

Precision physics at a muon collider

Flavor, Higgs, g-2, etc...

Dario Buttazzo

Muon Collider Benchmarks Workshop — Pittsburgh, 18.11.2023

Energy AND Precision

A muon collider is an amazing discovery machine: production of EW particles up to several TeV of mass...

... but also a tool for precision measurements

Two paths to precision

+ High rate: more events = better precision

For "soft" SM final state $\hat{s} \sim m_{\rm EW}^2$ cross-section is enhanced

$$\sigma_{\rm SM} \sim \log(s/m_{\rm EW}^2)/m_{\rm EW}^2$$

High rate probes

High rate: more events = better precision

A High Energy Lepton Collider is a "vector boson collider" For "soft" SM final state $\hat{s} \sim m_{\rm EW}^2$ cross-section is enhanced Dawson 1985

Above few TeV the VBF cross-section dominates over the hard $2 \rightarrow 2$

 Huge single Higgs rate in vector-boson-fusion: 10⁷-10⁸ Higgs bosons at 10-30 TeV

High rate probes: Higgs physics

A 10+ TeV muon collider is a perfect Higgs factory!

- Signal-only estimate: ~ 10⁷ Higgses at 10 TeV + efficiencies, BR
 - ➡ rough estimate: 10⁻³ for dominant decay channels @ 10 TeV

High rate probes: Higgs physics

A 10+ TeV muon collider is a perfect Higgs factory!

- Signal-only estimate: ~ 10⁷ Higgses at 10 TeV + efficiencies, BR
 - ➡ rough estimate: 10⁻³ for dominant decay channels @ 10 TeV

"Muon smasher guide"	2103.14043
----------------------	------------

Forslund, Meade 2203.09425

к-0	HL-LHC	ILC	CLIC	CEPC	FCC-ee	FCC-ee/	$\mu^+\mu^-$	
fit		250 500 1000	380 1500 3000		240 365	eh/hh	10000	
$\kappa_W ~[\%]$	1.7	$1.8 \ 0.29 \ 0.24$	$0.86 \ 0.16 \ 0.11$	1.3	$1.3 \ 0.43$	0.14	0.06	dominant channels
$\kappa_Z \ [\%]$	1.5	$0.29\ 0.23\ 0.22$	$0.5 \ 0.26 \ 0.23$	0.14	$0.20\ 0.17$	0.12	0.23	factories
$\kappa_g \ [\%]$	2.3	$2.3 \ 0.97 \ 0.66$	$2.5 \ 1.3 \ 0.9$	1.5	$1.7 \ 1.0$	0.49	0.15	raro modos
$\kappa_{\gamma} \ [\%]$	1.9	$6.7 \ 3.4 \ 1.9$	98 * 5.0 2.2	3.7	4.7 3.9	0.29	0.64	much better
$\kappa_{Z\gamma}$ [%]	10.	99* 86* 85*	$120 \star 15 \ 6.9$	8.2	81* 75*	0.69	1.0	(~ hadron collider)
$\kappa_c \ [\%]$	-	$2.5 \ 1.3 \ 0.9$	4.3 1.8 1.4	2.2	1.8 1.3	0.95	0.89	
$\kappa_t \ [\%]$	3.3	- 6.9 1.6	2.7	_		1.0	6.0	
$\kappa_b \ [\%]$	3.6	1.8 0.58 0.48	1.9 0.46 0.37	1.2	$1.3 \ 0.67$	0.43	0.16	
κ_{μ} [%]	4.6	15 9.4 6.2	$320 \star 13 5.8$	8.9	10 8.9	0.41	2.0	
$\kappa_{ au}$ [%]	1.9	1.9 0.70 0.57	3.0 1.3 0.88	1.3	1.4 0.73	0.44	0.31	5

Double Higgs production

+ Large double Higgs VBF rate: Higgs trilinear coupling from $hh \rightarrow 4b$

E [TeV]	ℒ [ab-1]	N _{rec}	δκ3
3	5	170	~ 10%
10	10	620	~ 4%
14	20	1340	~ 2.5%
30	90	6'300	~ 1.2%

