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MuC is a Vector Boson Collider

[Costantini et al. 2005.10289, …]

At muon colliders above ~1 - 5 TeV, 
the VBF process dominates over annihilation: 
mostly collinear emission.

If pT (W), mW ≪ Ehard the emission of EW collinear radiation (photon, W, Z, etc..) 
off a muon can be factorised from the hard scattering. [Cuomo, Vecchi, Wulzer 1911.12366, …]

This can be described in terms of 
generalised Parton Distribution Functions, like for proton colliders:
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PDFs of a muon

The SM DGLAP equations describe the evolution of the PDFs (QED+QCD below mW, full SM above)

Unlike for protons, since the muon is elementary this can be done from first principles.

The boundary condition is set by    fµ(x, mµ) = δ(1-x) + O(α),     fi≠µ(x, mµ) = 0 + O(α)
NLO corrections in Frixione [1909.03886]

In case of collinear W emission they can be implemented (and resummed) 
at the Leading Log level by putting an explicit IR cutoff zmax = 1 - QEW / Q
M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0111109] 
Bauer, Ferland, Webber [1703.08562]

Sudakov double-logs (for initial-state radiation)

A
C

B

Virtual corrections Real emission ultra-collinear 
terms (EWSB)

Chen, Han, Tweedie [1611.00788]
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PDFs of a muon

LePDF

• Large EW boson PDFs, above EW scale and small x 

• Non negligible gluon and quark content.
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MuC 10 TeV luminosities

LePDF
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MuC 3 TeV luminosities
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Some examples of parton luminosities for muon colliders.

- The very large γγ lumi could dominate over Z and Z/γ contributions. 
- gluon and quark luminosities are small: suppressed impact of QCD-induced backgrounds.

Some comments:

PDFs of a muon

LePDF LePDF
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Polarisation
Since EW interactions are chiral, PDFs become polarised.

E.g. in case of W- PDF, coupled to µL, the PDF for RH W’s goes to zero for x→ 1  faster than LH W’s, 
since  PV+fL(z) = (1-z)/z  while  PV-fL(z) = 1/z.

Bauer, Webber [1808.08831]

Q = 3 TeV

LePDF

Q = 3 TeV

LePDF

Vectors polarisation:  V+ / V- Fermions polarisation:  ψL / ψR

The muon itself becomes 
polarised!

O(1) polarisation effects! (except for photon PDF)
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Photon - Z mixing

In the collinear limit this can be described by a 
mixed Z/γ PDF. 
Similarly for ZL and H.
P. Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0505047] 
Chen, Han, Tweedie [1611.00788]

The splitting function must be generalised to a splitting matrix. 
The rate is computed by tracing against the matrix of 
the hard scattering process

up to O(kT2/E2, m2/E2)

Photon and Z bosons can interfere
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Effective Vector Boson Approximation
At energies above the EW scale, collinear emission of EW gauge boson can be 
described at fixed log with the Effective Vector Boson Approximation

Figure 3. Integrand functions (left) and resulting PDFs (right) for the computation of the EW
PDFs for transverse and longitudinal W boson of Eqs. (3.9,3.10).

for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal W�

boson, Eqs. (D.33,D.34,D.38) one gets the leading order results
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and analogously for the Z and Z/� PDFs

f
(↵)
Z±

(x,Q2) =
↵2

4⇡c2W

⇣
P

f
V±fL

(x)(QZ
µL

)2 + P
f
V±fR

(x)(QZ
µR

)2
⌘

 
log

Q
2 + (1� x)m2

Z

m2
µ + (1� x)m2

Z

�
Q

2

Q2 + (1� x)m2
Z

!
, (3.11)

f
(↵)
Z/�±

(x,Q2) = �

p
↵�↵2

2⇡cW

⇣
P

f
V±fL

(x)QZ
µL

+ P
f
V±fR

(x)QZ
µR

⌘
log

Q
2 + (1� x)m2

Z

m2
µ + (1� x)m2

Z

,(3.12)

f
(↵)
ZL

(x,Q2) =
↵2

2⇡c2W

1� x

x

�
(QZ

µL
)2 + (QZ

µR
)2
� Q

2

Q2 + (1� x)m2
Z

, (3.13)

where P
f
V+fL

(x) = P
f
V�fR

(x) = (1�x)2/x and P
f
V�fL

(x) = P
f
V+fR

(x) = 1/x. The muon mass
here serves as an IR cutoff for the logarithm in the transverse case to cure the x ! 1 limit,
while we neglect it in the other terms. Notably, the W

