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Why is Complementarity Important?
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A strong case for exploring the TeV scale already exists; low
energy experiments are important for telling us about the
structure of SM and BSM physics we might find there!

Goal: understand what these indirect tell us about new
physics, and how we can test this directly at colliders!

Let’s see how this works in a few examples...
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Example: Lepton Flavor Violation

Lepton number is an accidental symmetry of the SM — generically
violated by new physics.

However, current bounds suggest it must be very small:

BR(u — ey) < 3.1 x 10713

(MEG + MEG 1I, 2310.12614)

Lesson: BSM couplings to leptons must be flavor universal or aligned

Searches for Charged-Lepton Flavor Violation in Experiments using Intense Muon Beams

Sensitivity: 10 10" 10™® 10"’

Mu3e Phase-

-14

Sensitivity: 10 10" or smaller

-15
10 " or smaller

Sensitivity: 10 _
20%° 207 20%° 20%°

From [1812.06540]; see [2209.00142] and
references within for more recent projections

Samuel Homiller — shomiller@g.harvard.edu Muon Colliders and Complementarity 3



cLFV in the MSSM

Focus on the right-handed selectron/smuon system:
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Universal terms dictated by SUSY, gauge invariance

When dominant, LFV suppressed by “super-GIM” mechanism
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cLFV in the MSSM

Focus on the right-handed selectron/smuon system:
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Universal terms dictated by SUSY, gauge invariance

When dominant, LFV suppressed by “super-GIM” mechanism

Flavor-violating, soft supersymmetry breaking terms

—> flavor-violation a window into theory of SUSY-breaking
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Low-Energy Constraints on the MSSM

For simplicity, assume lightest neutralino is pure Bino and

that the other superpartners decouple.
m; = 1TeV, M; = 500 GeV

LFV dictated by dipole operator: 0.5007
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LFV Signals at a Muon Collider:
- PO Y
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The same physics can be directly tested at a muon collider via slepton
pair-production with LFV decays!

— Rates at MuC depend on the same parameters as the low-energy
LFV signals (sin 28,, Am?, m?, M)

This story was studied extensively in the context of e"e ™ machines

Arkani-Hamed, Cheng, Feng, Hall [hep-ph/9603431]

(see their discussion of the interference/oscillation
effects in particular!)
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New Challenges at a Muon Collider

Uncovering LFV signal requires eliminating WTW™ backgrounds.

—> Utilize measurement of the masses in flavor-symmetric final states:

Lepton energy spectrum has

_ Vs=10Tev  andpoints given by the slepton,
I m~ = 3 TeV .
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New Challenges at a Muon Collider

Uncovering LFV signal requires eliminating W+ W™ backgrounds.

—> Utilize measurement of the masses in flavor-symmetric final states:
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Lepton energy spectrum has
endpoints given by the slepton,
Bino masses:

Vs, M
4 m%

Backgrounds parameterized with
simple templates, performed
likelihood fit for the endpoints

Ey ) (1 + 3 cos 6’0)

(see Freitas, [1107.3853] for an earlier study)
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New Challenges at a Muon Collider

Uncovering LFV signal requires eliminating WTW™ backgrounds.

—> Utilize measurement of the masses in flavor-symmetric final states:
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Lepton energy spectrum has
endpoints given by the slepton,
Bino masses:
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Backgrounds parameterized with
simple templates, performed
likelihood fit for the endpoints

(see Freitas, [1107.3853] for an earlier study)
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Muon Collider Discovery Reach

my; = 1TeV, M, = 500 GeV
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splitting due to interference
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Muon Collider Discovery Reach
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Muon Collider Discovery Reach
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Second Example: Electron EDM

In the SM, the electron electric dipole moment is vanishingly small, due to

the flavor structure of the SM.

New sources of CP violation can lead to large corrections, even at 2 loops:

Q
47

: CMe
de ~ sin(dcp) Ve (

Current bound:

d.| < 4.1 x 107 ecm

Roussy, Caldwell et al (JILA)
[2212.11841]

New technologies are set to
improve this by orders of
magnitude in the next decade!

See, e.qg., Alarcon et al [2203.08103]
from Snowmass
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Testing EDM Physics at TeV Energies?

Work in progress with J. Lodman, A. Parikh & M. Reece

This two-loop sensitivity Is intriguing because any electroweak particle
interacting with the Higgs contributes to an EDM via “Barr-Zee diagrams”:
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Analogous topologies lead to processes such as yy — hh, WTW~™ — hh...

...with distinct kinematic features that can be looked for!
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Conclusions

e | ots of forthcoming experiments in the next ~10 years
which could give indirect signal of new physics at the ~few
TeV scale (cLFV, eEDMs, ...)

* Important to chart the space of models probed here, and
demonstrate their signals at a high-energy muon collider

* A muon collider isn’t just for discovering new physics, but
for studying it!

e | ots of other examples left to explore...

Thanks for your attention!
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