B, Franceschini, Wulzer 2012.11555,

Han et al. 2008.12204, Costantini et al. 2005.10289

Double Higgs production

+ Large double Higgs VBF rate: Higgs trilinear coupling from $hh \rightarrow 4b$

E [TeV]	£ [ab-1]	N _{rec}	δκ3
3	5	170	~ 10%
10	10	620	~ 4%
14	20	1340	~ 2.5%
30	90	6'300	~ 1.2%

B, Franceschini, Wulzer 2012.11555, Han et al. 2008.12204, Costantini et al. 2005.10289

- Weak dependence on angular acceptance (signal is in the central region)
- Some dependence on detector resolution (to remove backgrounds)

B, Franceschini, Wulzer 2012.11555 see also CLIC study 1901.05897

Double Higgs production

+ Large double Higgs VBF rate: Higgs trilinear coupling from $hh \rightarrow 4b$

E [TeV]	ℒ [ab-1]	N _{rec}	δκ3
3	5	170	~ 10%
10	10	620	~ 4%
14	20	1340	~ 2.5%
30	90	6'300	~ 1.2%

B, Franceschini, Wulzer 2012.11555, Han et al. 2008.12204, Costantini et al. 2005.10289

- Weak dependence on angular acceptance (signal is in the central region)
- Some dependence on detector resolution (to remove backgrounds)

B, Franceschini, Wulzer 2012.11555 see also CLIC study 1901.05897

High-energy probes

+ NP effects are more important at high energies $\mathscr{L} = \mathscr{L}_{SM} + \frac{1}{\Lambda^2} \sum C_i \mathscr{O}_i$

EW high-energy probes: µC can test scales of 100 TeV or more!

Example: Double Higgs at high mass

- Di-Higgs production is affected by two operators:
- NP contribution from O_H grows as E²:
 high mass tail gives a *direct* measurement of C_H

High-energy WW $\rightarrow hh$ more sensitive than Higgs pole physics at energies $\gtrsim 10$ TeV

 $\mathcal{O}_6 = -\lambda |H|^6$

 $\mu^+\mu^- \rightarrow hh\nu\bar{\nu}$

 $\mathcal{O}_H = rac{1}{2} \left(\partial_\mu |H|^2 \right)^2$

Flavour: muons vs. electrons

- New Physics (especially if related to the Higgs sector) could distinguish the different families of fermions.
- EW interactions are flavour-universal: an accidental property of the gauge lagrangian, *not* a fundamental symmetry of nature!
 - Example: Yukawa couplings, the only non-gauge interactions in the SM, violate flavour universality maximally!

$$m_u \sim (\cdot \cdot)$$

$$m_d \sim (\cdot \cdot \bullet)$$
 $m_\ell \sim (\cdot \cdot \bullet)$

A muon collider collides 2nd generation particles:

- can have access to flavor processes
 than cannot be efficiently probed elsewhere
- could test flavour structure

+ Flavor processes: rare decays & tiny effects

 $BR(B_s \to \mu\mu) \sim 10^{-9}, \quad BR(\tau \to 3\mu) \lesssim 10^{-8}, \quad \Delta a_\mu \approx 10^{-9}$

- need billions of events, usually probed by means of high-intensity experiments
- Muon-collider: very large number of (clean) EW particles, but overall event rate not comparable to flavor factories

High-energy probes

+ NP effects are more important at high energies $\mathscr{L} = \mathscr{L}_{SM} + \frac{1}{\Lambda^2} \sum C_i \mathscr{O}_i$

- very powerful at a µ-collider with 10's of TeV
- taken to the extreme for flavor processes: gain can be as large as $(E/m_{\mu})^2$

Four-fermion interactions: muon current coupled to flavor-violating bilinear

$$\frac{c_{e3\mu}}{\Lambda^2} (\bar{e}_{L,R} \Gamma \mu_{L,R}) (\bar{\mu}_{L,R} \Gamma \mu_{L,R})$$

+ Charged lepton flavor violating processes: $\tau \rightarrow \ell \gamma$, $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$ some of the strongest bounds on (generic) BSM interactions

