWZ largest cross section, but small deviation
- WWH large cross section and considerable deviation
- ZZH smaller/-ish cross section, but largest (relative) deviation
- Direct production has almost full energy (except for ISR)  $\implies M_{3B}$
- VBF generates mostly forward bosons  $\implies \Theta_B$
- Separation criterion for final state bosons  $\implies \Delta R_{BB}$



J. R. Reuter, DESY

arXiv: 2108.05362



| Cut flow                              | $\kappa_{\mu} = 1$ | w/o ISR | $\kappa_{\mu} = 0 \ (2)$ | CVBF               | N   |
|---------------------------------------|--------------------|---------|--------------------------|--------------------|-----|
| $\sigma$ [fb]                         |                    |         | WWH                      |                    |     |
| No cut                                | 0.24               | 0.21    | 0.47                     | 2.3                |     |
| $M_{3B} > 0.8\sqrt{s}$                | 0.20               | 0.21    | 0.42                     | $5.5\cdot10^{-3}$  | 3.7 |
| $10^{\circ} < \theta_B < 170^{\circ}$ | 0.092              | 0.096   | 0.30                     | $2.5\cdot10^{-4}$  | 2.7 |
| $\Delta R_{BB} > 0.4$                 | 0.074              | 0.077   | 0.28                     | $2.1\cdot 10^{-4}$ | 2.4 |
| # of events                           | 740                | 770     | 2800                     | 2.1                |     |
| S/B                                   |                    | •       | 2.8                      |                    |     |







# **Results and final projections**

Muon collider with energy range  $1 < \sqrt{s} < 30 \text{ TeV}$  and

- Sensitivity to (deviations of) the muon Yukawa coupling
- Definition of # signal events:  $S = N_{\kappa_{\mu}} N_{\kappa_{\mu}=1}$
- Definition of # background events:  $B = N_{\kappa_{\mu}=1} + N_{\text{VBF}}$
- Statistical significance of anom. muon Yukawa couplings:

$${\cal S}={S\over \sqrt{B}}$$
 (note that always:  $N_{\kappa_\mu}\geq N_{\kappa_\mu=1}$  )

$$\sigma|_{\kappa_{\mu}=1+\delta} = \sigma|_{\kappa_{\mu}=1-\delta} \implies \qquad \mathcal{S}|_{\kappa_{\mu}=1+\delta} = \mathcal{S}|_{\kappa_{\mu}=1-\delta}$$

- $5\sigma$  sensitivity to 20% @ 10 TeV .... 2% @ 30 TeV
- Sensitivity to  $\kappa$  translates to new physics scale  $\Lambda$

$$\Lambda > 10 ~{\rm TeV} \sqrt{\frac{g}{\Delta \kappa_{\mu}}}$$



J. R. Reuter, DESY

luminosity 
$$\mathcal{L} = \left(rac{\sqrt{s}}{10 \,\, {
m TeV}}
ight)^2 10 \,\, {
m ab}^{-1}$$

1901.06150; 2001.04431;



arXiv: 2108.05362

### Celada/Han/Kilian/Kreher/Ma/Maltoni/Pagani/JRR/Striegl/Xie, to appear soon

- EFT setup generating multi-boson vertices of higher multiplicity
- Paradigmatic BSM implementations: scalar singlet S / vector-like fermions  $E_{L/R}$
- Vertex parameterizations (can be expressed by HEFT or SMEFT operators):



J. R. Reuter, DESY



### Celada/Han/Kilian/Kreher/Ma/Maltoni/Pagani/JRR/Striegl/Xie, to appear soon

- EFT setup generating multi-boson vertices of higher multiplicity
- Paradigmatic BSM implementations: scalar singlet S / vector-like fermions  $E_{L/R}$
- Vertex parameterizations (can be expressed by HEFT or SMEFT operators):

$$egin{aligned} \mathcal{L} &\supset -rac{m_H^2}{2}H^2 - m_\mu ar{\mu}\mu - \sum_{n=3}^\infty eta_n rac{\lambda}{v^{n-4}}H^n - \sum_{n=1}^\infty lpha_n rac{m_\mu}{v^n}ar{\mu}\mu H^n. \end{aligned}$$
 $y_{\mu,n} &= rac{\sqrt{2}m_\mu}{v}lpha_n, \qquad \qquad f_{V,n} = eta_n\lambda \end{aligned}$ 

$$\begin{split} \alpha_{1} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,1} = 1 + \frac{v^{3}}{\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{v^{5}}{\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{3v^{7}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{2} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,2} = \frac{3v^{3}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{5v^{5}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{21v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{3} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,3} = \frac{v^{3}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{5v^{5}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{35v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{4} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,4} = \frac{5v^{5}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{35v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{5} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,5} = \frac{v^{5}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{21v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \end{split}$$



J. R. Reuter, DESY



### Celada/Han/Kilian/Kreher/Ma/Maltoni/Pagani/JRR/Striegl/Xie, to appear soon

- EFT setup generating multi-boson vertices of higher multiplicity
- Paradigmatic BSM implementations: scalar singlet S / vector-like fermions
- Vertex parameterizations (can be expressed by HEFT or SMEFT operators)

$$egin{aligned} \mathcal{L} &\supset -rac{m_H^2}{2}H^2 - m_\mu ar{\mu} \mu - \sum_{n=3}^\infty eta_n rac{\lambda}{v^{n-4}} H^n - \sum_{n=1}^\infty lpha_n rac{m_\mu}{v^n} ar{\mu} \mu H^n. \end{aligned}$$
 $y_{\mu,n} &= rac{\sqrt{2}m_\mu}{v} lpha_n, \qquad \qquad f_{V,n} = eta_n \lambda \end{aligned}$ 

$$\begin{split} \alpha_{1} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,1} = 1 + \frac{v^{3}}{\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{v^{5}}{\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{3v^{7}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{2} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,2} = \frac{3v^{3}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{5v^{5}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{21v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{3} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,3} = \frac{v^{3}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{5v^{5}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{35v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{4} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,4} = \frac{5v^{5}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{35v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{5} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,5} = \frac{v^{5}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{21v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \end{split}$$



J. R. Reuter, DESY

| S   | $E_{L/R}$ |
|-----|-----------|
| ;): |           |

|   | 0     | 1      | 2                   | 3                     | 4                     | 5                      |
|---|-------|--------|---------------------|-----------------------|-----------------------|------------------------|
| 0 | -     | Z      | $Z^2,\!W^2$         | $Z^3 \ W^2 Z$         | $Z^4,W^4 \ W^2 Z^2$   | $Z^5, W^2 Z^3 \ W^4 Z$ |
| 1 | Η     | ZH     | $W^2 H \ Z^2 H$     | $W^2 Z H \ Z^3 H$     | $W^4H,Z^4H \ W^2Z^2H$ | -                      |
| 2 | $H^2$ | $ZH^2$ | $W^2 H^2 \ Z^2 H^2$ | $W^2 Z H^2 \ Z^3 H^2$ | -                     | -                      |
| 3 | $H^3$ | $ZH^3$ | $W^2H^3\ Z^2H^3$    | -                     | -                     | -                      |
| 4 | $H^4$ | $ZH^4$ | -                   | -                     | -                     | -                      |
| 5 | $H^5$ | -      | -                   | -                     | -                     | -                      |







### Celada/Han/Kilian/Kreher/Ma/Maltoni/Pagani/JRR/Striegl/Xie, to appear soon

- EFT setup generating multi-boson vertices of higher multiplicity
- Paradigmatic BSM implementations: scalar singlet S / vector-like fermions
- Vertex parameterizations (can be expressed by HEFT or SMEFT operators):

$$egin{aligned} \mathcal{L} &\supset -rac{m_H^2}{2}H^2 - m_\mu ar{\mu} \mu - \sum_{n=3}^\infty eta_n rac{\lambda}{v^{n-4}} H^n - \sum_{n=1}^\infty lpha_n rac{m_\mu}{v^n} ar{\mu} \mu H^n. \ y_{\mu,n} &= rac{\sqrt{2}m_\mu}{v} lpha_n, \qquad \qquad f_{V,n} = eta_n \lambda \end{aligned}$$

$$\begin{split} \alpha_{1} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,1} = 1 + \frac{v^{3}}{\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{v^{5}}{\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{3v^{7}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{2} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,2} = \frac{3v^{3}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{5v^{5}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{21v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{3} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,3} = \frac{v^{3}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(6)}}{\Lambda^{2}} + \frac{5v^{5}}{2\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{35v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{4} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,4} = \frac{5v^{5}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{35v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \\ \alpha_{5} &= \frac{v}{\sqrt{2}m_{\mu}}y_{l,5} = \frac{v^{5}}{4\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(8)}}{\Lambda^{4}} + \frac{21v^{7}}{8\sqrt{2}m_{\mu}}\frac{c_{\ell\phi}^{(10)}}{\Lambda^{6}}, \end{split}$$



J. R. Reuter, DESY

|           |   | 0     | 1      | 2                   | 3                     | 4                    | 5                      |
|-----------|---|-------|--------|---------------------|-----------------------|----------------------|------------------------|
| $E_{L/R}$ | 0 | _     | Z      | $Z^2,\!W^2$         | $Z^3 \ W^2 Z$         | $Z^4,W^4 \ W^2 Z^2$  | $Z^5, W^2 Z^3 \ W^4 Z$ |
|           | 1 | H     | ZH     | $W^2 H \ Z^2 H$     | $W^2 Z H \ Z^3 H$     | $W^4H,Z^4H\ W^2Z^2H$ | -                      |
|           | 2 | $H^2$ | $ZH^2$ | $W^2 H^2 \ Z^2 H^2$ | $W^2 Z H^2 \ Z^3 H^2$ | -                    | -                      |
|           | 3 | $H^3$ | $ZH^3$ | $W^2H^3\ Z^2H^3$    | -                     | -                    | -                      |
|           | 4 | $H^4$ | $ZH^4$ | -                   | -                     | -                    | -                      |
|           | 5 | $H^5$ | -      | _                   | _                     | -                    | _                      |