+ has no contribution at this order.
In Fig. 3 we show the dependence in

q
p
2
T of the integrands (left), and the resulting

PDFs (right), fixing a value x = 0.3 and showing separately the two polarisation of the

– 11 –

Figure 3. Integrand functions (left) and resulting PDFs (right) for the computation of the EW
PDFs for transverse and longitudinal W boson of Eqs. (3.9,3.10).

for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal W�

boson, Eqs. (D.33,D.34,D.38) one gets the leading order results

f
(↵)

W�
±
(x,Q2) =

Z Q2

m2
µ

dp
2
T
1

2

dP !WT 

dp
2
T

(x, p2T ) =

Z Q2

m2
µ

dp
2
T
↵2

8⇡

p
2
T

(p2T + (1� x)m2
W )2

P
f
V±fL

(x) =

=
↵2

8⇡
P

f
V±fL

(x)

 
log

Q
2 + (1� x)m2

W

m2
µ + (1� x)m2

W

�
Q

2

Q2 + (1� x)m2
W

!
=

⇡
↵2

8⇡
P

f
V±fL

(x)

✓
log

Q
2

m
2
W

� log(1� x)� 1

◆
+O

✓
m

2
W

Q2

◆
, (3.9)

f
(↵)

W�
L

(x,Q2) =

Z Q2

0
dp

2
T
1

2

dP !WL 

dp
2
T

(x, p2T ) =

Z Q2

0
dp

2
T
↵2

4⇡

m
2
W

(p2T + (1� x)m2
W )2

(1� x)2

x
=

=
↵2

4⇡

1� x

x

Q
2

Q2 + (1� x)m2
W

⇡
↵2

4⇡

1� x

x
+O

✓
m

2
W

Q2

◆
, (3.10)

and analogously for the Z and Z/� PDFs

f
(↵)
Z±

(x,Q2) =
↵2

4⇡c2W

⇣
P

f
V±fL

(x)(QZ
µL

)2 + P
f
V±fR

(x)(QZ
µR

)2
⌘

 
log

Q
2 + (1� x)m2

Z

m2
µ + (1� x)m2

Z

�
Q

2

Q2 + (1� x)m2
Z

!
, (3.11)

f
(↵)
Z/�±

(x,Q2) = �

p
↵�↵2

2⇡cW

⇣
P

f
V±fL

(x)QZ
µL

+ P
f
V±fR

(x)QZ
µR

⌘
log

Q
2 + (1� x)m2

Z

m2
µ + (1� x)m2

Z

,(3.12)

f
(↵)
ZL

(x,Q2) =
↵2

2⇡c2W

1� x

x

�
(QZ

µL
)2 + (QZ

µR
)2
� Q

2

Q2 + (1� x)m2
Z

, (3.13)

where P
f
V+fL

(x) = P
f
V�fR

(x) = (1�x)2/x and P
f
V�fL

(x) = P
f
V+fR

(x) = 1/x. The muon mass
here serves as an IR cutoff for the logarithm in the transverse case to cure the x ! 1 limit,
while we neglect it in the other terms. Notably, the W

+ has no contribution at this order.
In Fig. 3 we show the dependence in

q
p
2
T of the integrands (left), and the resulting

PDFs (right), fixing a value x = 0.3 and showing separately the two polarisation of the

– 11 –

Figure 3. Integrand functions (left) and resulting PDFs (right) for the computation of the EW
PDFs for transverse and longitudinal W boson of Eqs. (3.9,3.10).

for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal W�

boson, Eqs. (D.33,D.34,D.38) one gets the leading order results

f
(↵)

W�
±
(x,Q2) =

Z Q2

m2
µ

dp
2
T
1

2

dP !WT 

dp
2
T

(x, p2T ) =

Z Q2

m2
µ

dp
2
T
↵2

8⇡

p
2
T

(p2T + (1� x)m2
W )2

P
f
V±fL

(x) =

=
↵2

8⇡
P

f
V±fL

(x)

 
log

Q
2 + (1� x)m2

W

m2
µ + (1� x)m2

W

�
Q

2

Q2 + (1� x)m2
W

!
=

⇡
↵2

8⇡
P

f
V±fL

(x)

