Detector Simulations for a 10 TeV Muon Collider

Ben Rosser¹ Federico Meloni²

¹University of Chicago

²Deutsches Elektronen-Synchrotron

November 16, 2023

Introduction

- $\bullet\,$ Can we build a detector for a $10\,TeV$ muon collider?
 - Main accelerator challenge: mitigating beam induced background (BIB).
 - Tightly coupled to accelerator design and machine-detector interface (MDI).
- Design exists for a $\sqrt{s}=1.5$ or $3\,{\rm TeV}$ detector, studied extensively during Snowmass:
 - Detector R&D efforts underway both in the US and internationally (IMCC).
 - $\bullet\,$ Now studying an initial concept for a $10\,{\rm TeV}$ detector with updated BIB simulation.
- This talk:
 - Brief outline of **detector** R&D efforts.
 - Overview of updated 10 TeV detector concept.
 - Overview of updated 10 TeV BIB simulation.
 - Preliminary performance results.
 - Opportunities for future R&D.

Existing Detector Design

• Existing detector concept based on CLIC with addition of shielding nozzles to reduce BIB.

hadronic calorimeter

- 60 layers of 19-mm steel absorber + plastic scintillating tiles;
- 30x30 mm² cell size;

electromagnetic calorimeter

- 40 layers of 1.9-mm W absorber + silicon pad sensors;
- 5x5 mm² cell granularity;
- 22 X₀ + 1 λ₁.

muon detectors

- 7-barrel, 6-endcap RPC layers interleaved in the magnet's iron yoke;
- 30x30 mm² cell size.

IMCC: Muon Collider Detector (CERN)

tracking system

- Vertex Detector: double-sensor lavers (4 barrel cylinders and 4+4 endcap disks): 25x25 um² pixel Si sensors. Inner Tracker: 3 barrel lavers and 7+7 endcap disks: • 50 µm x 1 mm macronixel Si sensors. Outer Tracker: 3 barrel lavers and 4+4 endcap disks: 50 µm x 10 mm microstrip Si sensors. shielding nozzles
 - Tungsten cones + borated polyethylene cladding.

Existing BIB Simulation

- BIB simulations done using MARS15 and Fluka (2303.08533, 2209.01318):
 - Generally good agreement!
 - $750 \,\mathrm{GeV}$ beam energy used for both $\sqrt{s} = 1.5$, $3 \,\mathrm{TeV}$.
 - Clearly see potential of **timing** to kill low-energy BIB.

Ben Rosser (Chicago)

Simulation Source

Beam Energy [GeV]

Muon decay length [m]

 γ/BX (E $_{\gamma} > 0.1$ MeV)

 e^{\pm}/BX (E_e > 0.1 MeV)

 h^{\pm}/BX (E_h > 0.1 MeV)

 $\mu^{\pm}/BX (E_{\mu} > 0.1 \text{ MeV})$

 $n/BX (E_n > 1 MeV)$

(Muon decays/m)/beam

MDI Optimization

Existing Performance Studies

- $\bullet~{\rm This}~1.5/3\,{\rm TeV}$ detector design has been studied extensively during Snowmass:
 - Work based on existing designs and concepts from MAP/MICE.
 - Many results collected by the Muon Collider Forum and IMCC.
 - Potential for new R&D to surpass existing (LHC-level) reconstruction performance.

Challenges for 10 TeV Detectors

- Existing detector design shown to work, but for $\sqrt{s} = 1.5$ or $3 \,\mathrm{TeV}$.
- What changes at $10 \,\mathrm{TeV}$? Beam is more energetic, but also more relativistic:
 - BIB energy expected to be **independent** of \sqrt{s} , but there may be other differences.
 - $\bullet~$ Need $5\,T$ magnetic field; detector size overall needs to grow with energy.
 - Thicker calorimeters to fully contain showers; higher granularity trackers at large-r.
- Studies underway towards different 10 TeV concepts:
 - Ranging from simple evolution of 3 TeV layout to ideas for alternate B field configurations
 - Our approach: move from "CMS-like" to "ATLAS-like" magnet system.
 - Place solenoid inside the detector around the tracker; use to shield calorimeters from BIB.
 - Calorimeter layers now outside magnet, further from interactions: need to study performance.