### Perturbative Unitarity bound









| $\sqrt{s}$                   |                           | $3 { m TeV}$       |                    |                     |                             | 10 TeV             |                    |                     |  |
|------------------------------|---------------------------|--------------------|--------------------|---------------------|-----------------------------|--------------------|--------------------|---------------------|--|
|                              | $lpha_{2(3)}=1^{\dagger}$ | SM LO              | Loop               | VBF                 | $\alpha_{2(3)}=1^{\dagger}$ | SM LO              | Loop               | VBF                 |  |
| $\sigma$ [fb]                |                           |                    |                    | 21                  | H                           |                    |                    |                     |  |
| No cut                       | $2.4\cdot10^{-2}$         | $1.6\cdot 10^{-7}$ | $2.6\cdot 10^{-3}$ | 0.951               | $2.4\cdot10^{-2}$           | $1.3\cdot 10^{-9}$ | $4.2\cdot 10^{-4}$ | 3.80                |  |
| $M_F > 0.8\sqrt{s}$          | $2.4\cdot 10^{-2}$        | $1.6\cdot 10^{-7}$ | $2.6\cdot 10^{-3}$ | $6.12\cdot 10^{-4}$ | $2.4\cdot10^{-2}$           | $1.3\cdot 10^{-9}$ | $4.2\cdot 10^{-4}$ | $6.50\cdot 10^{-4}$ |  |
| $ \theta_{iB}  > 10^{\circ}$ | $2.3\cdot 10^{-2}$        | $1.6\cdot 10^{-7}$ | $2.6\cdot 10^{-3}$ | $1.18\cdot 10^{-4}$ | $2.3\cdot 10^{-2}$          | $1.3\cdot 10^{-9}$ | $4.1\cdot 10^{-4}$ | $3.46\cdot 10^{-5}$ |  |
| event #                      | 23                        | _                  | 2.6                | 0.12                | 230                         | _                  | 4.1                | 0.3                 |  |
| $\sigma$ [fb]                |                           |                    |                    | 3.                  | H                           |                    |                    |                     |  |
| No cut                       | $3.1 \cdot 10^{-2}$       | $3.0\cdot 10^{-8}$ | $1.1\cdot 10^{-5}$ | $3.69\cdot 10^{-4}$ | $3.7\cdot10^{-1}$           | $2.3\cdot 10^{-9}$ | $1.7\cdot10^{-6}$  | $5.52\cdot10^{-3}$  |  |
| $M_F > 0.8\sqrt{s}$          | $3.1\cdot10^{-2}$         | $3.0\cdot 10^{-8}$ | $1.1\cdot 10^{-5}$ | $2.84\cdot 10^{-6}$ | $3.7\cdot10^{-1}$           | $2.3\cdot 10^{-9}$ | $1.7\cdot 10^{-6}$ | $7.85\cdot 10^{-5}$ |  |
| $ \theta_{iB}  > 10^{\circ}$ | $3.0\cdot10^{-2}$         | $2.8\cdot 10^{-8}$ | $1.1\cdot 10^{-5}$ | $6.82\cdot 10^{-7}$ | $3.5\cdot10^{-1}$           | $2.2\cdot 10^{-9}$ | $1.7\cdot 10^{-6}$ | $7.37\cdot 10^{-5}$ |  |
| $\Delta R_{BB} > 0.4$        | $2.9\cdot 10^{-2}$        | $2.7\cdot 10^{-8}$ | $8.1\cdot 10^{-6}$ | $6.07\cdot 10^{-7}$ | $3.4\cdot10^{-1}$           | $2.1\cdot 10^{-9}$ | $6.8\cdot 10^{-7}$ | $7.22\cdot 10^{-5}$ |  |
| event #                      | 29                        | _                  | _                  | _                   | 3400                        | _                  | _                  | 0.7                 |  |



J. R. Reuter, DESY

**Preliminary results for**  $\mu^+\mu^- \rightarrow V^k H^l$ 



| $\sqrt{s}$                   |                             | 3 TeV              |                    |                     |                             | 10 TeV             |                     |                     |
|------------------------------|-----------------------------|--------------------|--------------------|---------------------|-----------------------------|--------------------|---------------------|---------------------|
|                              | $\alpha_{2(3)}=1^{\dagger}$ | SM LO              | Loop               | VBF                 | $\alpha_{2(3)}=1^{\dagger}$ | SM LO              | Loop                | VBF                 |
| $\sigma$ [fb]                |                             |                    |                    | 2.                  | H                           |                    |                     |                     |
| No cut                       | $2.4 \cdot 10^{-2}$         | $1.6\cdot 10^{-7}$ | $2.6\cdot 10^{-3}$ | 0.951               | $2.4 \cdot 10^{-2}$         | $1.3\cdot 10^{-9}$ | $4.2\cdot 10^{-4}$  | 3.80                |
| $M_F > 0.8 \sqrt{s}$         | $2.4\cdot10^{-2}$           | $1.6\cdot 10^{-7}$ | $2.6\cdot 10^{-3}$ | $6.12\cdot 10^{-4}$ | $2.4 \cdot 10^{-2}$         | $1.3\cdot 10^{-9}$ | $4.2\cdot 10^{-4}$  | $6.50\cdot 10^{-4}$ |
| $ \theta_{iB}  > 10^{\circ}$ | $2.3\cdot10^{-2}$           | $1.6\cdot 10^{-7}$ | $2.6\cdot 10^{-3}$ | $1.18\cdot 10^{-4}$ | $2.3\cdot10^{-2}$           | $1.3\cdot 10^{-9}$ | $4.1 \cdot 10^{-4}$ | $3.46\cdot 10^{-5}$ |
| event #                      | 23                          | —                  | 2.6                | 0.12                | 230                         | _                  | 4.1                 | 0.3                 |
| $\sigma~\mathrm{[fb]}$       |                             |                    |                    | 3.                  | H                           |                    |                     |                     |
| No cut                       | $3.1 \cdot 10^{-2}$         | $3.0\cdot 10^{-8}$ | $1.1\cdot 10^{-5}$ | $3.69\cdot 10^{-4}$ | $3.7\cdot10^{-1}$           | $2.3\cdot 10^{-9}$ | $1.7\cdot 10^{-6}$  | $5.52\cdot 10^{-3}$ |
| $M_F > 0.8\sqrt{s}$          | $3.1 \cdot 10^{-2}$         | $3.0\cdot 10^{-8}$ | $1.1\cdot 10^{-5}$ | $2.84\cdot 10^{-6}$ | $3.7\cdot10^{-1}$           | $2.3\cdot 10^{-9}$ | $1.7\cdot 10^{-6}$  | $7.85\cdot 10^{-5}$ |
| $ \theta_{iB}  > 10^{\circ}$ | $3.0\cdot10^{-2}$           | $2.8\cdot 10^{-8}$ | $1.1\cdot 10^{-5}$ | $6.82\cdot 10^{-7}$ | $3.5\cdot10^{-1}$           | $2.2\cdot 10^{-9}$ | $1.7\cdot 10^{-6}$  | $7.37\cdot 10^{-5}$ |
| $\Delta R_{BB} > 0.4$        | $2.9\cdot 10^{-2}$          | $2.7\cdot 10^{-8}$ | $8.1\cdot 10^{-6}$ | $6.07\cdot 10^{-7}$ | $3.4\cdot 10^{-1}$          | $2.1\cdot 10^{-9}$ | $6.8\cdot10^{-7}$   | $7.22\cdot 10^{-5}$ |
| event #                      | 29                          | _                  | _                  | _                   | 3400                        | —                  | —                   | 0.7                 |





J. R. Reuter, DESY

**Preliminary results for**  $\mu^+\mu^- \rightarrow V^k H^l$ 



| $\sqrt{s}$                   |                               | 3 TeV              |                    |                     |                             | 10 TeV             |                    |                     |  |
|------------------------------|-------------------------------|--------------------|--------------------|---------------------|-----------------------------|--------------------|--------------------|---------------------|--|
|                              | $\alpha_{2(3)} = 1^{\dagger}$ | SM LO              | Loop               | VBF                 | $\alpha_{2(3)}=1^{\dagger}$ | SM LO              | Loop               | VBF                 |  |
| $\sigma~{ m [fb]}$           |                               |                    |                    | 21                  | H                           |                    |                    |                     |  |
| No cut                       | $2.4\cdot10^{-2}$             | $1.6\cdot 10^{-7}$ | $2.6\cdot 10^{-3}$ | 0.951               | $2.4\cdot10^{-2}$           | $1.3\cdot 10^{-9}$ | $4.2\cdot 10^{-4}$ | 3.80                |  |
| $M_F > 0.8\sqrt{s}$          | $2.4\cdot 10^{-2}$            | $1.6\cdot 10^{-7}$ | $2.6\cdot 10^{-3}$ | $6.12\cdot 10^{-4}$ | $2.4\cdot 10^{-2}$          | $1.3\cdot 10^{-9}$ | $4.2\cdot 10^{-4}$ | $6.50\cdot 10^{-4}$ |  |
| $ \theta_{iB}  > 10^{\circ}$ | $2.3\cdot 10^{-2}$            | $1.6\cdot 10^{-7}$ | $2.6\cdot 10^{-3}$ | $1.18\cdot 10^{-4}$ | $2.3\cdot 10^{-2}$          | $1.3\cdot 10^{-9}$ | $4.1\cdot 10^{-4}$ | $3.46\cdot 10^{-5}$ |  |
| event #                      | 23                            | —                  | 2.6                | 0.12                | 230                         | —                  | 4.1                | 0.3                 |  |
| $\sigma$ [fb]                |                               |                    |                    | 31                  | H                           |                    |                    |                     |  |
| No cut                       | $3.1 \cdot 10^{-2}$           | $3.0\cdot 10^{-8}$ | $1.1\cdot 10^{-5}$ | $3.69\cdot 10^{-4}$ | $3.7\cdot10^{-1}$           | $2.3\cdot 10^{-9}$ | $1.7\cdot 10^{-6}$ | $5.52\cdot10^{-3}$  |  |
| $M_F > 0.8\sqrt{s}$          | $3.1\cdot10^{-2}$             | $3.0\cdot 10^{-8}$ | $1.1\cdot 10^{-5}$ | $2.84\cdot 10^{-6}$ | $3.7\cdot 10^{-1}$          | $2.3\cdot 10^{-9}$ | $1.7\cdot 10^{-6}$ | $7.85\cdot 10^{-5}$ |  |
| $ \theta_{iB}  > 10^{\circ}$ | $3.0\cdot10^{-2}$             | $2.8\cdot 10^{-8}$ | $1.1\cdot 10^{-5}$ | $6.82\cdot 10^{-7}$ | $3.5\cdot 10^{-1}$          | $2.2\cdot 10^{-9}$ | $1.7\cdot 10^{-6}$ | $7.37\cdot 10^{-5}$ |  |
| $\Delta R_{BB} > 0.4$        | $2.9\cdot 10^{-2}$            | $2.7\cdot 10^{-8}$ | $8.1\cdot 10^{-6}$ | $6.07\cdot 10^{-7}$ | $3.4\cdot10^{-1}$           | $2.1\cdot 10^{-9}$ | $6.8\cdot 10^{-7}$ | $7.22\cdot 10^{-5}$ |  |
| event $\#$                   | 29                            | _                  | —                  | _                   | 3400                        | _                  | —                  | 0.7                 |  |