 $BR(\mu \to e\gamma) \lesssim 4 \times 10^{-13}$

$$\mathrm{BR}(\mu \to 3e) \lesssim 10^{-12}$$

$$\Lambda \gtrsim 10^6 \,\mathrm{TeV} \times \frac{\alpha}{4\pi}$$

not in reach of any collider experiment 😕

Four-fermion interactions: muon current coupled to flavor-violating bilinear

$$\frac{c_{e3\mu}}{\Lambda^2} (\bar{e}_{L,R} \Gamma \mu_{L,R}) (\bar{\mu}_{L,R} \Gamma \mu_{L,R})$$

+ Charged lepton flavor violating processes: $\tau \rightarrow \ell \gamma$, $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$ some of the strongest bounds on (generic) BSM interactions

 $BR(\mu \to e\gamma) \lesssim 4 \times 10^{-13}$

$$BR(\mu \to 3e) \lesssim 10^{-12}$$

$$\Lambda \gtrsim 10^6 \,\mathrm{TeV} \times \frac{\alpha}{4\pi} \times \mathrm{small}$$

can probe larger set of operators than $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e?$

Four-fermion interactions: muon current coupled to flavor-violating bilinear

Charged lepton flavor violating processes: $\tau \rightarrow \ell \gamma, \mu \rightarrow e\gamma, \mu \rightarrow 3e$ some of the strongest bounds on (generic) BSM interactions

 $\frac{c_{\tau 3\mu}}{\Lambda 2} (\bar{\tau}_{L,R} \gamma^{\rho} \mu_{L,R}) (\bar{\mu}_{L,R} \gamma_{\rho} \mu_{L,R})$

3rd generation less severely constrained: $\tau \rightarrow 3\mu$ constrains NP scale $\Lambda > 15$ TeV [Belle]

$$\mathrm{BR}(\tau \to 3\mu) \sim \frac{m_W^4}{\Lambda^4} \qquad \sigma(\mu\bar{\mu} \to \tau\bar{\mu}) \sim \frac{E^2}{\Lambda^4}$$

already at 3 TeV the same sensitivity as Belle II, $\Lambda > 40$ TeV

"Muon smasher guide" 2103.14043 Homiller, Lu, Reece 2203.08825 14

talk by Sam yesterday!

Four-fermion interactions: muon current coupled to flavor-violating bilinear

talk by Sam yesterday!

• Charged lepton flavor violating processes: $\tau \rightarrow \ell \gamma$, $\mu \rightarrow e \gamma$, $\mu \rightarrow 3e$ some of the strongest bounds on (generic) BSM interactions

 $\frac{c_{\tau 3\mu}}{\Lambda 2} (\bar{\tau}_{L,R} \gamma^{\rho} \mu_{L,R}) (\bar{\mu}_{L,R} \gamma_{\rho} \mu_{L,R})$

Quark flavor violation

Four-fermion interactions: muon current coupled to flavor-violating bilinear

$$\frac{c_{bs}}{\Lambda^2}(\bar{b}_{L,R}\gamma^{\rho}s_{L,R})(\bar{\mu}_{L,R}\gamma_{\rho}\mu_{L,R})$$

Contributes to (semi-)leptonic rare B decays b → sµµ: branching ratios
 & angular observables of various hadronic processes

$$B_s \to \mu\mu, \qquad B \to K^{(*)}\mu\mu, \qquad B_s \to \phi\mu\mu, \qquad \Lambda_b \to \Lambda\mu\mu$$

 Theory & systematic uncertainties: rare decays cannot improve indefinitely

$$BR(B \to K\mu\mu) \sim \frac{m_W^4}{\Lambda^4} V_{ts}, \quad \sigma(\mu\bar{\mu} \to jj) \sim \frac{E^2}{\Lambda^4}$$

Azatov, Garosi, Greljo, Marzocca, Salko, Trifinopoulos 2205.13552 see also Altmannshofer et al. 2306.15017

The muon g-2

+ Example: muon g-2. Can it be tested at high energies at a muon collider?

$$\Delta a_{\mu} = 251(59) \times 10^{-11}$$

Theoretical/systematic errors need to be controlled at the level of $\Delta a_{\mu} \approx 10^{-9}$

→ Independent test of Δa_{μ} is desirable (ideally with different sys. & th. errors)

