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Facility R&D

❖ Facility R&D broadly refers to activities related to the 
exploration and innovation of systems, services and physical 
infrastructure that provide platforms suitable for HL-LHC 
service environments and runtime ecosystems. 
▪ These can be purely local facilities (platforms deployed within a local 

area network) or distributed, in the sense of interoperating services 
over wide area networks.

▪ c.f. IRIS-HEP 2.0 strategic roadmap sections on Facility R&D and 
Integration 

❖ In US ATLAS we have adopted cloud-native application 
management methods for infrastructure and services
▪ Kubernetes with GitOps-style management of resources

❖ Flexible strategies are being tried out in the IRIS-HEP Scalable 
Systems Laboratory (SSL) and the UC shared Tier3 Analysis 
Facility
▪ These patterns can be adopted at other sites 2



Aligning with IRIS-HEP 2.0
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❖ Why?
▪ Concepts in IRIS-HEP 1.0 (K8s substrates, GitOps services) now in 

production (Run 3 Tier3 center, analysis facilities) 
▪ We cannot afford an independent R&D effort in the Facility
▪ Align with 0.75 FTE expected from IRIS-HEP 2.0
▪ Inform the next generation Tier2 and Analysis Facilities
▪ Must figure a way to evolve what's below to provide needed 

flexibility above

❖ SSL - Scalable Systems Laboratory
▪ For the past four years, a dedicated K8s cluster at UChicago to 

support R&D 
▪ River has been an important space for prototypes and even called 

into production use for analytics and hosted CE services



Motivation for Today's Talk

❖ Today's presentation will be focusing on our efforts 
surrounding Kubernetes and "cloud native" technologies 
throughout the facility

❖ Broadly, we will put existing and new efforts in that space 
under Facility R&D and work to prepare our sites (at all tiers) 
for the eventual requirements of HL-LHC computing

❖ Will cover a number of the milestones we have laid out for 
Facility R&D, including:
▪ Evaluating OKD for the facility
▪ Building a stretched K8S across the T2 facility 
▪ Using federated login via the ATLAS IAM
▪ Tagging resources for scheduling decisions
▪ Evaluating various batch schedulers in the K8S space
▪ Dynamically scaling services with Horizontal Pod Autoscalers
▪ Growing the stretched T2 with retired workers 
▪ Backfilling with ATLAS production 4



Evaluating Kubernetes distribution
(MS #332)

❖ Much like Linux itself, there are a variety of Kubernetes flavors
▪ Many national labs have chosen OKD for its tighter security out of the box 

and alignment with Red Hat OpenShift 
▪ Others (e.g. NERSC) have chosen the SUSE-backed Rancher platform instead
▪ Many universities have deployed Kubernetes with the tools provided directly 

by the Cloud Native Computing Foundation, such as kubeadm or kubespray

❖ Given the OKD experience at BNL and now NET2, it makes the 
most sense to start there
▪ From a policy perspective, it is easier for sites nominally using vanilla 

Kubernetes to adopt OKD rather than the reverse

❖ Many things we need to investigate for compatibility
▪ GitOps - Flux, Argo, something else? 
▪ Running our various services: Squid/Varnish/XCache under a stricter 

environment
▪ Compatibility with tooling - Lens for example is very popular
▪ Compatibility with federation, etc.

❖ If this appears workable, we would consider moving the UChicago 
Tier 3 to OKD as well 5



Stretched Kubernetes Multi-Site Cluster
(MS #333) 

❖ One of the major goals in Facility R&D is to build a multi-site 
Kubernetes that stretches over our T2 complex

❖ Each Tier 2 site contributing some resources to a managed 
R&D platform

❖ Enable rapid development and iteration for new services that 
can be operated close to the data at each site

❖ Draw from our own experience with federated K8S as well as 
others, e.g.:
▪ PRP/NRP
▪ PATh Facility
▪ SLATE
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Multi-site K8S examples - PRP/NRP

❖ PRP/NRP approaches 
multi-site K8S by directly 
stretching over the WAN

❖ Single control plane / 
endpoint
▪ Very simple and natural 

experience for developers 

❖ PRP/NRP team manages 
the whole stack from 
IPMI, through OS, 
through K8S
▪ Easy for sites to bring 

resources to the table
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Multi-site K8S examples - PATh Facility

❖ In the PATh Facility, each 
site is treated as a separate 
cluster

❖ PATh team uses Flux tenants 
to manage the Kubernetes 
objects at each site via 
GitOps

❖ Hardware/networking 
managed by the site

❖ OS, Kubernetes, 
Applications managed by 
the PATh team 
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Multi-site K8S examples - SLATE

❖ SLATE federates at a high-level 
with no assumption of direct 
control over any resource 
▪ Minimizes its presence and 

privilege on clusters

❖ Operates as a sort of 
concierge between resource 
providers and resource 
consumers

❖ Tightly curated application 
catalog with strong focus on 
security
▪ Platform is agnostic to who uses 

it and where they run 
applications, so the SLATE team 
focuses on what can be run
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Multi-site K8S for US ATLAS

❖ We want to build a K8S platform for US ATLAS that blends the 
best aspects of these approaches

❖ Start very modest (2 sites), perhaps using OKD
▪ Later adding the rest of the T2s (MS#340)

❖ We can make managing the node part of our Facility R&D 
effort, if desired
▪ This requires someone on the Facility R&D team having root

❖ Stretched over the WAN, single API endpoint
❖ Tag resources by geographic location

▪ Run services close to where data lives

❖ Single identity system via the ATLAS IAM
❖ Fold in resources such as:

▪ Existing SLATE servers at each site
▪ Retired workers (CPU, services) and storage nodes (caches or object 

stores)