J. R. Reuter, DESY

Preliminary results for  $\mu^+\mu^- \rightarrow V^k H^l$ 

Combination of  $\mu\mu \rightarrow HH, HVV, V^k$ 





| $\sqrt{s}$                   | 3 TeV                         |                    |                    | 10 TeV              |                             |                    |                    |                     |
|------------------------------|-------------------------------|--------------------|--------------------|---------------------|-----------------------------|--------------------|--------------------|---------------------|
|                              | $\alpha_{2(3)} = 1^{\dagger}$ | SM LO              | Loop               | VBF                 | $\alpha_{2(3)}=1^{\dagger}$ | SM LO              | Loop               | VBF                 |
| $\sigma$ [fb]                |                               | 2H                 |                    |                     |                             |                    |                    |                     |
| No cut                       | $2.4 \cdot 10^{-2}$           | $1.6\cdot 10^{-7}$ | $2.6\cdot 10^{-3}$ | 0.951               | $2.4\cdot10^{-2}$           | $1.3\cdot 10^{-9}$ | $4.2\cdot 10^{-4}$ | 3.80                |
| $M_F > 0.8\sqrt{s}$          | $2.4\cdot10^{-2}$             | $1.6\cdot 10^{-7}$ | $2.6\cdot 10^{-3}$ | $6.12\cdot 10^{-4}$ | $2.4\cdot 10^{-2}$          | $1.3\cdot 10^{-9}$ | $4.2\cdot 10^{-4}$ | $6.50\cdot 10^{-4}$ |
| $ \theta_{iB}  > 10^{\circ}$ | $2.3\cdot 10^{-2}$            | $1.6\cdot 10^{-7}$ | $2.6\cdot 10^{-3}$ | $1.18\cdot 10^{-4}$ | $2.3\cdot 10^{-2}$          | $1.3\cdot 10^{-9}$ | $4.1\cdot 10^{-4}$ | $3.46\cdot 10^{-5}$ |
| event $\#$                   | 23                            | _                  | 2.6                | 0.12                | 230                         | —                  | 4.1                | 0.3                 |
| $\sigma$ [fb]                |                               |                    |                    | 31                  | H                           |                    |                    |                     |
| No cut                       | $3.1 \cdot 10^{-2}$           | $3.0\cdot 10^{-8}$ | $1.1\cdot 10^{-5}$ | $3.69\cdot 10^{-4}$ | $3.7\cdot10^{-1}$           | $2.3\cdot 10^{-9}$ | $1.7\cdot 10^{-6}$ | $5.52\cdot 10^{-3}$ |
| $M_F > 0.8\sqrt{s}$          | $3.1\cdot10^{-2}$             | $3.0\cdot 10^{-8}$ | $1.1\cdot 10^{-5}$ | $2.84\cdot 10^{-6}$ | $3.7\cdot 10^{-1}$          | $2.3\cdot 10^{-9}$ | $1.7\cdot 10^{-6}$ | $7.85\cdot10^{-5}$  |
| $ \theta_{iB}  > 10^{\circ}$ | $3.0\cdot10^{-2}$             | $2.8\cdot 10^{-8}$ | $1.1\cdot 10^{-5}$ | $6.82\cdot 10^{-7}$ | $3.5\cdot 10^{-1}$          | $2.2\cdot 10^{-9}$ | $1.7\cdot 10^{-6}$ | $7.37\cdot 10^{-5}$ |
| $\Delta R_{BB} > 0.4$        | $2.9\cdot 10^{-2}$            | $2.7\cdot 10^{-8}$ | $8.1\cdot 10^{-6}$ | $6.07\cdot 10^{-7}$ | $3.4\cdot10^{-1}$           | $2.1\cdot 10^{-9}$ | $6.8\cdot 10^{-7}$ | $7.22\cdot 10^{-5}$ |
| event $\#$                   | 29                            | _                  | _                  | _                   | 3400                        | _                  | _                  | 0.7                 |
|                              |                               |                    |                    |                     |                             |                    |                    |                     |





J. R. Reuter, DESY

Preliminary results for  $\mu^+\mu^- \rightarrow V^k H^l$ 



## **Multi-bosons: SM precision**





J. R. Reuter, DESY



### **Precision simulations / EW corrections — e.g. WHIZARD framework**

Ş Detection of BSM physics necessitates understanding SM at high precision

Picture: S. Dittmaier, 2nd ECFA Higgs Factory Workshop, 2023



J. R. Reuter, DESY



The Standard Model – establishing its dynamics (with precision)





### **Precision simulations / EW corrections — e.g. WHIZARD framework**

Ģ Detection of BSM physics necessitates understanding SM at high precision

Picture: S. Dittmaier, 2nd ECFA Higgs Factory Workshop, 2023

- Ş NLO SM lepton-/hadron collider automation completed 2022 Chokoufé 2017; Weiss 2017; Rothe 2021; Stienemeier 2022; Bredt 2022
- **FKS** subtraction
- NLO matrix elements from OpenLoops/Recola/GoSam/...
- also: resonance-aware FKS subtraction
- Setup for automatic differential fixed-order results (histogrammed distributions)
- Photon isolation, photon recombination, light-, b-, c-jet selection
- Ş LL+NLL QED lepton PDFs, LL EW lepton PDFs (work in progress)  $\hookrightarrow$  Talk Keping Xie



J. R. Reuter, DESY











### **Precision simulations / EW corrections — e.g. WHIZARD framework**

Detection of BSM physics necessitates Ģ understanding SM at high precision

Picture: S. Dittmaier, 2nd ECFA Higgs Factory Workshop, 2023

- Ş NLO SM lepton-/hadron collider automation completed 2022 Chokoufé 2017; Weiss 2017; Rothe 2021; Stienemeier 2022; Bredt 2022
- **FKS** subtraction
- NLO matrix elements from OpenLoops/Recola/GoSam/...
- also: resonance-aware FKS subtraction
- Setup for automatic differential fixed-order results (histogrammed distributions)
- Photon isolation, photon recombination, light-, b-, c-jet selection
- Ş LL+NLL QED lepton PDFs, LL EW lepton PDFs (work in progress)  $\hookrightarrow$  Talk Keping Xie

3 New: loop-induced processes supported

Work in progress: NLO (QCD) for BSM processes with UFO models



J. R. Reuter, DESY









## **Some results — some technicalities**

### ee @ I TeV, NLO QCD

|                                        | WHIZARD+OpenLoops           |                              |      |  |
|----------------------------------------|-----------------------------|------------------------------|------|--|
| Process                                | $\sigma_{\rm LO}[{\rm fb}]$ | $\sigma_{\rm NLO}[{\rm fb}]$ | K    |  |
| $e^+e^-  ightarrow jj$                 | 622.737(8)                  | 639.39(5)                    | 1.03 |  |
| $e^+e^-  ightarrow jjj$                | 340.6(5)                    | 317.8(5)                     | 0.93 |  |
| $e^+e^- \rightarrow jjjjj$             | 105.0(3)                    | 104.2(4)                     | 0.99 |  |
| $e^+e^- \to j j j j j j$               | 22.33(5)                    | 24.57(7)                     | 1.10 |  |
| $e^+e^-  ightarrow t \bar{t}$          | 166.37(12)                  | 174.55(20)                   | 1.05 |  |
| $e^+e^- \rightarrow t\bar{t}j$         | 48.12(5)                    | 53.41(7)                     | 1.11 |  |
| $e^+e^- \rightarrow t\bar{t}jj$        | 8.592(19)                   | 10.526(21)                   | 1.23 |  |
| $e^+e^- \rightarrow t\bar{t}jjj$       | 1.035(4)                    | 1.405(5)                     | 1.36 |  |
| $e^+e^- \rightarrow t\bar{t}t\bar{t}$  | $0.6388(8) \cdot 10^{-3}$   | $1.1922(11) \cdot 10^{-3}$   | 1.87 |  |
| $e^+e^- \rightarrow t\bar{t}t\bar{t}j$ | $2.673(7) \cdot 10^{-5}$    | $5.251(11) \cdot 10^{-5}$    | 1.96 |  |
| $e^+e^- \rightarrow t\bar{t}H$         | 2.020(3)                    | 1.912(3)                     | 0.95 |  |
| $e^+e^- \rightarrow t\bar{t}Hj$        | $2.536(4) \cdot 10^{-1}$    | $2.657(4) \cdot 10^{-1}$     | 1.05 |  |
| $e^+e^- \rightarrow t\bar{t}Hjj$       | $2.646(8) \cdot 10^{-2}$    | $3.123(9)\cdot 10^{-2}$      | 1.18 |  |
| $e^+e^- \rightarrow t\bar{t}Z$         | 4.638(3)                    | 4.937(3)                     | 1.06 |  |
| $e^+e^- \rightarrow t\bar{t}Zj$        | $6.027(9) \cdot 10^{-1}$    | $6.921(11) \cdot 10^{-1}$    | 1.15 |  |
| $e^+e^- \rightarrow t\bar{t}Zjj$       | $6.436(21) \cdot 10^{-2}$   | $8.241(29) \cdot 10^{-2}$    | 1.28 |  |
| $e^+e^- \rightarrow t\bar{t}W^{\pm}jj$ | $2.387(8) \cdot 10^{-4}$    | $3.716(10) \cdot 10^{-4}$    | 1.56 |  |
| $e^+e^- \rightarrow t\bar{t}HZ$        | $3.623(19) \cdot 10^{-2}$   | $3.584(19) \cdot 10^{-2}$    | 0.99 |  |
| $e^+e^- \rightarrow t\bar{t}ZZ$        | $3.788(6) \cdot 10^{-2}$    | $4.032(7)\cdot 10^{-2}$      | 1.06 |  |
| $e^+e^- \rightarrow t\bar{t}HH$        | $1.3650(15) \cdot 10^{-2}$  | $1.2168(16) \cdot 10^{-2}$   | 0.89 |  |
| $e^+e^- \to t\bar{t}W^+W^-$            | $1.3672(21) \cdot 10^{-1}$  | $1.5385(22) \cdot 10^{-1}$   | 1.13 |  |



J. R. Reuter, DESY

### pp @ 13 TeV, NLO QCD

|                                   | WHIZARD+OpenLoops           |                              |      |  |
|-----------------------------------|-----------------------------|------------------------------|------|--|
| Process                           | $\sigma_{\rm LO}[{\rm fb}]$ | $\sigma_{\rm NLO}[{\rm fb}]$ | K    |  |
| $pp \rightarrow jj$               | $1.162(4) \cdot 10^9$       | $1.601(5) \cdot 10^9$        | 1.38 |  |
| $pp \rightarrow jjj$              | $9.01(4) \cdot 10^7$        | $7.46(9) \cdot 10^7$         | 0.83 |  |
| $pp \to t\bar{t}$                 | $4.589(9) \cdot 10^5$       | $6.740(10) \cdot 10^5$       | 1.47 |  |
| $pp \rightarrow t\bar{t}j$        | $3.123(6) \cdot 10^5$       | $4.087(9) \cdot 10^5$        | 1.31 |  |
| $pp \rightarrow t\bar{t}jj$       | $1.360(4) \cdot 10^5$       | $1.775(7) \cdot 10^5$        | 1.31 |  |
| $pp \rightarrow t\bar{t}t\bar{t}$ | 4.485(6)                    | 9.070(9)                     | 2.02 |  |
| $pp \to W^{\pm}$                  | $1.3749(8) \cdot 10^{8}$    | $1.7696(10) \cdot 10^8$      | 1.29 |  |
| $pp \rightarrow W^{\pm}j$         | $2.046(3) \cdot 10^7$       | $2.854(5) \cdot 10^{7}$      | 1.39 |  |
| $pp \rightarrow W^{\pm} jj$       | $6.856(12) \cdot 10^{6}$    | $7.814(27) \cdot 10^{6}$     | 1.14 |  |
| $pp \rightarrow W^{\pm} j j j$    | $1.840(5) \cdot 10^{6}$     | $1.978(7) \cdot 10^{6}$      | 1.07 |  |
| $pp \to Z$                        | $4.2541(3) \cdot 10^7$      | $5.4086(16) \cdot 10^7$      | 1.27 |  |
| $pp \rightarrow Zj$               | $7.215(4) \cdot 10^{6}$     | $9.733(10) \cdot 10^{6}$     | 1.35 |  |
| $pp \rightarrow Zjj$              | $2.364(5) \cdot 10^{6}$     | $2.676(7) \cdot 10^{6}$      | 1.13 |  |
| $pp \rightarrow Zjjj$             | $6.381(23) \cdot 10^5$      | $6.85(3) \cdot 10^5$         | 1.07 |  |
| $pp \to W^+W^+ jj$                | $1.506(5) \cdot 10^2$       | $2.235(7) \cdot 10^2$        | 1.48 |  |
| $pp  ightarrow W^-W^-jj$          | $6.772(24) \cdot 10^{1}$    | $9.982(28) \cdot 10^{1}$     | 1.47 |  |
| $pp \rightarrow ZW^{\pm}$         | $2.780(5) \cdot 10^4$       | $4.488(4) \cdot 10^4$        | 1.61 |  |
| $pp \rightarrow ZW^{\pm}j$        | $1.609(4) \cdot 10^4$       | $2.0940(28) \cdot 10^4$      | 1.30 |  |
| $pp \rightarrow ZW^{\pm}jj$       | $8.06(3) \cdot 10^3$        | $9.02(4) \cdot 10^3$         | 1.12 |  |
| $pp \rightarrow ZZ$               | $1.0969(10) \cdot 10^4$     | $1.4183(11) \cdot 10^4$      | 1.29 |  |
| $pp \rightarrow ZZj$              | $3.667(9) \cdot 10^3$       | $4.807(8) \cdot 10^{3}$      | 1.31 |  |
| $pp \rightarrow ZZjj$             | $1.356(6) \cdot 10^3$       | $1.684(8) \cdot 10^{3}$      | 1.24 |  |