The muon g-2

+ Example: muon g-2. Can it be tested at high energies at a muon collider?

$$\Delta a_{\mu} = ???$$

Theoretical/systematic errors need to be controlled at the level of $\Delta a_{\mu} \approx 10^{-9}$

→ Independent test of Δa_{μ} is desirable (ideally with different sys. & th. errors)

- + Example: muon g-2. Can it be tested at high energies at a muon collider?
- If new physics is light enough (i.e. weakly coupled), a Muon Collider can directly produce the new particles
 direct searches: model-dependent

Capdevilla et al. 2006.16277 2101.10334

classify New Physics that can enter the loop (under reasonable assumptions)

weakly coupled models w/ MFV ⇒ new states below ~ 20 TeV

- + Example: muon g-2. Can it be tested at high energies at a muon collider?
- + If new physics is heavy: EFT!

One dim. 6 operator contributes at tree-level: $\mathscr{L}_{g-2} = \frac{C_{e\gamma}}{\Lambda^2} H(\bar{\ell}_L \sigma_{\mu\nu} e_R) eF^{\mu\nu} + h.c.$

- + Example: muon g-2. Can it be tested at high energies at a muon collider?
- + If new physics is heavy: EFT!

One dim. 6 operator contributes at tree-level: $\mathscr{L}_{g-2} = \frac{C_{e\gamma}}{\Lambda^2} H(\bar{\ell}_L \sigma_{\mu\nu} e_R) eF^{\mu\nu} + h.c.$

Dipole operator generates both Δa_{μ} and $\mu \mu \rightarrow h \gamma$

At high energy

$$\sigma_{\mu^{+}\mu^{-} \to h\gamma} = \frac{s}{48\pi} \frac{|C_{e\gamma}|^{2}}{\Lambda^{4}} \approx 0.7 \text{ ab} \left(\frac{\sqrt{s}}{30 \text{ TeV}}\right)^{2} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^{2}$$

$$N_{h\gamma} = \sigma \cdot \mathscr{L} \approx \left(\frac{\sqrt{s}}{10 \text{ TeV}}\right)^{4} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)^{2} \text{ need E > 10 TeV}$$

• Other operators enter g-2 at 1 loop:

$$\Delta a_{\mu} \approx \left(\frac{250 \,\mathrm{TeV}}{\Lambda^2}\right)^2 \left(C_{e\gamma} - \frac{C_{Tt}}{5} - \frac{C_{Tc}}{1000} - \frac{C_{eZ}}{20}\right)$$

Full set of operators with Λ ≥ 100 TeV
 can be probed at a high-energy
 muon collider

Muon EDM @ muon collider

• Dipole operator contributes also to $h \rightarrow \ell \ell \gamma$ decays

$$\mathrm{BR}_{h \to \mu^+ \mu^- \gamma}^{(\mathrm{NP})} \approx 5 \times 10^{-10} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)$$

• Dipole operator contributes also to $h \rightarrow \ell \ell \gamma$ decays

$$\mathrm{BR}_{h \to \mu^+ \mu^- \gamma}^{(\mathrm{NP})} \approx 5 \times 10^{-10} \left(\frac{\Delta a_{\mu}}{3 \times 10^{-9}}\right)$$

• Dipole operator contributes also to $h \rightarrow \ell \ell \gamma$ decays

Tau magnetic dipole moment: enhanced due to the larger mass

$$\Delta a_{\tau} = \frac{4v \, m_{\tau}}{\Lambda^2} C_{e\gamma}^{\tau} \approx \Delta a_{\mu} \frac{m_{\tau}^2}{m_{\mu}^2} \approx 10^{-6}$$

if $C_{e\gamma}^{\ell}$ scales as y_{ℓ}

Present bound: $\Delta a_{\tau} \lesssim 10^{-2}$ from LEP $e^+e^- \rightarrow e^+e^-\tau^+\tau^$ hep-ex/0406010 Can be improved to few 10-3

at HL-LHC

• Contribution to $h \rightarrow \tau \tau \gamma$ decays:

 $\mathrm{BR}_{h \to \tau^+ \tau^- \gamma}^{(\mathrm{SM})} \approx 5 \times 10^{-4}$ (with cut on soft collinear photon)