✓
log

Q
2

m
2
W

� log(1� x)� 1

◆
+O

✓
m

2
W

Q2

◆
, (3.9)

f
(↵)

W�
L

(x,Q2) =

Z Q2

0
dp

2
T
1

2

dP !WL 

dp
2
T

(x, p2T ) =

Z Q2

0
dp

2
T
↵2

4⇡

m
2
W

(p2T + (1� x)m2
W )2

(1� x)2

x
=

=
↵2

4⇡

1� x

x

Q
2

Q2 + (1� x)m2
W

⇡
↵2

4⇡

1� x

x
+O

✓
m

2
W

Q2

◆
, (3.10)

and analogously for the Z and Z/� PDFs

f
(↵)
Z±

(x,Q2) =
↵2

4⇡c2W

⇣
P

f
V±fL

(x)(QZ
µL

)2 + P
f
V±fR

(x)(QZ
µR

)2
⌘

 
log

Q
2 + (1� x)m2

Z

m2
µ + (1� x)m2

Z

�
Q

2

Q2 + (1� x)m2
Z

!
, (3.11)

f
(↵)
Z/�±

(x,Q2) = �

p
↵�↵2

2⇡cW

⇣
P

f
V±fL

(x)QZ
µL

+ P
f
V±fR

(x)QZ
µR

⌘
log

Q
2 + (1� x)m2

Z

m2
µ + (1� x)m2

Z

,(3.12)

f
(↵)
ZL

(x,Q2) =
↵2

2⇡c2W

1� x

x

�
(QZ

µL
)2 + (QZ

µR
)2
� Q

2

Q2 + (1� x)m2
Z

, (3.13)

where P
f
V+fL

(x) = P
f
V�fR

(x) = (1�x)2/x and P
f
V�fL

(x) = P
f
V+fR

(x) = 1/x. The muon mass
here serves as an IR cutoff for the logarithm in the transverse case to cure the x ! 1 limit,
while we neglect it in the other terms. Notably, the W

+ has no contribution at this order.
In Fig. 3 we show the dependence in

q
p
2
T of the integrands (left), and the resulting

PDFs (right), fixing a value x = 0.3 and showing separately the two polarisation of the

– 11 –

Figure 3. Integrand functions (left) and resulting PDFs (right) for the computation of the EW
PDFs for transverse and longitudinal W boson of Eqs. (3.9,3.10).

for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal W�

boson, Eqs. (D.33,D.34,D.38) one gets the leading order results

f
(↵)

W�
±
(x,Q2) =

Z Q2

m2
µ

dp
2
T
1

2

dP !WT 

dp
2
T

(x, p2T ) =

Z Q2

m2
µ

dp
2
T
↵2

8⇡

p
2
T

(p2T + (1� x)m2
W )2

P
f
V±fL

(x) =

=
↵2

8⇡
P

f
V±fL

(x)

 
log

Q
2 + (1� x)m2

W

m2
µ + (1� x)m2

W

�
Q

2

Q2 + (1� x)m2
W

!
=

⇡
↵2

8⇡
P

f
V±fL

(x)

✓
log

Q
2

m
2
W

� log(1� x)� 1

◆
+O

✓
m

2
W

Q2

◆
, (3.9)

f
(↵)

W�
L

(x,Q2) =

Z Q2

0
dp

2
T
1

2

dP !WL 

dp
2
T

(x, p2T ) =

Z Q2

0
dp

2
T
↵2

4⇡

m
2
W

(p2T + (1� x)m2
W )2

(1� x)2

x
=

=
↵2

4⇡

1� x

x

Q
2

Q2 + (1� x)m2
W

⇡
↵2

4⇡

1� x

x
+O

✓
m

2
W

Q2

◆
, (3.10)

and analogously for the Z and Z/� PDFs

f
(↵)
Z±

(x,Q2) =
↵2

4⇡c2W

⇣
P

f
V±fL

(x)(QZ
µL

)2 + P
f
V±fR

(x)(QZ
µR

)2
⌘

 
log

Q
2 + (1� x)m2

Z

m2
µ + (1� x)m2

Z

�
Q

2

Q2 + (1� x)m2
Z

!
, (3.11)

f
(↵)
Z/�±

(x,Q2) = �

p
↵�↵2

2⇡cW

⇣
P

f
V±fL

(x)QZ
µL

+ P
f
V±fR

(x)QZ
µR

⌘
log

Q
2 + (1� x)m2

Z

m2
µ + (1� x)m2

Z

,(3.12)

f
(↵)
ZL

(x,Q2) =
↵2

2⇡c2W

1� x

x

�
(QZ

µL
)2 + (QZ

µR
)2
� Q

2

Q2 + (1� x)m2
Z

, (3.13)

where P
f
V+fL

(x) = P
f
V�fR

(x) = (1�x)2/x and P
f
V�fL

(x) = P
f
V+fR

(x) = 1/x. The muon mass
here serves as an IR cutoff for the logarithm in the transverse case to cure the x ! 1 limit,
while we neglect it in the other terms. Notably, the W