## **Some results — some technicalities**

ee @ I TeV, NLO QCD





J. R. Reuter, DESY

### pp @ 13 TeV, NLO QCD

|                                | WHIZARD+OpenLoops           |                              |      |  |
|--------------------------------|-----------------------------|------------------------------|------|--|
| Process                        | $\sigma_{\rm LO}[{\rm fb}]$ | $\sigma_{\rm NLO}[{\rm fb}]$ | K    |  |
| $pp \rightarrow jj$            | $1.162(4) \cdot 10^9$       | $1.601(5) \cdot 10^9$        | 1.38 |  |
| $pp \rightarrow jjj$           | $9.01(4) \cdot 10^7$        | $7.46(9) \cdot 10^{7}$       | 0.83 |  |
| $pp \to t\bar{t}$              | $4.589(9) \cdot 10^5$       | $6.740(10) \cdot 10^5$       | 1.47 |  |
| $pp \rightarrow t\bar{t}j$     | $3.123(6) \cdot 10^5$       | $4.087(9) \cdot 10^5$        | 1.31 |  |
| $pp \rightarrow t\bar{t}jj$    | $1.360(4)\cdot 10^{5}$      | $1.775(7) \cdot 10^5$        | 1.31 |  |
| $pp \to t\bar{t}t\bar{t}$      | 4.485(6)                    | 9.070(9)                     | 2.02 |  |
| $pp \to W^{\pm}$               | $1.3749(8) \cdot 10^8$      | $1.7696(10) \cdot 10^8$      | 1.29 |  |
| $pp \rightarrow W^{\pm}j$      | $2.046(3) \cdot 10^7$       | $2.854(5) \cdot 10^{7}$      | 1.39 |  |
| $pp \rightarrow W^{\pm} jj$    | $6.856(12) \cdot 10^{6}$    | $7.814(27) \cdot 10^{6}$     | 1.14 |  |
| $pp \rightarrow W^{\pm} j j j$ | $1.840(5) \cdot 10^{6}$     | $1.978(7) \cdot 10^{6}$      | 1.07 |  |
| $pp \to Z$                     | $4.2541(3) \cdot 10^7$      | $5.4086(16) \cdot 10^7$      | 1.27 |  |
| $pp \rightarrow Zj$            | $7.215(4) \cdot 10^{6}$     | $9.733(10) \cdot 10^{6}$     | 1.35 |  |
| $pp \rightarrow Zjj$           | $2.364(5) \cdot 10^{6}$     | $2.676(7) \cdot 10^{6}$      | 1.13 |  |
| $pp \rightarrow Zjjj$          | $6.381(23) \cdot 10^5$      | $6.85(3) \cdot 10^5$         | 1.07 |  |
| $pp \rightarrow W^+W^+jj$      | $1.506(5) \cdot 10^2$       | $2.235(7) \cdot 10^2$        | 1.48 |  |
| $pp  ightarrow W^-W^-jj$       | $6.772(24) \cdot 10^{1}$    | $9.982(28) \cdot 10^{1}$     | 1.47 |  |
| $pp \rightarrow ZW^{\pm}$      | $2.780(5) \cdot 10^4$       | $4.488(4) \cdot 10^4$        | 1.61 |  |
| $pp \rightarrow ZW^{\pm}j$     | $1.609(4) \cdot 10^4$       | $2.0940(28) \cdot 10^4$      | 1.30 |  |
| $pp \rightarrow ZW^{\pm}jj$    | $8.06(3) \cdot 10^3$        | $9.02(4) \cdot 10^3$         | 1.12 |  |
| $pp \rightarrow ZZ$            | $1.0969(10) \cdot 10^4$     | $1.4183(11) \cdot 10^4$      | 1.29 |  |
| $pp \rightarrow ZZj$           | $3.667(9) \cdot 10^3$       | $4.807(8) \cdot 10^{3}$      | 1.31 |  |
| $pp \rightarrow ZZjj$          | $1.356(6) \cdot 10^3$       | $1.684(8) \cdot 10^{3}$      | 1.24 |  |



## **Some results — some technicalities**

ee @ I TeV, NLO QCD





J. R. Reuter, DESY

pp @ 13 TeV, NLO QCD





# **SM EW Corrections to Multi-Bosons**





J. R. Reuter, DESY

### arXiv: 2208.09438

- EW corrections for massive initial state muons
- Alternatively: collinear lepton NLL PDF, 1909.03886, 1911.12040, 2207.03265
- WHIZARD NLO SM Automation Framework with FKS subtraction
- Massive eikonals need special treatment at high energies
- Validation against MCSANC-ee ; analytic Sudakov comparison
- Extraction of pure QED corrections

$$G_{\mu} = 1.166379 \cdot 10^{-5} \text{ GeV}^{-2}$$

| $m_u = 0.062$  | ${ m GeV}$ | $m_d =$ | 0.083 | $\mathrm{GeV}$       |
|----------------|------------|---------|-------|----------------------|
| $m_c = 1.67$   | ${ m GeV}$ | $m_s =$ | 0.215 | $\operatorname{GeV}$ |
| $m_t = 172.76$ | ${ m GeV}$ | $m_b =$ | 4.78  | GeV                  |

80.379 GeV  $m_e = 0.0005109989461 \text{ GeV}$  $M_W =$ 91.1876 GeV GeV  $m_{\mu} = 0.1056583745$  $M_H = 125.1$ GeV  $m_{\tau} = 1.77686$ GeV





# **SM EW Corrections to Multi-Bosons**





J. R. Reuter, DESY

### arXiv: 2208.09438

| $^+\mu^- \to X, \sqrt{s} = 3 \text{ TeV}$ | $\sigma_{ m LO}^{ m incl}~[{ m fb}]$ | $\sigma_{ m NLO}^{ m incl}~[{ m fb}]$ | $\delta_{ m E}$ |
|-------------------------------------------|--------------------------------------|---------------------------------------|-----------------|
|                                           |                                      |                                       |                 |
| $V^+W^-$                                  | $4.6591(2) \cdot 10^2$               | $4.847(7) \cdot 10^2$                 | +               |
| Z                                         | $2.5988(1)\cdot 10^{1}$              | $2.656(2) \cdot 10^{1}$               | +2              |
| Z                                         | $1.3719(1)\cdot 10^{0}$              | $1.3512(5) \cdot 10^{0}$              | -1              |
| H                                         | $1.60216(7) \cdot 10^{-7}$           | $5.66(1) \cdot 10^{-7} *$             |                 |
| $V^+W^-Z$                                 | $3.330(2)\cdot 10^{1}$               | $2.568(8)\cdot 10^{1}$                | -2              |
| $V^+W^-H$                                 | $1.1253(5)\cdot 10^{0}$              | $0.895(2)\cdot 10^{0}$                | -2              |
| ZZ                                        | $3.598(2)\cdot 10^{-1}$              | $2.68(1) \cdot 10^{-1}$               | -2              |
| ZZ                                        | $8.199(4) \cdot 10^{-2}$             | $6.60(3) \cdot 10^{-2}$               | -1              |
| HZ                                        | $3.277(1) \cdot 10^{-2}$             | $2.451(5) \cdot 10^{-2}$              | -2              |
| HH                                        | $2.9699(6) \cdot 10^{-8}$            | $0.86(7) \cdot 10^{-8}$ *             |                 |
| $V^+W^-W^+W^-$                            | $1.484(1) \cdot 10^0$                | $0.993(6)\cdot 10^{0}$                | -3              |
| $V^+W^-ZZ$                                | $1.209(1)\cdot 10^{0}$               | $0.699(7) \cdot 10^{0}$               | $-4^{\circ}$    |
| $V^+W^-HZ$                                | $8.754(8) \cdot 10^{-2}$             | $6.05(4) \cdot 10^{-2}$               | -3              |
| $V^+W^-HH$                                | $1.058(1)\cdot 10^{-2}$              | $0.655(5) \cdot 10^{-2}$              | -3              |
| ZZZ                                       | $3.114(2)\cdot 10^{-3}$              | $1.799(7) \cdot 10^{-3}$              | -4              |
|                                           | $2.693(2)\cdot 10^{-3}$              | $1.766(6) \cdot 10^{-3}$              | -3              |
| HZZ                                       | $9.828(7) \cdot 10^{-4}$             | $6.24(2) \cdot 10^{-4}$               | -3              |
| HHZ                                       | $1.568(1) \cdot 10^{-4}$             | $  1.165(4) \cdot 10^{-4}  $          | -2              |
|                                           |                                      | · · /                                 |                 |

MuC Physics Benchmark Workshop, Pittsburgh, 17.11.2023

3.1(4)2.2(6)80.9(5)88.1(4)2.2(2)34.4(2)86.5(2)25.7(2)

22.9(2)20.5(2)25.5(3)9.6(3)25.2(1)

4.0(2)2.19(6).51(4)

W [%]

### arXiv: 2208.09438

# Validation of the Sudakov regime

- EW corrections at high energies dominated by EW double and single Sudakov logarithms
- Relevant in kinematic region of Sudakov limit  $r_{kl} = (p_k + p_l)^2 \sim s \gg M_W^2$
- Infrared quasi-divergencies of virtual corrections not cancelled by real EW radiation
- Both initial and final states no EW "color" singlets
- Relevant in kinematic region of Sudakov limit
- Leading double logarithms and single (angular-dependent) logarithms
- Quadratic Casimir operators rather large, for longitudinal / left-handed degrees  $~\sim 1/\sin^2 heta_W$





J. R. Reuter, DESY

← Talk Davide Pagani

$$L(s, M_W^2) = \frac{\alpha}{4\pi} \log^2 \frac{s}{M_W^2} \overset{10 \text{ TeV}}{\sim} 6$$
$$l(s, M_W^2) = \frac{\alpha}{4\pi} \log \frac{s}{M_W^2} \overset{10 \text{ TeV}}{\sim} 0$$

 $\Lambda_{T,L}^{\kappa} = A_{T,L}^{\kappa} L(s, M_W^2) + B_{T,L}^{\kappa} \log \frac{M_Z^2}{M_W^2} l(s, M_W^2) + C_{T,L}$ 

MuC Physics Benchmark Workshop, Pittsburgh, 17.11.2023







### arXiv: 2208.09438

# Validation of the Sudakov regime

- EW corrections at high energies dominated by EW double and single Sudakov logarithms
- Relevant in kinematic region of Sudakov limit  $r_{kl} = (p_k + p_l)^2 \sim s \gg M_W^2$
- Infrared quasi-divergencies of virtual corrections not cancelled by real EW radiation
- Both initial and final states no EW "color" singlets G
- Relevant in kinematic region of Sudakov limit
- Leading double logarithms and single (angular-dependent) logarithms
- Quadratic Casimir operators rather large, for longitudinal / left-handed degrees  $\sim 1/\sin^2 \theta_W$