1908.05180

could be measured at few % level by Higgs factory

$$\mathsf{BR}_{h \to \tau^+ \tau^- \gamma}^{(\mathsf{NP})} \approx 0.2 \times \Delta a_{\tau}$$

$$BR_{h\to\tau^+\tau^-\gamma}^{(SM)} \approx 5 \times 10^{-4} \qquad BR_{h\to\tau^+\tau^-\gamma}^{(NP)} \approx 0.2 \times \Delta a_{\tau}$$

★ MuC: 10⁷ Higgs bosons @ 10 TeV ⇒ 5k H → ττγ events, 2% precision on SM,
 Δa_τ ≤ 3 × 10⁻⁵ (signal only)
 3 o.o.m. improvement of current limit!

$$BR_{h\to\tau^+\tau^-\gamma}^{(SM)} \approx 5 \times 10^{-4} \qquad BR_{h\to\tau^+\tau^-\gamma}^{(NP)} \approx 0.2 \times \Delta a_{\tau}$$

MuC: 10⁷ Higgs bosons @ 10 TeV ⇒ 5k H → ττγ events, 2% precision on SM,
 Δa_τ ≤ 3 × 10⁻⁵ (signal only)
 3 o.o.m. improvement of current limit!

- e+e- factory: ~ 400 $H \rightarrow \tau \tau \gamma$ events \Rightarrow 5% precision on SM, $\Delta a_{\tau} \lesssim \text{few} \times 10^{-4}$
- **LHC:** large number of Higgs bosons, but large backgrounds
 Rescaling H → ττ searches ~ 350 reconstructed H → ττγ events at HL-LHC,
 but 10x more background ⇒ 20% precision on SM, Δa_τ ≤ 5 × 10⁻⁴

$$BR_{h\to\tau^+\tau^-\gamma}^{(SM)} \approx 5 \times 10^{-4} \qquad BR_{h\to\tau^+\tau^-\gamma}^{(NP)} \approx 0.2 \times \Delta a_{\tau}$$

MuC: 10⁷ Higgs bosons @ 10 TeV \Rightarrow 5k $H \rightarrow \tau \tau \gamma$ events, 2% precision on SM, $\Delta a_{\tau} \lesssim 3 \times 10^{-5}$ (signal only) 3 o.o.m. improvement of current limit!

Caveat: need to be able to reconstruct Higgs mass in di-tau channel w/ reasonable precision

= 3 TeVμ⁺μ⁻ collisions, √s = 1.5 TeV BIB overlay

Tau g-2 from high-energy probes

Further possibilities to measure Δa_r precisely from high-energy probes

Pair production

$$\sigma_{\rm SM} \sim \frac{4\pi\alpha^2}{3s}$$

$$\sigma_{\rm NP} = \frac{4\pi\alpha^2}{3} \frac{|C_{e\gamma}^{\ell}|^2 v^2}{\Lambda^4} \sim \frac{\pi\alpha^2 \Delta a_{\ell}^2}{6m_{\ell}^2}$$

imit on g-2:
$$\Delta a_{\ell} \lesssim \frac{\text{const.}}{\sqrt{\mathscr{L}}} \sim E^{-1}$$

• equivalently, $\Lambda \sim \sqrt{E}$

EFT description breaks down above few TeV!

w/ Levati, Maltoni, Paradisi, Wang

Tau g-2 from high-energy probes

Further possibilities to measure Δa_r precisely from high-energy probes

+ $H\tau\tau$ associated production

DB, Levati, Paradisi, Maltoni, Wang to appear...

• Main background from $\mu\mu \rightarrow Z\gamma$ (where Z is mistaken for H)

Could probe $\Delta a_{\tau} \sim 10^{-5}$ @ 10 TeV

Tau g-2 from high-intensity probes

A high-energy lepton collider has a huge VBF rate!