+ has no contribution at this order.
In Fig. 3 we show the dependence in

q
p
2
T of the integrands (left), and the resulting

PDFs (right), fixing a value x = 0.3 and showing separately the two polarisation of the

– 11 –

Figure 3. Integrand functions (left) and resulting PDFs (right) for the computation of the EW
PDFs for transverse and longitudinal W boson of Eqs. (3.9,3.10).

for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal W�

boson, Eqs. (D.33,D.34,D.38) one gets the leading order results

f
(↵)

W�
±
(x,Q2) =

Z Q2

m2
µ

dp
2
T
1

2

dP !WT 

dp
2
T

(x, p2T ) =

Z Q2

m2
µ

dp
2
T
↵2

8⇡

p
2
T

(p2T + (1� x)m2
W )2

P
f
V±fL

(x) =

=
↵2

8⇡
P

f
V±fL

(x)

 
log

Q
2 + (1� x)m2

W

m2
µ + (1� x)m2

W

�
Q

2

Q2 + (1� x)m2
W

!
=

⇡
↵2

8⇡
P

f
V±fL

(x)

✓
log

Q
2

m
2
W

� log(1� x)� 1

◆
+O

✓
m

2
W

Q2

◆
, (3.9)

f
(↵)

W�
L

(x,Q2) =

Z Q2

0
dp

2
T
1

2

dP !WL 

dp
2
T

(x, p2T ) =

Z Q2

0
dp

2
T
↵2

4⇡

m
2
W

(p2T + (1� x)m2
W )2

(1� x)2

x
=

=
↵2

4⇡

1� x

x

Q
2

Q2 + (1� x)m2
W

⇡
↵2

4⇡

1� x

x
+O

✓
m

2
W

Q2

◆
, (3.10)

and analogously for the Z and Z/� PDFs

f
(↵)
Z±

(x,Q2) =
↵2

4⇡c2W

⇣
P

f
V±fL

(x)(QZ
µL

)2 + P
f
V±fR

(x)(QZ
µR

)2
⌘

 
log

Q
2 + (1� x)m2

Z

m2
µ + (1� x)m2

Z

�
Q

2

Q2 + (1� x)m2
Z

!
, (3.11)

f
(↵)
Z/�±

(x,Q2) = �

p
↵�↵2

2⇡cW

⇣
P

f
V±fL

(x)QZ
µL

+ P
f
V±fR

(x)QZ
µR

⌘
log

Q
2 + (1� x)m2

Z

m2
µ + (1� x)m2

Z

,(3.12)

f
(↵)
ZL

(x,Q2) =
↵2

2⇡c2W

1� x

x

�
(QZ

µL
)2 + (QZ

µR
)2
� Q

2

Q2 + (1� x)m2
Z

, (3.13)

where P
f
V+fL

(x) = P
f
V�fR

(x) = (1�x)2/x and P
f
V�fL

(x) = P
f
V+fR

(x) = 1/x. The muon mass
here serves as an IR cutoff for the logarithm in the transverse case to cure the x ! 1 limit,
while we neglect it in the other terms. Notably, the W

+ has no contribution at this order.
In Fig. 3 we show the dependence in

q
p
2
T of the integrands (left), and the resulting

PDFs (right), fixing a value x = 0.3 and showing separately the two polarisation of the

– 11 –

For Q ≫ mW:

This one is now implemented in MadGraph5_aMC@NLO 
[Ruiz, Costantini, Maltoni, Mattelaer 2111.02442]

Fermi (’24) Weizsacker, Williams (’34) Landau, Lifschitz (’34) 
Kane, Repko, Rolnik; Dawson; Chanowitz, Gaillard ’84, 
See also Borel et al. [1202.1904], Costantini et al. 
[2005.10289] Ruiz et al. [2111.02442], etc…

With W-mass effects:

NOTE: mass effects remain of O(1) also at TeV scale! Chen, Han, Tweedie [1611.00788]

(similar expressions also for ZT, ZL, Z/γ)
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Do we need SM/EW PDFs?
Collinear factorisation works if  pT, mW ≪ Ehard, so it can be viable for a 3 TeV MuC. 
Particularly useful for processes well below threshold Ehard ≪ Ecollider (e.g. production of EW final states). 