J. R. Reuter, DESY



← Talk Davide Pagani

$$L(s, M_W^2) = \frac{\alpha}{4\pi} \log^2 \frac{s}{M_W^2} \stackrel{10 \text{ TeV}}{\sim} 6$$
$$l(s, M_W^2) = \frac{\alpha}{4\pi} \log \frac{s}{M_W^2} \stackrel{10 \text{ TeV}}{\sim} 0$$

 $\Lambda_{T,L}^{\kappa} = A_{T,L}^{\kappa} L(s, M_W^2) + B_{T,L}^{\kappa} \log \frac{M_Z^2}{M_W^2} l(s, M_W^2) + C_{T,L}$ 

| $\mu^+\mu^- \to X, \sqrt{s} = 10 \text{ TeV}$ | $\sigma_{ m LO}^{ m incl}~[{ m fb}]$ | $\sigma^{ m incl}_{ m LO+ISR}$ [fb] | $\delta_{ m ISR} \ [\%]$ |
|-----------------------------------------------|--------------------------------------|-------------------------------------|--------------------------|
|                                               |                                      |                                     |                          |
| $W^+W^-$                                      | $5.8820(2)\cdot 10^{1}$              | $7.295(7)\cdot 10^{1}$              | +24.0(1)                 |
| ZZ                                            | $3.2730(4)\cdot 10^{0}$              | $4.119(4)\cdot 10^{0}$              | +25.8(1)                 |
| HZ                                            | $1.22929(8)\cdot 10^{-1}$            | $1.8278(5)\cdot 10^{-1}$            | +48.69(4)                |
| $W^+W^-Z$                                     | $9.609(5)\cdot 10^{0}$               | $10.367(8)\cdot 10^{0}$             | +7.9(1)                  |
| $W^+W^-H$                                     | $2.1263(9)\cdot 10^{-1}$             | $2.410(2)\cdot 10^{-1}$             | +13.3(1)                 |
| ZZZ                                           | $8.565(4)\cdot 10^{-2}$              | $9.431(7)\cdot 10^{-2}$             | +10.1(1)                 |
| HZZ                                           | $1.4631(6)\cdot 10^{-2}$             | $1.677(1)\cdot 10^{-2}$             | +14.62(8)                |
| HHZ                                           | $6.083(2)\cdot 10^{-3}$              | $6.916(3)\cdot 10^{-3}$             | +13.68(6)                |

MuC Physics Benchmark Workshop, Pittsburgh, 17.11.2023







# **Differential results**

Experimentally motivated photon veto in hard radiation:

Higgs Transverse Momentum



More tasks for even more realistic predictions:



J. R. Reuter, DESY

 $E_{\gamma} < 0.7 \cdot \sqrt{s}/2$ 

### arXiv: 2208.09438

### Higgs rapidity

### Higgs scattering angle

exclusive events w/ matching to QED/weak showers, resummation, off-shell processes, separate VBF from VBS





## Search for Heavy Neutral Leptons (HNL)





J. R. Reuter, DESY

MuC Physics Benchmark Workshop, Pittsburgh, 17.11.2023



# The neutrino mystery

- Neutrinos masses is already physics beyond the standard model G
- Simple extension of SM: just add  $\nu_R$  and Yukawa couplin
- $-M_{\nu} \overline{\nu^{C}} \nu$ Singlet allows for a Majorana mass term:



J. R. Reuter, DESY



ngs 
$$\nu_R = (\mathbf{1}, \mathbf{1}, 1) - m_{\nu}(\overline{\nu}_L \nu_R + h \cdot c.) \left(1 + \frac{h}{v}\right)$$

[Minkowski, 1977; Mohapatra/Senjanovic, 1980; Yanagida, 1981] Dedicated "seesaw" models for neutrino physics: type I (singlet fermion), type II (triplet scalar), type III (triplet fermion)







# The neutrino mystery

- G Neutrinos masses is already physics beyond the standard model
- Simple extension of SM: just add  $\nu_R$  and Yukawa couplin
- $-M_{\nu} \nu^{C} \nu$ Singlet allows for a Majorana mass term:

J. R. Reuter, DESY





ngs 
$$\nu_R = (\mathbf{1}, \mathbf{1}, 1) - m_{\nu}(\overline{\nu}_L \nu_R + h \cdot c.) \left(1 + \frac{h}{v}\right)$$

[Minkowski, 1977; Mohapatra/Senjanovic, 1980; Yanagida, 1981] Dedicated "seesaw" models for neutrino physics: type I (singlet fermion), type II (triplet scalar), type III (triplet fermion)





# **Simplified neutrino model**

Simplified model with right-handed ( $\nu$ SM) and sterile neutrinos After EWSB heavy (sterile) neutrinos do mix with  $\nu$ SM neutrinos Lagrangian:  $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WN\ell} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu}$  $\mathcal{L}_N = \xi_{\nu} \cdot \left( \bar{N}_k i \partial N_k - m_{N_k} \bar{N}_k N_k \right) \quad \text{for } k = 1, 2, 3$  $\mathcal{L}_{WN\ell} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{k=1}^3 \sum_{l=e}^\tau \bar{N}_k V^*_{lk} \gamma^{\mu} P_L \ell^- + \text{ h.c.}, \qquad \qquad \bigvee_N W$ 



J. R. Reuter, DESY










## **Simplified neutrino model**

Simplified model with right-handed ( $\nu$ SM) and sterile neutrinos After EWSB heavy (sterile) neutrinos do mix with  $\nu$ SM neutrinos Lagrangian:  $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WN\ell} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu}$  $\mathcal{L}_N = \xi_{\nu} \cdot \left( \bar{N}_k i \partial N_k - m_{N_k} \bar{N}_k N_k \right) \qquad \text{for } k = 1, 2, 3$  $\mathcal{L}_{WN\ell} = -\frac{g}{\sqrt{2}} W^+_{\mu} \sum_{k=1}^3 \sum_{l=e}^{\tau} \bar{N}_k V^*_{lk} \gamma^{\mu} P_L \ell^- + \text{ h.c.}, \qquad \qquad \bigvee_N W$ 



J. R. Reuter, DESY

Incomplete literature:

Aguilar-Saavedra ea., hep-ph/0502189; hep-ph/0503026; Shaposhnikov, 0804.4542; Das/Okada, 1207.3734; Banerjee ea., 1503.05491; Antusch, Cazzato, Fischer, 1612.0272; Cai, Han, Li, Ruiz, 1711.02180; Pascoli, Ruiz, Weiland, 1812.08750











## **Simplified neutrino model**

Simplified model with right-handed ( $\nu$ SM) and sterile neutrinos After EWSB heavy (sterile) neutrinos do mix with  $\nu$ SM neutrinos Lagrangian:  $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_N + \mathcal{L}_{WN\ell} + \mathcal{L}_{ZN\nu} + \mathcal{L}_{HN\nu}$  $\mathcal{L}_N = \xi_{\nu} \cdot \left( \bar{N}_k i \partial N_k - m_{N_k} \bar{N}_k N_k \right) \quad \text{for } k = 1, 2, 3$  $\mathcal{L}_{ZN\nu} = -\frac{g}{2\cos\theta_W} Z_\mu \sum_{k=1}^3 \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k V_{lk}^* \gamma^\mu P_L \nu_l + \text{ h.c.} \qquad \qquad \bigvee \mathcal{L}_{ZN\nu} Z_\mu \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k \sum_{l=e}^\tau \bar{N}_k \sum_{k=1}^T \sum_{l=e}^\tau \bar{N}_k \sum_{l=$  $\mathcal{L}_{HN\nu} = -\frac{gm_N}{2M_W} h \sum_{l=1}^{3} \sum_{l=1}^{\tau} \bar{N}_k V_{lk}^* P_L \nu_l + \text{ h.c.}$ 



J. R. Reuter, DESY

Incomplete literature:

Aguilar-Saavedra ea., hep-ph/0502189; hep-ph/0503026; Shaposhnikov, 0804.4542; Das/Okada, 1207.3734; Banerjee ea., 1503.05491; Antusch, Cazzato, Fischer, 1612.0272; Cai, Han, Li, Ruiz, 1711.02180; Pascoli, Ruiz, Weiland, 1812.08750

- Material At lepton colliders, single production possible
- $\checkmark$  Associated production:  $\ell^+\ell^- \rightarrow \nu N$
- $\checkmark$  Vector boson fusion:  $\ell^+\ell^- \to \bar{\nu}\nu N + \ell^+\ell^- N$
- $\checkmark$  Three neutrino masses:  $M_{N_1}, M_{N_2}, M_{N_3}$
- Mine real mixing parameters:  $V_{\ell k}$ ,  $\ell = e, \mu \tau, k = N_1, N_2, N_3$
- $\checkmark$  Three neutrino widths:  $\Gamma_{N_1}, \Gamma_{N_2}, \Gamma_{N_3}$









- At lepton colliders: optimal channel single production with decay to  $N \rightarrow jj\ell$
- In that case: full reconstruction of N (incl. mass peak) possible
- Study for ILC250, ILC500, ILC1000, CLIC 3 TeV, MuC 3+10 TeV
- Simulation with Whizard 3.0 (first paper!) + Pythia6 + Delphes
- Using UFO model HeavyN



J. R. Reuter, DESY





- At lepton colliders: optimal channel single production with decay to  $N \rightarrow jj\ell$
- In that case: full reconstruction of N (incl. mass peak) possible
- Study for ILC250, ILC500, ILC1000, CLIC 3 TeV, MuC 3+10 TeV
- Simulation with Whizard 3.0 (first paper!) + Pythia6 + Delphes
- Using UFO model HeavyN

Assumption on couplings:  $|V_{eN_1}|^2 = |V_{\mu N_1}|^2 + |V_{\tau N_1}|^2 \equiv |V_{\ell N_1}|^2$ 

- Reference signal sample with  $|V_{\ell N_1}| = 0.0003$ ,  $N_2, N_3$  couplings set to zero
- Neutrinos masses:  $100 \,\mathrm{GeV} \le M_{M_1} \le 10.5 \,\mathrm{TeV}$ ,  $M_{N_{2,3}} = 1$
- Neutrino widths:  $\Gamma_N \gtrsim \mathcal{O}(1 \text{ keV})$  prompt decays only, no LLP signature displaced vertices possible for  $M_N \lesssim 10 \, {\rm GeV}$



J. R. Reuter, DESY

- W
- K. Mękała/JRR/A.F. Żarnecki, 2202.06703; 2301.02602



$$0^{10}\,{
m GeV}$$



K. Korshynska/M. Löschner/M. Marinichenko/ JRR/K. Mękała, Febr. 2023







- At lepton colliders: optimal channel single production with decay to  $N \rightarrow jj\ell$
- In that case: full reconstruction of N (incl. mass peak) possible
- Study for ILC250, ILC500, ILC1000, CLIC 3 TeV, MuC 3+10 TeV
- Simulation with Whizard 3.0 (first paper!) + Pythia6 + Delphes
- Using UFO model HeavyN

Assumption on couplings:  $|V_{eN_1}|^2 = |V_{\mu N_1}|^2 + |V_{\tau N_1}|^2 \equiv |V_{\mu N_1}|^2$ 