❖ Backfill with ATLAS production, no CPU wasted 10



Multi-site Resource Tagging 
(MS #336)

❖ Once we have established our multi-site K8S, want to add 
labels to each site for scheduling decisions

❖ Selectors for geographic location, data availability, and so on
❖ Tools like PanDA-Dask, ServiceX, etc could use these tags to 

place jobs nearest to the site that has the appropriate data in 
Rucio

11

MWT2

AGLT2

NET2

SWT2

Services

Services

Services

Services

C
on

tro
l P

la
ne

Kubernetes commands

site=mwt2

site=aglt2

site=net2

site=swt2



Identity & Authorization
(MS#337)

❖ Our stretched Facility R&D platform ought 
to use a single sign on technology that uses 
existing identity providers

❖ Minimize the need for yet another account
❖ We will plan to leverage Keycloak 

connected to the ATLAS IAM 
▪ Others (BNL) have experience in this 

area as well
❖ Users will login with CERN credentials, get 

their Kubernetes credentials via OIDC 
authentication flow to the IAM

❖ Also useful for any other applications we 
may want to incorporate (e.g. Jupyter)

❖ As well as other identity providers (Globus, 
CI Logon, etc) supporting OIDC
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Continuous Integration Framework
(MS#341)

❖ The Facility R&D platform will support two styles of object 
deployment 
▪ Production Deployment

o Utilizing GitOps via Flux or ArgoCD
o All long-lived services must have provenance in a Git repository
o Monitored, alerted upon, etc

▪ Scratch deployment
o Namespaces attached to individual users
o Directly deploy things via ‘kubectl’ or your favorite tool after IAM 

login
o Objects are aggressively cleaned after a few days

❖ Idea is to cut down on ‘junk’ deployments of broken and 
forgotten stuff. 

❖ Additional policies can be applied with Pod Security 
Standards, Gatekeeper, Kyverno, etc
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Backfilling with Retired & Overpledged CPU 
(MS#342)

❖ Plan to add additional resources to our seedling cluster
❖ At MWT2, we will start off by adding 25-35kHS06 of 

over-pledge and retired worker nodes to this cluster
▪ Invite other T2s to do the same

❖ This will add non-trivial resources to the platform for any 
R&D efforts 

❖ We will backfill these with production using the same 
approach used by the UTA cluster as well as the Google Cloud 
project

❖ Can also consider adding retired storage for scratch 
purposes, either as some form of Ceph storage (Object, 
Block, Filesystem) or XRootD caches with varying QOS 
expectation
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Evaluating Scheduling technologies (MS#338)

❖ Assuming we’re successful and we keep the R&D Platform 
full of work, we’ll want to look into scheduling technologies 
to 

❖ Simplest strategy to start will be to use Pod Priorities, 
including preemption

❖ However we will also want to investigate a number of other 
technologies including:
▪ Volcano Batch Scheduler, originally developed by Huawei
▪ Kueue, a “Kube Native” scheduler that came out of the Kubernetes 

Batch Working Group
▪ Descheduler, a tool for rescheduling Kubernetes pods based on 

changing cluster conditions
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Horizontal Pod Autoscaling
(MS#339)

❖ The applications that we run on the Facility R&D Platform 
need to be responsive to changes in demand

❖ For example, ServiceX transformers should scale up or down 
as appropriate based on the number of files needing to be 
transformed

❖ Caches could likewise scale up/down depending on the 
number of jobs demanding data or changes in the working 
set size

❖ We will provide a demonstrator of a working HPA recipe for 
services on the Platform
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Monitoring, Alerting, APEL accounting (MS#335)

❖ Adopt tools used in the Kubernetes community for 
monitoring and alerting, including Prometheus, Grafana, etc.

❖ These can be especially noisy, need to refine them to have a 
good signal to noise ratio

❖ Accounting for jobs run on the various Tier 2 K8S efforts 
(UTA, NET2, stretched Facility R&D platform) need to be 
reported to APEL 
▪ Adopt KAPEL from UVic? 
▪ Work with our OSG-LHC colleagues as appropriate
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Bursting to cloud/T2s 
(MS#332)

❖ Analysis Facility workloads are more latency sensitive (in 
terms of turnaround time) than our traditional jobs

❖ We plan to investigate a number of approaches for getting 
resources to AFs quickly, including:
▪ Demonstrating the ability to burst into Tier 2 facilities via HTCondor 

flocking/glideins
▪ Demonstrating the ability to burst to cloud resources 

❖ This will require understanding the limitations/requirements 
for users. 
▪ Many workflows depend on shared filesystems, local accounts, etc 

like a traditional HPC-style cluster
▪ How much effort for users to adapt their workloads?
▪ What can we do to adapt the resources to the user?
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Bi-Weekly Meeting

❖ Incorporate input from our various K8S-related efforts
▪ K8S T2 testbed at UTA
▪ K8S T2 at NET2
▪ K8S SLATE GitOps platforms at each Tier 2 

❖ Include interested folks from PATh, IRIS-HEP
❖ Discuss common issues/solutions, experiences, technology 

choices
❖ Build & share recipes and documentation
❖ Newdle poll for figuring out an appropriate timeslot:

▪ https://newdle.cern.ch/newdle/zTGxgRkZ
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Summary

❖ A flexible R&D platform is needed within the facility to 
explore and innovate with new systems, services, and 
infrastructure

❖ This will inform the next generation T2 and future analysis 
facilities 

❖ This work aligns nicely with the IRIS-HEP 2.0 strategic plan 
and effort we are receiving

❖ We expect this work will also greatly benefit sites that have 
already taken the plunge into the world of 
Kubernetes/GitOps/etc
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