The W, Z PDFs are suppressed compared to the photon one by a factor ~ log mW2/mµ2 ~ O(10). 
Nevertheless, they induce the dominant contribution in a large class of processes (vector boson collider).



9

Do we need SM/EW PDFs?
Collinear factorisation works if  pT, mW ≪ Ehard, so it can be viable for a 3 TeV MuC. 
Particularly useful for processes well below threshold Ehard ≪ Ecollider (e.g. production of EW final states). 

The W, Z PDFs are suppressed compared to the photon one by a factor ~ log mW2/mµ2 ~ O(10). 
Nevertheless, they induce the dominant contribution in a large class of processes (vector boson collider).

Why not just EVA?

For QCD (gluon and quarks) DGLAP resummation is required since αs is large at small scales.

The expected relative corrections to the LO EVA 
result are proportional to (Sudakov double logs) for Q ~ 1.5 TeV.

still sizeable at lower Q.

For precise vector boson PDFs at the TeV scale it is important to re-sum the EW double logs.
M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0111109] 
Bauer, Ferland, Webber [1703.08562]

~ 1

→ PDF approach
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Figure 3. Integrand functions (left) and resulting PDFs (right) for the computation of the EW
PDFs for transverse and longitudinal W boson of Eqs. (3.9,3.10).
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In Fig. 3 we show the dependence in
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EVALO:

The EVA Z/γ PDF is off by ~102, due to the 
fact that in EVA the muon is taken unpolarised 
and

Instead, the muon gains a O(1) polarisation, 
so the actual Z/γ PDF is much larger.
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We can also see a sizeable deviation 
(in this log-log plot) for the WT and ZT PDF. 
Mostly due to the double-log arising at O(α2) 
from VVV interactions.

LePDF

Figure 3. Integrand functions (left) and resulting PDFs (right) for the computation of the EW
PDFs for transverse and longitudinal W boson of Eqs. (3.9,3.10).
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EVALO:

The EVA Z/γ PDF is off by ~102, due to the 
fact that in EVA the muon is taken unpolarised 
and

Instead, the muon gains a O(1) polarisation, 
so the actual Z/γ PDF is much larger.
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For each parton i, we export the numerical values of  x fi(x, Q) for a grid in x and Q. 
These are typically saved in a .dat file with the standard LHAPDF6 format.

MonteCarlo Generators (e.g. Madgraph) 
can read this and interpolate the PDFs 

using LHAPDF.

These can also be loaded into Mathematica 
for semi-analytical studies.

LHAPDF6: Buckley et al. [1412.7420]

How to use SM PDFs?
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For each parton i, we export the numerical values of  x fi(x, Q) for a grid in x and Q. 
These are typically saved in a .dat file with the standard LHAPDF6 format.

MonteCarlo Generators (e.g. Madgraph) 
can read this and interpolate the PDFs 

using LHAPDF.

These can also be loaded into Mathematica 
for semi-analytical studies.

LHAPDF6: Buckley et al. [1412.7420]

The problems

LHAPDF6 classifies particles according to 
the PDG index: no helicity dependence. Polarisation is important in our case.Vs.

The use of interference PDFs like Z/γ or ZL/h is not implemented in today’s generators.

1)

2)

How to use SM PDFs?
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1) Polarisation & generators
Our solution

( x Grid )

( Q Grid )

In LePDF we modified LHAPDF6 format by 
including helicity dependence: adding a line 
on the file with the helicity of each state. E.g.

In this way we can use these files to load LePDF for simple phenomenological analyses in Mathematica.

Using them in Madgraph, however, would require changes in both LHAPDF and Madgraph codes.

We can also use to the standard LHAPDF6 format, creating one separate file for each helicity state:

An alternative

LePDF_mu_6FS_0000.dat

LePDF_mu_6FS_+_0000.dat          LePDF_mu_6FS_0_0000.dat          LePDF_mu_6FS_-_0000.dat

Would this help implementation in Madgraph? No change needed in LHAPDF.