В	3.57 T	5 T		
Thickness	344 mm	265 mm		
R	3821 mm	1500 mm		

10 TeV Detector Design

- Concept developed at KITP workshop at Santa Barbara in February.
- Layout implemented in DD4hep; IMCC software used for simulations over past year.

10 TeV Detector Design, Continued

• Design continuing to evolve rapidly, lots of R&D still to do!

Machine Detector Interface: BIB Simulation

- Machine-detector interface extremely important for muon colliders:
 - Detector design must be done in close collaboration with accelerator and MDI designers.
 - Accelerator lattice and MDI design completely determines BIB that reaches the detector.
 - For detector: can optimize geometry or improve reconstruction algorithms to reduce BIB.
- **Dedicated IMCC workflow** to share simulated data, allow experts to provide feedback.

Ben Rosser (Chicago)

FLUKA BIB Simulation at 10 TeV

- High-statistics ($\sim 1/10$ of a BX) inputs available for both μ^+ and μ^- beams at $10 \, {\rm TeV}$.
- Kept machine lattice fixed to initial design (will be updated once new designs are mature).
- Available from IMCC on demand (soon to be distributed through Zenodo).

FLUKA BIB Simulation, Continued

- Timing, energy distribution shapes very consistent with lower-energy results.
- Preliminary results; collaboration with accelerator physicists ongoing!

Work on MDI: Nozzle Optimization

- The nozzle is the most important element in the BIB mitigation
- A simple parametric scan proved effective in altering the nozzle shape to mitigate the BIB multiplicity
- In collaboration with Physics and Detector performance working group, we need to identify fundamental parameters to perform a systematic study

Slide credit: D. Calzolari

• Strive to reduce nozzle size in order to maximize physics acceptance:

- Nozzles limit detector capabilities in the forward region: essential for lots of physics.
- Better detector reconstruction might allow us to tolerate more BIB and reduce nozzles.

Ben Rosser (Chicago)

Muon Collider Workshop (Pitt 2023)

November 16, 2023 12 / 26

Reconstruction Studies and Computing

- Studies underway to assess performance with new detector and new BIB.
- IMCC software based on ILCSoft/Key4HEP:
 - Common framework for future collider R&D: shared with FCC, ILC, CLIC, C3, etc.
 - Integrates many other packages; Pandora particle flow, ACTS tracking, Gaudi, etc.
 - Output LCIO and EDM4hep ntuples, easy to analyze with ROOT or uproot.
- Variety of signatures (electron, muon, photon, tau, pion, jet) being studied:
 - Monte Carlo samples simulated using DD4hep and reconstructed with Marlin.
 - Some preliminary results presented today for tracking and calorimetry.

Overlays: Keeping Events Statistically Independent

- During reco, BIB from FLUKA can be sampled and overlaid on to Monte Carlo:
 - Simulating the BIB contributions in FLUKA is computationally expensive.
 - New pipeline developed based on random FLUKA sub-event mixing.
 - Strongly reduced effects due to lack of BIB statistics (mostly seen in calorimetry).

New Tracker Layout

- Previous detector design relied on double layers to select hits from track stubs:
 - Introduce inefficiencies for displaced tracks (already Bs, even before considering BSM).
 - Additional layers mean additional detector material and power dissipated.
- Greatly improved tracking software (now based on ACTS library) made double layers redundant: removed **all but one** in vertex detector.

Tracker Occupancy

- \bullet 30-60 $\rm ps$ timing resolution critical to reduce hit occupancy in innermost tracking layers.
- $\bullet\,$ Shapes agree between 1.5, 10 ${\rm TeV}$ simulations, but average number of hits 4x smaller:
 - Accelerator lattice, nozzle shape have been reoptimized; this will lead to changes.
 - Still investigating potential differences, but effect illustrates importance of MDI.

Tracker Occupancy, Continued

- Slight bias in these results due to $< 1 \,\mathrm{ns}$ time window.
- Relaxing the time window: higher occupancies overall but shapes more or less unchanged.

Preliminary Tracking Performance

- Track reconstruction with new detector layout studied using single muon samples.
- 3.5% efficiency loss from addition of BIB, but overall tracking still seems to work!
- Initial results promising, but more studies needed (especially in forward region).