• Δa_{τ} from vector boson scatterings $\ell^+\ell^- \rightarrow \ell^+\ell^-\tau^+\tau^-, \nu\bar{\nu}\tau^+\tau^-$

(same as LEP bound)

Caveat: VBF is a "soft" process,
 EFT mainly affects high-mass region

Still, could probe $\Delta a_{\tau} \sim \text{few } 10^{-5}$

charged and neutral channel can separately constrain C_{eB} and C_{eW}

work in progress with Levati, Paradisi, Maltoni, Wang

$$\Delta a_{\tau} \times 10^4 \text{ from } \ell^+ \ell^- \to \tau^+ \tau^- \nu \bar{\nu}$$

Summary

+ High energy muon collider offers two paths to precision measurements

High rate (VBF)

μ

New ways to test flavor @ µCollider:

gain from high energy probes

access to second generation processes

- Bounds on lepton- and quark-flavor violating interactions can surpass low-energy precision measurements!
- Can exploit rare Higgs decays + Higgs production @ high energy to access 3rd generation physics (tau)
- + Can improve lepton g-2 and EDM bound by orders of magnitude

Backup

Radiation effects are important.

talks by David, Andrea, Davide

- + Hard neutrinos from $\mu^{\pm} \to W^{\pm} \nu$ have a large PDF
 - \implies can access neutrino initial state at high energy!

see also Chen, Glioti, Rattazzi, Ricci, Wulzer 2202.10509

- Directly probe neutrino interactions at high energy: usual E² gain
 - can put strong constraints on BSM neutrino physics

previous talk by Zahra

 complementary to µ⁺µ⁻ scattering, can remove flat directions and probe operators with different flavor structure

- SM irreducible background is small: $\sigma_{\mu^+\mu^- \to h\gamma}^{(SM)} \approx 10^{-2} \text{ ab} \left(\frac{30 \text{ TeV}}{\sqrt{s}}\right)^2$ tree-level is suppressed by muon mass; loop contribution dominant -
- Main background from $\mu\mu \rightarrow Z\gamma$ (where Z is mistaken for H) (large due to transverse Z polarizations)

Search in h \rightarrow bb channel: $\epsilon_b \approx 80 \%$ $|\cos \theta_{cut}| < 0.6$ $BR_{h \rightarrow b\bar{b}} = 58 \%$ At 30 TeV, 90 ab⁻¹, for $\Delta a_\mu = 3 \times 10^{-9}$: $N_S = 22$, $N_B = 886 \times p_{Z \rightarrow h}$ Δa_μ can be tested at 95% CL at a 30 TeV

collider if Z→h mistag probability < 10-15%

Beyond tree-level

Other operators contribute to g-2 at one loop:

$$\mathcal{L} = \frac{C_{eB}}{\Lambda^2} (\bar{\ell}_L \sigma^{\mu\nu} e_R) H B_{\mu\nu} + \frac{C_{eW}}{\Lambda^2} (\bar{\ell}_L \sigma^{\mu\nu} e_R) \tau^I H W^I_{\mu\nu} + \frac{C_{qT}}{\Lambda^2} (\bar{\ell}_L \sigma^{\mu\nu} e_R) \epsilon (\bar{q}_L \sigma_{\mu\nu} u_R)$$

(+ other effects suppressed by y_{μ}) $|H|^2 W^a_{\mu\nu} W^{\mu\nu,a} |H|^2 B_{\mu\nu} B^{\mu\nu}$ $(H^{\dagger} \sigma^a H) W^a_{\mu\nu} B^{\mu\nu}$

$$\begin{split} \Delta a_{\mu} \simeq & \frac{4m_{\mu}v}{e\Lambda^2} \Big(C_{e\gamma}(m_{\mu}) - \frac{3\alpha}{2\pi} \frac{c_W^2 - s_W^2}{s_W c_W} C_{eZ} \log \frac{\Lambda}{m_Z} \Big) - \sum_{q=c,t} \frac{4m_{\mu}m_q}{\pi^2} \frac{C_{Tq}}{\Lambda^2} \log \frac{\Lambda}{m_q} \\ \approx & \Big(\frac{250 \text{ TeV}}{\Lambda^2} \Big)^2 (C_{e\gamma} - 0.2C_{Tt} - 0.001C_{Tc} - 0.05C_{eZ}) \end{split}$$
 B, Paradisi 2012.02769

$$\mathcal{L} = \frac{C_{eB}}{\Lambda^2} (\bar{\ell}_L \sigma^{\mu\nu} e_R) H B_{\mu\nu} + \frac{C_{eW}}{\Lambda^2} (\bar{\ell}_L \sigma^{\mu\nu} e_R) \tau^I H W^I_{\mu\nu} + \frac{C_{qT}}{\Lambda^2} (\bar{\ell}_L \sigma^{\mu\nu} e_R) \epsilon (\bar{q}_L \sigma_{\mu\nu} u_R)$$