13

2) Z/γ & generators

μ

γ

Z
Zγ

0.001 0.005 0.010 0.050 0.100 0.500 1
0.001

0.010
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x

f i(
x,
Q
)

Q = 3 TeV
_____ h+  
- - -  h- 

LePDF

Implementing this effect in generators probably requires 
deep changes (mixed states).

fZ/γ ~ fZ ≪ fγ

This might be a secondary issue, compared to the polarisation.

However, the suppression of the Z and Z/γ PDFs w.r.t. 
the photon one could imply that the mixed PDF 
contribution is suppressed compared to the diagonal 
ones. 

This should be quantified with explicit examples.
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f i(
x,
Q
)

Q = 3 TeV
_____ h+  
- - -  h- 

LePDF

Implementing this effect in generators probably requires 
deep changes (mixed states).

fZ/γ ~ fZ ≪ fγ

This might be a secondary issue, compared to the polarisation.

However, the suppression of the Z and Z/γ PDFs w.r.t. 
the photon one could imply that the mixed PDF 
contribution is suppressed compared to the diagonal 
ones. 

This should be quantified with explicit examples.

Discussion point: how can these PDFs be implemented to allow for their use in Madgraph?



Backup
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Uncertainty due to choice of QQCD
QQCD =  [0.5 - 1] GeVChanging the scale in the interval

Relative variation in the PDFs, evaluated at the mW scale.

For leptons and the photon, relative variations are smaller than 10-5.

gluon

LePDF

quarks

LePDF
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LePDF vs. EVA
The deviation becomes larger at small x and at large scales 
(Sudakov double logs are absent in EVA).

We improve EVA by computing iteratively the W-+ PDF at O(α2). *

Several double logs appear at this order, 
we find a much improved agreement with the LePDF resummation.

* for simplicity, in the NLO 
part we take the Q ≫ mW 
and x ≪ 1 limit 
in the LO EVA expression.
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LePDF vs. EVA: WW Luminosity

EVALO

Figure 3. Integrand functions (left) and resulting PDFs (right) for the computation of the EW
PDFs for transverse and longitudinal W boson of Eqs. (3.9,3.10).

for the muon PDF. Taking the DGLAP equations for the transverse and longitudinal W�
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Figure 3. Integrand functions (left) and resulting PDFs (right) for the computation of the EW
PDFs for transverse and longitudinal W boson of Eqs. (3.9,3.10).
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and analogously for the Z and Z/� PDFs
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Implemented in MadGraph5_aMC@NLO 
Ruiz, Costantini, Maltoni, Mattelaer [2111.02442]EVALOmV→0

At the level of parton luminosity: 

- for WTWT: EVALO is accurate to ~15% 
- for WLWL: EVALO is accurate to ~5% 
- The Q≫mV approximation does not 

reproduce well the complete result, with 
O(1) differences up to large scales 
(particularly for transverse modes).
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Muon Neutrino PDF
Emission of collinear W- from the muon generates a 
large content of muon neutrinos inside the muon.

We can compute the νµ PDF at O(α) as did for EVA:

Here Z → ν̅µ νµ dominates

The Sudakov double log does not appear at this order because the muon PDF is just a δ at LO. 
It will however appear in the xsec computation upon integration of the PDF, due to the x→ 1 divergence inside PVff.
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Top quark PDF
For hard scattering energies E ≫ mt, terms with log E/mt due to collinear emission of top quarks can arise. 
These can be resummed by including the top quark PDF within the DGLAP evolution, in a 6FS.
Barnett, Haber, Soper ’88; Olness, Tung ‘88

Dawson, Ismail, Low [1405.6211] 
Han, Sayre, Westhoff [1411.2588] Whether or not this is useful depends on the process under consideration.

We provide two version of the codes: 5FS and 6FS. 
In the 6FS we keep finite top quark mass effects, 
 like we do for other heavy SM states.
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Above the EW scale
All SM interactions and fields must be considered and  

several new effects must be taken into account:

• PDFs become polarised, since EW interactions are chiral. 

• At high energies EW Sudakov double logarithms are generated. 

• Neutral bosons interfere with each other: Z/γ and h/ZL PDFs mix. 

• Mass effects of partons with EW masses (W, Z, h, t) become relevant 
and remain so even at multi-TeV scale. 