BIB in the Calorimeters

- Energy density in both calorimeters also has same shape between beam energies.
- Order of magnitude lower in our $10 \,\mathrm{TeV}$ design: shows impact of solenoid shielding!

Preliminary Calorimeter Performance

• Despite reduced energy density: still overall high photon reconstruction efficiency.

Muon Collider Workshop (Pitt 2023)

BIB Subtraction in the Calorimeters

- Calorimeter energy resolution not ideal: high cell thresholds $(2 \,\mathrm{MeV})$ needed for BIB.
 - Expected BIB distribution in cells can be used to derive position-dependent thresholds.
 - Strongly reduced BIB-induced fake objects (e.g. less than 1 BIB photon per event!)
 - $\bullet\,$ Leads to order-of-magnitude improvement in resolution for $50\,{\rm GeV}$ photons!

BIB Subtraction, Continued

- Applying these thresholds induces a nonlinearity: however this can be corrected.
- Example of the type of advanced reconstruction that can make a huge difference!

Radiation Damage

• Radiation at $10 \,\mathrm{TeV}$ comparable to HL-LHC and previous $3 \,\mathrm{TeV}$ muon collider studies; much lower than FCC-hh (10^{18} 1 MeV- n_{eq} /cm²) (2209.01318, 2105.09116)

Total ionizing dose

1 MeV neutron equivalent in Silicon $[n \text{ cm}^{-2} \text{ v}^{-1}]$

Future R&D Opportunities

- From CPAD, ECFA: lots of overlap in detector needs for **any** future collider:
 - As shown in ECFA Detector Roadmap.
 - Many common needs with e^+e^- , pp: work can benefit multiple projects!
- Some areas of particular importance:
 - Timing critical for BIB reduction.
 - Dedicated **forward detectors** for muon tagging: distinguish VBF processes and luminosity measurements.
 - Nozzle optimization and mechanics.
 - Radiation hardened readout electronics with **on-detector intelligence**.
 - **Solenoid design**: need to develop and retain expertise for high-field magnets.

						800	
			Å 19	10 10 10 10 10 10 10 10 10 10 10 10 10 1	in the	ž	Jet 1
			Contraction of the second		6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3 2 2 2	
		DRDT	< 21	30	2030-2035	2035- 2040 2040-2	045 >2045
Vertex detector ³⁹	Position precision Low X/X _o Low power High rates	3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4					
	Large area waters** Ultrafast timing® Radiation tolerance NIEL Radiation tolerance TID	3.1,3.4 3.2 3.3 3.3					
Tracker ⁵⁾	Position precision Low X/X _o Low power High rates Large area wafers [®]	5.1,5.4 3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4					
	Radiation tolerance NIEL Radiation tolerance TID	3.3 3.3 3.1 3.4			: 1		
Calorimeter ⁶⁾	Low X/X _o Low power High rates Large area wafers ³⁰	3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4		:		••••	
	Ultrafast timing ¹⁰ Radiation tolerance NIEL Radiation tolerance TID Partition precision	3.2 3.3 3.3					
	Low X/X _o Low power High rates	3.1,3.4 3.1,3.4 3.1,3.4 3.1,3.4					÷
	Large area wafers ³⁾ Ultrafast timing ⁴⁰ Radiation tolerance NIEL Radiation tolerance TID	5.1,3.4 3.2 3.3 3.3		• •		• •	•

🛑 Must happen or main physics goals cannot be met 🔴 Important to meet several physics goals 😑 Desirable to enhance physics reach 🌎 R&D needs being me

November 16, 2023 24 / 26

- Collaboration between accelerator and detector experts critical for muon colliders.
- 10 TeV detector R&D for a muon collider is underway, but there's still lots to do!
 - Have gone from design concept to simulations and studies in less than a year.
 - Plan to write a paper describing this initial design soon.
- This effort has been a joint effort with contributions by many people, including:
 - Federico Meloni, Thomas Madlener, Priscilla Pani (DESY); Daniele Calzolari (CERN).
 - Karri DiPetrillo, Ben Rosser, Leo Rozanov, Isaac Hirsch, Noah Virani (Chicago).
 - Tova Holmes, Larry Lee, Ben Johnson, Micah Hillman, Adam Vendrasco (Tennnessee).
 - Sergo Jindariani, Kevin Pedro, (FNAL); Rose Powers (Yale).
 - Simone Pagan Griso (LBNL); Isobel Ojalvo, Junjia Zhang (Princeton).