 Full set of operators with Λ ≥ 100 TeV can be probed at a high energy muon collider

• SM irreducible background is small: $\sigma_{\mu^+\mu^- \to h\gamma}^{(SM)} \approx 10^{-2} \operatorname{ab} \left(\frac{30 \operatorname{TeV}}{\sqrt{s}}\right)^2$

tree-level is suppressed by muon mass; loop contribution dominant

• Main background from $\mu\mu \rightarrow Z\gamma$ (where Z is mistaken for H) (large due to transverse Z polarizations)

$$\frac{d\sigma_{\mu\mu\to h\gamma}}{d\cos\theta} = \frac{|C^{\mu}_{e\gamma}(\Lambda)|^2}{\Lambda^4} \frac{s}{64\pi} (1 - \cos^2\theta)$$

$$\frac{d\sigma_{\mu\mu\to Z\gamma}}{d\cos\theta} = \frac{\pi\alpha^2}{4s} \frac{1+\cos^2\theta}{\sin^2\theta} \frac{1-4s_W^2+8s_W^4}{s_W^2c_W^2}$$

-Search in h
$$\rightarrow$$
 bb channel:
 $\epsilon_b \approx 80 \%$ $|\cos \theta_{\rm cut}| < 0.6$ ${\rm BR}_{h \rightarrow b\bar{b}} = 58 \%$
At 30 TeV, 90 ab⁻¹, for $\Delta a_\mu = 3 \times 10^{-9}$:
 $N_S = 22$, $N_B = 886 \times p_{Z \rightarrow h}$

 Δa_{μ} can be tested at 95% CL at a 30 TeV collider if Z→h mistag probability < 10-15%

34

 $H\tau\tau$ signal

New physics:
$$\frac{d\sigma_{NP}}{dx_1 dx_2} = \frac{1}{192\pi^3} \frac{Q^2}{\Lambda^4} \left[(Q_\mu e \, \mathcal{C}_\gamma)^2 + \left(\frac{g \, \mathcal{C}_Z}{4c_w}\right)^2 \right] (2x_1 x_2 - x_1 - x_2 + 1)$$

Interference:

$$\frac{d\sigma_{N\gamma}}{dx_1 dx_2} = -\frac{\sqrt{2}}{96\pi^3} \frac{m_\tau}{v} \frac{e^3}{\Lambda^2} Q_\mu \, \mathcal{C}_\gamma;$$

Standard Model:

$$\begin{split} \frac{d\sigma_{\gamma}}{dx_{1}dx_{2}} &= \frac{1}{192\pi^{3}} \frac{m_{\tau}^{2}e^{4}}{v^{2}} \frac{1}{Q^{2}} \left[\frac{1-x_{1}}{1-x_{2}} + 2 + \frac{1-x_{2}}{1-x_{1}} \right];\\ \frac{d\sigma_{2}}{dx_{1}dx_{2}} &= \frac{1}{3 \cdot 2^{14}\pi^{3}} \frac{m_{\tau}^{2}g^{4}}{v^{2}c_{w}^{4}} \frac{1}{Q^{2}} \left[\frac{1-x_{1}}{1-x_{2}} - 2 + \frac{1-x_{2}}{1-x_{1}} \right];\\ \frac{d\sigma_{3}}{dx_{1}dx_{2}} &= \frac{1}{6 \cdot 2^{16}\pi^{3}} \frac{g^{8}}{c_{w}^{8}} \frac{v^{2}}{Q^{4}} \left[\frac{x_{1}x_{2} + x_{1} + x_{2} - 1}{(x_{1} + x_{2} - 1)^{2}} \right]; \end{split}$$

$H\tau\tau$ signal