- Reference signal sample with  $|V_{\ell N_1}| = 0.0003$ ,  $N_2, N_3$  couplings set to zero
- Neutrinos masses:  $100 \,\mathrm{GeV} \le M_{M_1} \le 10.5 \,\mathrm{TeV}$ ,  $M_{N_{2,3}} = 1$
- Neutrino widths:  $\Gamma_N \gtrsim \mathcal{O}(1 \text{ keV})$  prompt decays only, no LLP signature displaced vertices possible for  $M_N \lesssim 10 \, {\rm GeV}$



J. R. Reuter, DESY



$$V_{\ell N_1}|^2$$

$$0^{10}\,{
m GeV}$$





- At lepton colliders: optimal channel single production with decay to  $N \rightarrow jj\ell$
- In that case: full reconstruction of N (incl. mass peak) possible
- Study for ILC250, ILC500, ILC1000, CLIC 3 TeV, MuC 3+10 TeV
- Simulation with Whizard 3.0 (first paper!) + Pythia6 + Delphes
- Using UFO model HeavyN

Assumption on couplings:  $|V_{eN_1}|^2 = |V_{\mu N_1}|^2 + |V_{\tau N_1}|^2 \equiv |V_{\ell N_1}|^2$ 

- Reference signal sample with  $|V_{\ell N_1}| = 0.0003$ ,  $N_2, N_3$  couplings set to zero
- Neutrinos masses:  $100 \,\text{GeV} \le M_{M_1} \le 10.5 \,\text{TeV}$ ,  $M_{N_{2,3}} = 10^{10} \,\text{GeV}$
- Neutrino widths:  $\Gamma_N \gtrsim \mathcal{O}(1 \text{ keV})$  prompt decays only, no LLP signature displaced vertices possible for  $M_N \lesssim 10 \, {\rm GeV}$ 
  - Subscription: Without N propagators ("background")
  - Signal simulation:  $\ell \ell \to N \nu \to \ell j j \nu$  ("signal")
  - $S/B \sim 10^{-3}$  e.g. ILC500:  $jj\ell\nu$  bkgd.  $\sim 10$  pb, signal  $\sim 10$  fb
  - Preselection on signal topology: exactly 1 lepton and 2 jets
  - BDT training; CLs method to get final results











Bkgd processes with at least one lepton

• 
$$\mu^+\mu^- \rightarrow jj\ell^\pm\nu$$
  
•  $\mu^+\mu^- \rightarrow jj\ell^+\ell^-$   
•  $\mu^+\mu^- \rightarrow \ell^+\ell^-\ell'^+\ell'^-$   
•  $\mu^+\mu^- \rightarrow jj\ell^+\ell^-$   
•  $\mu^+\mu^- \rightarrow jj\ell^+\nu\ell^-\bar{\nu}$   
•  $\mu^+\mu^- \rightarrow jjj\ell^\pm\nu$   
•  $\mu^+\mu^- \rightarrow jjj\ell^\pm\ell^-$ 





J. R. Reuter, DESY

### on & analysis





- No beamstrahlung, Gaussian beam spread irrelevant
- QED initial state radiation is almost negligible
- QED-ISR/beamstrahlung: CLIC-3 vs. MuC-3
- Off-shell processes extend sensitivity beyond collider energy!



J. R. Reuter, DESY





- No beamstrahlung, Gaussian beam spread irrelevant
- QED initial state radiation is almost negligible
- QED-ISR/beamstrahlung: CLIC-3 vs. MuC-3
- Off-shell processes extend sensitivity beyond collider energy!

BDT response for model in RooStats, CLs method to set cross section limits Combination of  $e^{\pm}$  and  $\mu^{\pm}$  channels



J. R. Reuter, DESY



#### 8 variables considered in BDT

- $m_{qq\ell}$  invariant mass of the dijet-lepton system,
- $\alpha$  angle between the dijet-system and the lepton,
- $\alpha_{qq}$  angle between the two jets,
- $E_{\ell}$  lepton energy,
- $E_{qq\ell}$  energy of the dijet-lepton system,
- $\mathbf{p}_{\ell}^{T}$  lepton transverse momentum,
- $p_{qq}^T$  dijet transverse momentum,
- $p_{qq\ell}^T$  transverse momentum of the dijet-lepton system.

#### MuC Physics Benchmark Workshop, Pittsburgh, 17.11.2023





## **Reach for HNLs**





J. R. Reuter, DESY

K. Mękała/JRR/A.F. Żarnecki, 2301.02602

#### LHC analysis [1812.08750], diff. assumption: $V_{eN} = V_{\mu N} \neq V_{\tau N} = 0$





## **Reach for HNLs**





J. R. Reuter, DESY

K. Mękała/JRR/A.F. Żarnecki, 2301.02602

#### LHC analysis [1812.08750], diff. assumption: $V_{eN} = V_{\mu N} \neq V_{\tau N} = 0$

MuC-10 outperforms FCC-hh-100 over the whole mass range!









- Exclusion limit very similar for Dirac & Majorana neutrino (except: off-shell production)
- Possible discriminant: lepton emission angle in N rest frame



J. R. Reuter, DESY



MuC Physics Benchmark Workshop, Pittsburgh, 17.11.2023







J. R. Reuter, DESY

MuC Physics Benchmark Workshop, Pittsburgh, 17.11.2023



Possible discriminant: lepton emission angle in N rest frame 





J. R. Reuter, DESY

MuC Physics Benchmark Workshop, Pittsburgh, 17.11.2023



Possible discriminant: lepton emission angle in N rest frame



More sophisticated variable: lepton and dijet angles

LC 250 GeV, 
$$m_N = 150$$
 GeV



J. R. Reuter, DESY

MuC Physics Benchmark Workshop, Pittsburgh, 17.11.2023



#### **BDT framework for model discrimination**

- 2 independent BDT trainins: Dirac vs. ( $\alpha_{BDT} \cdot Majorana + Bkgd.$ ) & Majorana vs. ( $\alpha_{BDT} \cdot Dirac + Bkgd.$ )
- $ige \chi^2 \text{like statistics: } T' = \sum_{bins} \frac{[(B+D) (B+M)]^2}{\frac{1}{2}[(B+D) + (B+M)]} + \# \text{ DOF}$
- Statistical test:  $T \ge \chi^2_{crit}(DOF) \implies$  signal hypotheses distinguishable
- 2D histograms:  $BDT_D + BDT_M$ ,  $BDT_D BDT_M$

- Technical procedure:
- 1. Train BDT for different values  $\alpha_{BDT}$
- 2. For each  $\alpha_{BDT}$ : calculate 95% CL limit  $\alpha_{lim}$  such that  $T(\alpha_{lim}) = \chi^2_{crit}(\text{DOF})$
- 3. Select the best limit:  $\alpha_{min} = \min \{\alpha_{lim}\}$
- 4. Set final limit as  $V_{\ell N}^{\lim} = \alpha_{\min} \cdot V_{\ell N}^{ref}$





J. R. Reuter, DESY

$$= \sum_{bins} \frac{(D-M)^2}{B + \frac{D+M}{2}} + \# \text{DOF} \qquad T' \longrightarrow T'(\alpha_{lim}) = \sum_{bins} \frac{\alpha_{lim}^2 (D-M)^2}{B + \alpha_{lim} \cdot \frac{D+M}{2}}$$









#### **Dirac vs. Majorana discrimination**





J. R. Reuter, DESY



#### **Dirac vs. Majorana discrimination**





J. R. Reuter, DESY

Almost immediately with a discovery a Majorana vs. Dirac discrimnation possible!



#### **Dirac vs. Majorana discrimination**





J. R. Reuter, DESY

Almost immediately with a discovery a Majorana vs. Dirac discrimnation possible!

More difficult, but possible for off-shell case!



- Dominant *t*-channel production (*W* exchange):
- **On-shell** production
- Off-shell more difficult: need to scan each parameter point



J. R. Reuter, DESY

$$\sigma \propto \frac{|V_{\ell_{in}}N|^2 \cdot |V_{\ell_{out}N}|^2}{|V_{eN}|^2 + |V_{\mu N}|^2}$$



- Dominant *t*-channel production (*W* exchange):
- **On-shell production**
- Off-shell more difficult: need to scan each parameter point





J. R. Reuter, DESY

$$\sigma \propto \frac{|V_{\ell_{in}}N|^2 \cdot |V_{\ell_{out}N}|^2}{|V_{eN}|^2 + |V_{\mu N}|^2}$$



- Dominant *t*-channel production (*W* exchange):
- **On-shell production**
- Off-shell more difficult: need to scan each parameter point





J. R. Reuter, DESY

$$\sigma \propto \frac{|V_{\ell_{in}}N|^2 \cdot |V_{\ell_{out}N}|^2}{|V_{eN}|^2 + |V_{\mu N}|^2}$$





- Dominant *t*-channel production (*W* exchange):
- **On-shell production**
- Off-shell more difficult: need to scan each parameter point





J. R. Reuter, DESY

$$\sigma \propto \frac{|V_{\ell_{in}}N|^2 \cdot |V_{\ell_{out}N}|^2}{|V_{eN}|^2 + |V_{\mu N}|^2}$$





### **Search for Heavy Neutral Currents**





J. R. Reuter, DESY





- Many different motivations for Z': GUTs, gauge composite models, gauged flavor symmetries
- (Remember: global symmetries are difficult in string theory)
- Most basic processes:  $\mu^+\mu^- \to f\bar{f}$   $f = e, \mu, \tau, j, c, b, (t)$
- Very simple event topologies
- Discovery & discrimination of models, many observables:



J. R. Reuter, DESY



- Many different motivations for Z': GUTs, gauge composite models, gauged flavor symmetries
- (Remember: global symmetries are difficult in string theory)
- Most basic processes:  $\mu^+\mu^- \to f\bar{f}$   $f = e, \mu, \tau, j, c, b, (t)$
- Very simple event topologies
- Discovery & discrimination of models, many observables:



J. R. Reuter, DESY





- Many different motivations for Z': GUTs, gauge composite models, gauged flavor symmetries
- (Remember: global symmetries are difficult in string theory)
- Most basic processes:  $\mu^+\mu^- \to f\bar{f}$   $f = e, \mu, \tau, j, c, b, (t)$
- Very simple event topologies
- Discovery & discrimination of models, many observables:
- $\square$  Forward-backward asymmetries:  $A_{FB}^f(\mu^+\mu^- \to f\bar{f})$
- $\square$  Tau polarization asymmetries:  $A_{pol.}^{\tau}(\mu^+\mu^- \rightarrow \tau^+\tau^-)$
- Binned angular distributions
- $\square$  Left-right asymmetries:  $A_{LR}^f(\mu^+\mu^- \to f\bar{f})$  (needs beam polarization)
- $\checkmark$  Spin-sensitive processes  $(\mu^+\mu^- \rightarrow W^+W^-, t\bar{t})$

![](_page_62_Picture_11.jpeg)

J. R. Reuter, DESY

![](_page_62_Picture_13.jpeg)

![](_page_62_Picture_14.jpeg)

- Many different motivations for Z': GUTs, gauge composite models, gauged flavor symmetries
- (Remember: global symmetries are difficult in string theory)
- Most basic processes:  $\mu^+\mu^- \to f\bar{f}$   $f = e, \mu, \tau, j, c, b, (t)$ (c)
- Very simple event topologies
- Discovery & discrimination of models, many observables:
- $\square$  Forward-backward asymmetries:  $A_{FR}^f(\mu^+\mu^- \to f\bar{f})$
- $\square$  Tau polarization asymmetries:  $A_{pol.}^{\tau}(\mu^+\mu^- \rightarrow \tau^+\tau^-)$
- Binned angular distributions
- $\square$  Left-right asymmetries:  $A_{LR}^f(\mu^+\mu^- \to f\bar{f})$  (needs beam polarization)
- $\checkmark$  Spin-sensitive processes  $(\mu^+\mu^- \rightarrow W^+W^-, t\bar{t})$