- Better version of the Delphes card:
 - 2 cards with a conservative and aspirational set of parameters.
- Luminosity measurements and the associated uncertainty is another interesting topic.
- Incoherent e^+e^- and whether this is important or not.
- What else do theorists need from experimentalists to improve studies?

The Case for 10 TeV

- $\sqrt{s} = 10 \,\mathrm{TeV} \ \mu^+\mu^-$ approximately comparable to $100 \,\mathrm{TeV} \ pp$ collider:
 - Can nail down shape of the Higgs potential, achieve strong Higgs precision (2206.08326).
 - + 5σ discovery potential for some minimal WIMP dark matter models at correct thermal target.
- Muon colliders become VBF colliders: notion of "electroweak PDF" emerges.
 - s-channel interactions (dashed lines) fall with \sqrt{s} ; electroweak interactions become dominant.

Ben Rosser (Chicago)

Accelerators and Beam Induced Background

- Main muon collider challenges: accelerator related:
 - Targetry; alternatives to liquid mercury.
 - 6D ionization cooling to focus beam.
 - Fast ramping magnets for acceleration.
 - Neutrino radiation mitigation.
 - Work underway on all these areas.
- Machine-detector interface extremely important:
 - Decaying muons: large **beam-induced background** (BIB) in our detectors.
 - Only two bunches, collisions at $O(10 \,\mu s)$.
 - Need accelerator/detector experts to collaborate!

Comparison: CLIC at 3 TeV: 28 MW		
v		
6		
1		
/		
3		
;		

IMCC, 2201.07895

Ben Rosser (Chicago)

	Target	Status	Notes	Future work
Pulse compression	1-3 ns	SPS does O(1) ns	Need higher intensity. O(30) ns loses only factor 2 in the produced muons.	Refine design, including proton acceleration. Accumulation and compression of bunches.
High-power targets	2 MW	2 MW	Available for neutrino and spallation neutrons. Aim for 4 MW to have margin.	Develop target design for 2 MW, O(1) ns bunches create larger thermal shocks. Prototype in 2030s.
Capture solenoids	15 T	13 T	ITER central solenoid.	Study superconducting cables and validate cooling. Investigate HTS cables.
Cooling solenoids	50 T	30-40 T	30 T leads to a factor 2 worse transverse emittance with respect to design.	Extend designs to the specs of the 6D cooling channel. Demonstrator.
RF in magnetic field	>50 MV/m	65 MV/m	MUCOOL published results. Requires test in non-uniform B.	Design to the specs of 6D cooling. Demonstrator.
6D cooling	10-6	0.9 (1 cell)	MICE result (no re-acceleration). Emittance exchange demonstrated at g-2.	Optimise with higher fields and gradients. Demonstrator.
RCS dynamics	-	-	Simulation. 3 TeV lattice design in place.	Develop lattice design for a 10 TeV accelerator ring.
Rapid cycling magnets	2 T/ms 2 T peak	2.5 T/ms 1.81 T peak	Normal conducting magnets. HTS demonstrated 12 T/ms, 0.24 T peak.	Design and demonstration work. Optimise power management and re-use.
Ring magnets aperture	20 T quads	12-15 T (Nb3Sn)	Need HTS or revise design to lower fields.	Design and develop larger aperture magnets, 12-16 T dipoles and 20 T HTS quads.
Collider dynamics	-	120	3 TeV lattice in place with existing technology.	Develop lattice design for a 10 TeV collider.
Neutrino radiation	10 μSv/year	-	3 TeV ok with 200 m deep tunnel. 10 TeV requires a mover system.	Study mechanical feasibility of the mover system impact on the accelerator and the beams.
Detector shielding	Negligible	LHC-level	Simulation based on next-gen detectors.	Optimise detector concepts. Technology R&D.

ECFA Roadmap

 ECFA roadmap tables for electronics and integration; again emphasizing commonality between needs for future facilities.

* LHCb Velo

Must happen or main physics goals cannot be met

Important to meet several physics goals

Desirable to enhance physics reach

R&D needs being met