• EW symmetry is broken. Another set of splitting functions, proportional to v2 instead of pT2, arise: 
ultra-collinear splitting functions.

Bauer, Webber [1808.08831]

Chen, Han, Tweedie [1611.00788]

P. Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0505047] 
Chen, Han, Tweedie [1611.00788]

P. Ciafaloni, Comelli [hep-ph/0007096, hep-ph/0001142, hep-
ph/0505047], Bauer, Webber [1703.08562, 1808.08831], 
Chen, Han, Tweedie [1611.00788], Han, Ma, Xie 
[2103.09844], F. Garosi, D.M., S. Trifinopoulos [2303.16964]
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EW Sudakov double logs from ISR

The EW Sudakov double logs arises as a non-cancellation of the IR soft divergences (z → 1) 
between real emission and virtual corrections.

The Bloch-Nordsieck theorem is violated for non-abelian gauge theories 
→ IR divergencies are not cancelled in inclusive processes, since the initial state is EW non-singlet 
→ We are often interested in exclusive processes, since we measure the SU(2) charge (W vs Z, t vs b, etc…)

Here I am interested in resumming the EW double logs 
related to the initial-state radiation. 
At the leading-log level we can neglect soft radiation
Manohar, Waalewĳn [1802.08687]

[1802.08687]

P. Ciafaloni, Comelli [hep-ph/9809321], Fadin et al. [hep-ph/9910338], M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0001142, hep-ph/0103315] 
see also Denner, Pozzorini [hep-ph/0010201], Pozzorini [hep-ph/0201077], Manohar [1409.1918 ], Pagani, Zaro [2110.03714], … 
Manohar, Waalewĳn [1802.08687], Chen, Glioti, Rattazzi, Ricci, Wulzer [2202.10509]
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EW Sudakov double logs from ISR
In case of collinear W emission they can be implemented 
(and resummed) at he  Double Log level equations by putting an 
explicit IR cutoff zmax = 1 - QEW / Q

This modifies also the virtual corrections as:

M. Ciafaloni, P. Ciafaloni, Comelli [hep-ph/0111109] 
Bauer, Ferland, Webber [1703.08562] 
see Manohar, Waalewĳn [1802.08687] for a different approach

The non-cancellation of the zmax dependence between emission and 
virtual corrections generates the double logs.

This happens if otherwise we set zmax=1  and use the +-distribution.

(QEW = mW)
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with masses
p̃T2 = pT2

Mass effect
A

C

BThe mass modifies the propagator of the off-shell parton which 
then enters the hard scattering:

Chen, Han, Tweedie [1611.00788]

The effect of finite EW masses is sizeable 
even at TeV scales.

The kinematical effect of the mass of particle C is 
instead negligible in the collinear limit 

 EC = (z-x) E > mC

For E ≫ pT, m, we can neglect this effect.
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Ultracollinear splittings
In the unbroken phase, splitting matrix elements are proportional to pT2

Upon EWSB, further splittings proportional to v2 are generated. 
They generalise the EWA splitting f → WL f'

Ultra-collinear splitting function Chen, Han, Tweedie [1611.00788]

A
C

B

The DGLAP equations are generalised as:

The missing pT2 factor removes the log enhancement at high scales, 
making the u.c. terms approach a constant value.

For example:
coupling of massless fermions to WL, 
with no chirality flip 
(via coupling to remainder gauge field Wn in GEG)
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Implementation
We work in the mass eigenstate basis,  

same numerical method used below the EW scale.

After identifying PDFs which are identical because of flavour symmetry, we remain with 42 independent PDFs:

DGLAP equations:

Ultra-collinear splittings

Starting from QEW = mW , heavy states are added at the corresponding mass threshold.
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LePDF: Numerical Implementation
We solve the DGLAP numerically in x space. Due to the sharp behaviour of the muon PDF near x=1, the 
typical interpolation techniques used for PDFs of proton do not work.

We discretise x interval [xmin=10-6,1] in Nx small intervals, denser for x ≈ 1:

For the splitting functions divergent in z → 1 we us the “+” distribution

The differential evolution is done in t = log Q2/mµ2 with 4th order Runge-Kutta.

At x=1 we fix
where L(t) is fixed imposing momentum conservation:

Han, Ma, Xie [2103.09844]

The uncertainties due to x and t discretisation are estimated to be of ~1% and ~0.1%, respectively, for Nx=1000.