Investigated Z' models: (1) Sequential SM (SSM)

![](_page_63_Picture_12.jpeg)

J. R. Reuter, DESY

![](_page_63_Picture_14.jpeg)

![](_page_63_Picture_15.jpeg)

- (2)  $E_6, SU(2)_L \otimes SU(2)_R$  (LR)
- Littlest Higgs (LH), Simplest Little Higgs (SLH) (3)
- $U(1)_X$  model (4)
- (5) many more

![](_page_63_Figure_22.jpeg)

![](_page_63_Picture_23.jpeg)

### Resolving power for Z'

#### Normalization of couplings:

|                      | $g_{Z'}$                      |
|----------------------|-------------------------------|
| $\mathbf{SSM}$       | $e/(s_W c_W)$                 |
| $E_6$ , LR           | $e/c_W$                       |
| $\operatorname{ALR}$ | $e/(s_W c_W \sqrt{1-2s_W^2})$ |
| LH                   | $e/s_W$                       |
| USLH, AFSLH          | $e/(c_W\sqrt{3-4s_W^2})$      |
| $\mathrm{U}(1)_X$    | $e/(4c_W)$                    |

![](_page_64_Picture_3.jpeg)

J. R. Reuter, DESY

![](_page_64_Picture_6.jpeg)

## Resolving power for Z'

![](_page_65_Figure_1.jpeg)

K. Korshynska/M. Löschner/M. Marinichenko/ JRR/K. Mękała, w.i.p.

![](_page_65_Picture_3.jpeg)

J. R. Reuter, DESY

Model parameters to be determined: vector and axial vector couplings v, a

$$\mathcal{O}_{i} \in \left\{\sigma_{tot}, A_{FB}^{f}, A_{LR}^{f}\right\}$$
wer:  $\chi^{2}_{model} = \sum_{i=1}^{n_{ob}} \left(\frac{\mathcal{O}_{i}^{model} - \mathcal{O}_{i}(v, a)}{\Delta \mathcal{O}_{i}(v, a)}\right)^{2} < 5.99 \text{ for 95\% CL}$ 
ertainties:  $\frac{\Delta \sigma_{tot}}{\sigma_{tot}} = \frac{1}{\sqrt{N}}, \qquad \Delta A_{FB} = \sqrt{\frac{1 - A_{FB}^{2}}{N}}, \qquad \Delta A_{LR} = \sqrt{\frac{1 - A_{LR}^{2}}{N}}$ 

Collider luminosity:  $\mathscr{L}_{int}(E_{CM}) = 10 \text{ ab}^{-1} \cdot E_{CM}/10 \text{ TeV}$ 

![](_page_65_Picture_9.jpeg)

![](_page_65_Picture_10.jpeg)

![](_page_65_Picture_11.jpeg)

## Resolving power for Z'

![](_page_66_Figure_1.jpeg)

K. Korshynska/M. Löschner/M. Marinichenko/ JRR/K. Mękała, w.i.p.

DES

Collider lumino

| f              | ν                   | e                                     | u                                      | d                                     | ALR               |                     |                     |                              |                              | AFSLH             |                     |                              |                                      |                       |  |
|----------------|---------------------|---------------------------------------|----------------------------------------|---------------------------------------|-------------------|---------------------|---------------------|------------------------------|------------------------------|-------------------|---------------------|------------------------------|--------------------------------------|-----------------------|--|
| $\mathbf{SSM}$ |                     |                                       |                                        |                                       | $2v_{f}^{\prime}$ | $s_F^2-rac{1}{2}$  | $rac{5}{2}s_W^2-1$ | $rac{1}{2}-rac{4}{3}s_W^2$ | $rac{1}{6}s_W^2$            | $2v_{z}^{\prime}$ | $\frac{1}{2}-s_W^2$ | $rac{1}{2}-2s_W^2$          | $-rac{1}{2}+rac{4}{3}s_W^2$        | $rac{1}{3}s_W^2$ -   |  |
| $2v_f'$        | $\frac{1}{2}$       | $2s_W^2 - rac{1}{2}$                 | $rac{1}{2}-rac{4}{3}s_W^2$           | $rac{2}{3}s_W^2-rac{1}{2}$          | $2a_{1}^{\prime}$ | $s_W^2-rac{1}{2}$  | $-rac{1}{2}s_W^2$  | $s_W^2 - rac{1}{2}$         | $-rac{1}{2}s_W^2$           | 2a'               | $\frac{1}{2}-s_W^2$ | $\frac{1}{2}$                | $-\frac{1}{2}$                       | $s_W^2$ –             |  |
| $2a'_f$        | $\frac{1}{2}$       | $-\frac{1}{2}$                        | $\frac{1}{2}$                          | $-\frac{1}{2}$                        |                   | <u> </u>            |                     |                              |                              |                   | $\mathrm{U}(1)_X$   |                              |                                      |                       |  |
| ${ m E_6}$     |                     |                                       |                                        |                                       | 2m'               | с                   | C                   | с                            | C                            | $2v'_{1}$         | $f_f - x_H - x_H$   | $_{\Phi}$ $-3x_{H}-x_{\Phi}$ | $\frac{5}{3}x_H + \frac{1}{3}x_\Phi$ | $-\frac{1}{3}x_{H} +$ |  |
| $2v_f'$        | 3A + B              | 4A                                    | 0                                      | -4A                                   | 20j               | $f = \frac{1}{4s}$  | $-\frac{1}{4s}$     | $\overline{4s}$              | $-\frac{1}{4s}$              | 2a'               | $f - x_H$           | $x_H$                        | $-x_H$                               | $x_H$                 |  |
| $2a_f'$        | 3A + B              | 2(A+B)                                | 2(B-A)                                 | 2(A+B)                                | $2a_j$            | $f$ $\overline{4s}$ | $-\frac{1}{4s}$     | $\overline{4s}$              | $-\frac{1}{4s}$              |                   |                     |                              |                                      |                       |  |
| LR             |                     |                                       |                                        |                                       |                   | $\mathbf{USLH}$     |                     |                              |                              |                   |                     |                              |                                      |                       |  |
| $2v_f'$        | $\frac{1}{2\alpha}$ | $\frac{1}{\alpha} - \frac{\alpha}{2}$ | $\frac{\alpha}{2} - \frac{1}{3\alpha}$ | $-\frac{1}{3\alpha}-\frac{\alpha}{2}$ | $2v_{f}^{\prime}$ | $\frac{1}{2}-s_W^2$ | $rac{1}{2}-2s_W^2$ | $rac{1}{2}+rac{1}{3}s_W^2$ | $rac{1}{2}-rac{2}{3}s_W^2$ |                   |                     |                              |                                      |                       |  |
| $2a'_f$        | $\frac{1}{2\alpha}$ | $\frac{\alpha}{2}$                    | $-\frac{\alpha}{2}$                    | $\frac{\alpha}{2}$                    | $2a'_j$           | $\frac{1}{2}-s_W^2$ | $\frac{1}{2}$       | $rac{1}{2}-s_W^2$           | $\frac{1}{2}$                |                   |                     |                              |                                      |                       |  |
|                |                     |                                       |                                        |                                       |                   |                     |                     |                              |                              |                   |                     |                              |                                      |                       |  |

J. R. Reuter, DESY

Model parameters to be determined: vector and axial vector couplings v, a

$$\mathcal{O}_{i} \in \left\{\sigma_{tot}, A_{FB}^{f}, A_{LR}^{f}\right\}$$
wer:  $\chi^{2}_{model} = \sum_{i=1}^{n_{ob}} \left(\frac{\mathcal{O}_{i}^{model} - \mathcal{O}_{i}(v, a)}{\Delta \mathcal{O}_{i}(v, a)}\right)^{2} < 5.99 \text{ for 95\% CL}$ 
certainties:  $\frac{\Delta \sigma_{tot}}{\sigma_{tot}} = \frac{1}{\sqrt{N}}, \qquad \Delta A_{FB} = \sqrt{\frac{1 - A_{FB}^{2}}{N}}, \qquad \Delta A_{LR} = \sqrt{\frac{1 - A_{FB}^{2}}{N}}$ 

osity: 
$$\mathscr{L}_{int}(E_{CM}) = 10 \text{ ab}^{-1} \cdot E_{CM}/10 \text{ TeV}$$

![](_page_66_Picture_10.jpeg)

![](_page_66_Picture_11.jpeg)

![](_page_66_Figure_12.jpeg)

![](_page_66_Figure_13.jpeg)

![](_page_66_Picture_14.jpeg)

![](_page_67_Figure_2.jpeg)

 $E_{CM} = 10 \text{ TeV}, \quad P = 1, \quad M_{Z'} = 30 \text{ TeV}$ 

J. R. Reuter, DESY

## **Preliminary Results**

![](_page_67_Picture_8.jpeg)

![](_page_67_Picture_9.jpeg)

![](_page_68_Picture_1.jpeg)

![](_page_68_Figure_2.jpeg)

 $E_{CM} = 10 \,\mathrm{TeV}, \quad \mathscr{L} = 10 \,\mathrm{ab}^{-1}, \quad M_{Z'} = 30 \,\mathrm{TeV}$ 

J. R. Reuter, DESY

![](_page_68_Picture_5.jpeg)

## **Preliminary Results**

![](_page_68_Picture_8.jpeg)

![](_page_69_Picture_1.jpeg)

![](_page_69_Figure_2.jpeg)

 $E_{CM} = 10 \,\text{TeV}, \quad \mathscr{L} = 10 \,\text{ab}^{-1}, \quad P = 1$ 

J. R. Reuter, DESY

![](_page_69_Picture_5.jpeg)

## **Preliminary Results**

![](_page_69_Picture_8.jpeg)

![](_page_69_Figure_9.jpeg)

![](_page_70_Picture_1.jpeg)

![](_page_70_Figure_2.jpeg)

![](_page_70_Picture_4.jpeg)

J. R. Reuter, DESY

## **Preliminary Results**

Systematic uncertainties should be tuned down to the level of ~ 1 per cent

![](_page_70_Picture_9.jpeg)

![](_page_70_Figure_10.jpeg)

![](_page_70_Picture_11.jpeg)

## **Conclusions & Outlook**

- Muon collider fantastic Energy Frontier option
- Huge potential for Higgs and electroweak physics as well as BSM sensitivity

- Sudakov regimes rules at the MuC: partially necessitates resummation

![](_page_71_Picture_9.jpeg)

J. R. Reuter, DESY

Three prime examples: anomalous muon-Higgs couplings, heavy neutral leptons, heavy Z'

 $\mu - H$  coupling testable with 20% @ 10 TeV .... 2% @ 30 TeV, i.e. BSM sensitivity to  $\Lambda \sim 20 - 70$  TeV Remember: model-independent test (production, separate from BRs), can determine sign

MuC outperforms all energy frontier machines in searches for heavy neutral leptons (neutrinos)

Hugh discriminate power for new gauge interactions up to 10s of TeV, determination of axial structure

Thorough understanding of dominant SM EW corrections: available in well automated way

![](_page_71_Picture_20.jpeg)
## Dig deep and ....you find the unexpected



J. R. Reuter, DESY



#### **Dig deep and ....you find the unexpected**





J. R. Reuter, DESY



Archeologists have confirmed, the city of Pittsburgh PA was built on the ruins of an Imperial Star Destroyer.







J. R. Reuter, DESY



# Running of muon Yukawa

VeV and muon mass in the SM



$$\beta_{g_i} = \frac{\mathrm{d}g_i}{\mathrm{d}t} = \frac{b_i g_i^3}{16\pi^2}, \qquad \qquad b_i^{\mathrm{SM}} = (41/10, -19/6, -7)$$



J. R. Reuter, DESY



Muon Yukawa in different BSM models



$$\frac{dy_t}{dt} = \beta_{y_t}^{\text{SM}} + \frac{y_t}{16\pi^2} 2(S(t) - 1) \left(\frac{3}{2}y_t^2 - 8g_3^2 - \frac{9}{4}g_2^2 - \frac{17}{20}g_1^2\right), \qquad 5\text{D B}$$

$$\frac{dy_{\mu}}{dt} = \beta_{y_{\mu}}^{\rm SM} - \frac{y_{\mu}}{16\pi^2} 2(S(t) - 1) \left(\frac{9}{4}g_2^2 + \frac{9}{4}g_1^2\right), \qquad 5D \text{ E}$$

$$\frac{dy_t}{dt} = \beta_{y_t}^{\text{SM}} + \frac{y_t}{16\pi^2} (S(t) - 1) \left( \frac{15}{2} y_t^2 - \frac{28}{3} g_3^2 - \frac{15}{8} g_2^2 - \frac{101}{120} g_1^2 \right), \qquad 5\text{D}$$

$$\frac{dy_{\mu}}{dt} = \beta_{y_{\mu}}^{\rm SM} + \frac{y_{\mu}}{16\pi^2} (S(t) - 1) \left( 6y_t^2 - \frac{15}{8}g_2^2 - \frac{99}{40}g_1^2 \right), \qquad 5D$$





## **Kinematic separation of signal**



| $\sigma ~[{ m fb}]$                   |                     |                     | ZHH   |                     |                     |
|---------------------------------------|---------------------|---------------------|-------|---------------------|---------------------|
| No cut                                | $6.9 \cdot 10^{-3}$ | $6.1 \cdot 10^{-3}$ | 0.119 | 9.6 $\cdot 10^{-2}$ | $6.7 \cdot 10^{-4}$ |
| $M_{3B} > 0.8\sqrt{s}$                | $5.9 \cdot 10^{-3}$ | $6.1 \cdot 10^{-3}$ | 0.115 | $1.5 \cdot 10^{-4}$ | $7.4 \cdot 10^{-6}$ |
| $10^{\circ} < \theta_B < 170^{\circ}$ | $5.7 \cdot 10^{-3}$ | $6.0 \cdot 10^{-3}$ | 0.110 | $8.8 \cdot 10^{-6}$ | $7.5 \cdot 10^{-7}$ |
| $\Delta R_{BB} > 0.4$                 | $3.8 \cdot 10^{-3}$ | $4.0 \cdot 10^{-3}$ | 0.106 | $8.0 \cdot 10^{-6}$ | $5.6 \cdot 10^{-7}$ |
| # of events                           | 38                  | 40                  | 1060  | _                   |                     |
| S/B                                   |                     |                     | 27    |                     |                     |



J. R. Reuter, DESY

 $\mu^+\mu^- \to ZZH$ 





# **Collection of useful formulæ**

Unitarity violation for operator insertions at d = 6, 8, 10:

$$\Lambda_d = 4\pi\kappa_d \left(\frac{v^{d-3}}{m_{\mu}}\right)^{1/(d-4)}, \quad \text{where} \quad \kappa_d = \left(\frac{(d-5)!}{2^{d-5}(d-3)}\right)^{1/(2(d-4))}$$

$$R_{(3),1}^{\text{SMEFT}} = \left(\frac{v^2 c_{\ell\varphi}^{(2)} + c_{\ell\varphi}^{(1)}}{3v^2 c_{\ell\varphi}^{(2)} + c_{\ell\varphi}^{(1)}}\right)^2, \qquad R_{(3),2}^{\text{SMEFT}}$$

$$R_{(3),1}^{\text{HEFT}} = \left(\frac{y_{\mu}}{y_1}\right)^2, \qquad R_{(3),2}^{\text{HEFT}} = \left(\frac{y_2}{y_1}\right)^2,$$

$$R_{(4),1}^{\text{SMEFT}} = \left(\frac{3v^2 c_{\ell\varphi}^{(3)} + 2c_{\ell\varphi}^{(2)}}{5v^2 c_{\ell\varphi}^{(3)} + 2c_{\ell\varphi}^{(2)}}\right)^2, \qquad R_{(4),2}^{\text{SMEFT}}$$

$$R_{(4),1}^{\text{HEFT}} = \left(\frac{y_{\mu}}{y_2}\right)^2, \quad R_{(4),2}^{\text{HEFT}} = \left(\frac{y_1}{y_2}\right)^2, \quad R_{(4),3}^{\text{HEFT}} = \left(\frac{y_3}{y_2}\right)^2, \quad R_{(4),4}^{\text{HEFT}} = \left(\frac{y_4}{y_2}\right)^2$$



J. R. Reuter, DESY

corresponds to 95 TeV, 17 TeV, 11 TeV, respectively

$$= \left(\frac{5v^2c_{\ell\varphi}^{(2)} + c_{\ell\varphi}^{(1)}}{3v^2c_{\ell\varphi}^{(2)} + c_{\ell\varphi}^{(1)}}\right)^2$$

$$m_{\mu}^{(8)} = \frac{v}{\sqrt{2}} \left( y_{\mu} - \frac{v^2}{2} c_{\ell\varphi}^{(1)} - \frac{v^4}{4} c_{\ell\varphi}^{(2)} \right),$$
$$\lambda_{\mu}^{(8)} = \left( y_{\mu} - \frac{3v^2}{2} c_{\ell\varphi}^{(1)} - \frac{5v^4}{4} c_{\ell\varphi}^{(2)} \right)$$

$$R_{(3),3}^{\mathrm{HEFT}} = \left(rac{y_3}{y_1}
ight)^2$$

$$= \left(\frac{7v^2c_{\ell\varphi}^{(3)} + 2c_{\ell\varphi}^{(2)}}{5v^2c_{\ell\varphi}^{(3)} + 2c_{\ell\varphi}^{(2)}}\right)^2$$







## **Additional cross sections**





J. R. Reuter, DESY





# NLO matching to parton shower

Matching between NLO real emission from hard ME and parton shower (PS)

$$\widehat{} \text{ Perturbative } \alpha_s: \quad \left| \mathcal{M}_{\text{soft}} \right|^2 \sim \frac{1}{k_T^2} \longrightarrow \log \frac{k_{\text{max}}^T}{k_{\text{min}}^T}$$

- POWHEG method: hardest emission first [Frixione/Nason et al.]
- Process-independent NLO matching in WHIZARD
- Massive/massless emitters, back-to-pack kinematics, running  $\alpha_s$
- Real partitioning of phase space into singular and finite regions
- Resonance-aware subtraction: Intermediate resonances handled
- At the moment: NLO QCD; straightforward EW generalization
- Complete NLO events

$$\overline{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int d\Phi_{\rm rad} R(\Phi_{n+1})$$

• POWHEG generate events according to the formula:

$$d\sigma = \overline{B}(\Phi_n) \left[ \Delta_R^{\text{NLO}}(k_T^{\text{min}}) + \Delta_R^{\text{NLO}}(k_T) \frac{R(\Phi_{n+1})}{B(\Phi_n)} \right]$$

• Uses the modified Sudakov form factor:

$$\Delta_R^{\rm NLO}(k_T) = \exp\left[-\int d\Phi_{\rm rad} \frac{R(\Phi_{n+1})}{B(\Phi_n)} \theta(k_T(\Phi_{n+1}) - k_T)\right]$$





$$\left(\frac{1}{2}\right) d\Phi_{\mathrm{rad}}$$



# NLO matching to parton shower

Matching between NLO real emission from hard ME and parton shower (PS)

$$\widehat{} \text{ Perturbative } \alpha_s: \quad \left| \mathcal{M}_{\text{soft}} \right|^2 \sim \frac{1}{k_T^2} \longrightarrow \log \frac{k_{\text{max}}^T}{k_{\text{min}}^T}$$

- POWHEG method: hardest emission first [Frixione/Nason et al.]
- Process-independent NLO matching in WHIZARD
- G Massive/massless emitters, back-to-pack kinematics, running  $\alpha_s$
- Real partitioning of phase space into singular and finite regions
- Resonance-aware subtraction: Intermediate resonances handled
- At the moment: NLO QCD; straightforward EW generalization
- Complete NLO events

$$\overline{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int d\Phi_{\rm rad} R(\Phi_{n+1})$$

• POWHEG generate events according to the formula:

$$d\sigma = \overline{B}(\Phi_n) \left[ \Delta_R^{\text{NLO}}(k_T^{\text{min}}) + \Delta_R^{\text{NLO}}(k_T) \frac{R(\Phi_{n+1})}{B(\Phi_n)} \right]$$

• Uses the modified Sudakov form factor:

$$\Delta_R^{\rm NLO}(k_T) = \exp\left[-\int d\Phi_{\rm rad} \frac{R(\Phi_{n+1})}{B(\Phi_n)} \theta(k_T(\Phi_n))\right]$$













 $_{n+1}) - k_T)$ 







# NLO matching to parton shower

Matching between NLO real emission from hard ME and parton shower (PS)

$$\widehat{} \text{ Perturbative } \alpha_s: \quad \left| \mathcal{M}_{\text{soft}} \right|^2 \sim \frac{1}{k_T^2} \longrightarrow \log \frac{k_{\text{max}}^T}{k_{\text{min}}^T}$$

- POWHEG method: hardest emission first [Frixione/Nason et al.]
- Process-independent NLO matching in WHIZARD
- Massive/massless emitters, back-to-pack kinematics, running  $\alpha_s$
- Real partitioning of phase space into singular and finite regions
- Resonance-aware subtraction: Intermediate resonances handled
- At the moment: NLO QCD; straightforward EW generalization
- Complete NLO events

$$\overline{B}(\Phi_n) = B(\Phi_n) + V(\Phi_n) + \int d\Phi_{\rm rad} R(\Phi_{n+1})$$

• POWHEG generate events according to the formula:

$$d\sigma = \overline{B}(\Phi_n) \left[ \Delta_R^{\text{NLO}}(k_T^{\text{min}}) + \Delta_R^{\text{NLO}}(k_T) \frac{R(\Phi_{n+1})}{B(\Phi_n)} \right]$$

• Uses the modified Sudakov form factor:

$$\Delta_R^{\rm NLO}(k_T) = \exp\left[-\int d\Phi_{\rm rad} \frac{R(\Phi_{n+1})}{B(\Phi_n)} \theta(k_T(\Phi_n))\right]$$









 $_{n+1})-k_T)$ 

 $-d\Phi_{\rm rad}$ 





## **BDT CLs cross section limits**

BDT response used to build model in RooStats to use CLs method to set limits on cross sections: Combination of  $e^{\pm}$  and  $\mu^{\pm}$  channels





J. R. Reuter, DESY



## **BDT CLs cross section limits**

BDT response used to build model in RooStats to use CLs method to set limits on cross sections: Combination of  $e^{\pm}$  and  $\mu^{\pm}$  channels





J. R. Reuter, DESY



