
Plans for Facility R&D

1

 

Lincoln Bryant
US ATLAS Computing Facility Biweekly
August 2, 2023



Facility R&D

❖ Facility R&D broadly refers to activities related to the 
exploration and innovation of systems, services and physical 
infrastructure that provide platforms suitable for HL-LHC 
service environments and runtime ecosystems. 
▪ These can be purely local facilities (platforms deployed within a local 

area network) or distributed, in the sense of interoperating services 
over wide area networks.

▪ c.f. IRIS-HEP 2.0 strategic roadmap sections on Facility R&D and 
Integration 

❖ In US ATLAS we have adopted cloud-native application 
management methods for infrastructure and services
▪ Kubernetes with GitOps-style management of resources

❖ Flexible strategies are being tried out in the IRIS-HEP Scalable 
Systems Laboratory (SSL) and the UC shared Tier3 Analysis 
Facility
▪ These patterns can be adopted at other sites 2



Aligning with IRIS-HEP 2.0

3

❖ Why?
▪ Concepts in IRIS-HEP 1.0 (K8s substrates, GitOps services) now in 

production (Run 3 Tier3 center, analysis facilities) 
▪ We cannot afford an independent R&D effort in the Facility
▪ Align with 0.75 FTE expected from IRIS-HEP 2.0
▪ Inform the next generation Tier2 and Analysis Facilities
▪ Must figure a way to evolve what's below to provide needed 

flexibility above

❖ SSL - Scalable Systems Laboratory
▪ For the past four years, a dedicated K8s cluster at UChicago to 

support R&D 
▪ River has been an important space for prototypes and even called 

into production use for analytics and hosted CE services



Motivation for Today's Talk

❖ Today's presentation will be focusing on our efforts 
surrounding Kubernetes and "cloud native" technologies 
throughout the facility

❖ Broadly, we will put existing and new efforts in that space 
under Facility R&D and work to prepare our sites (at all tiers) 
for the eventual requirements of HL-LHC computing

❖ Will cover a number of the milestones we have laid out for 
Facility R&D, including:
▪ Evaluating OKD for the facility
▪ Building a stretched K8S across the T2 facility 
▪ Using federated login via the ATLAS IAM
▪ Tagging resources for scheduling decisions
▪ Evaluating various batch schedulers in the K8S space
▪ Dynamically scaling services with Horizontal Pod Autoscalers
▪ Growing the stretched T2 with retired workers 
▪ Backfilling with ATLAS production 4



Evaluating Kubernetes distribution
(MS #332)

❖ Much like Linux itself, there are a variety of Kubernetes flavors
▪ Many national labs have chosen OKD for its tighter security out of the box 

and alignment with Red Hat OpenShift 
▪ Others (e.g. NERSC) have chosen the SUSE-backed Rancher platform instead
▪ Many universities have deployed Kubernetes with the tools provided directly 

by the Cloud Native Computing Foundation, such as kubeadm or kubespray

❖ Given the OKD experience at BNL and now NET2, it makes the 
most sense to start there
▪ From a policy perspective, it is easier for sites nominally using vanilla 

Kubernetes to adopt OKD rather than the reverse

❖ Many things we need to investigate for compatibility
▪ GitOps - Flux, Argo, something else? 
▪ Running our various services: Squid/Varnish/XCache under a stricter 

environment
▪ Compatibility with tooling - Lens for example is very popular
▪ Compatibility with federation, etc.

❖ If this appears workable, we would consider moving the UChicago 
Tier 3 to OKD as well 5



Stretched Kubernetes Multi-Site Cluster
(MS #333) 

❖ One of the major goals in Facility R&D is to build a multi-site 
Kubernetes that stretches over our T2 complex

❖ Each Tier 2 site contributing some resources to a managed 
R&D platform

❖ Enable rapid development and iteration for new services that 
can be operated close to the data at each site

❖ Draw from our own experience with federated K8S as well as 
others, e.g.:
▪ PRP/NRP
▪ PATh Facility
▪ SLATE

6



Multi-site K8S examples - PRP/NRP

❖ PRP/NRP approaches 
multi-site K8S by directly 
stretching over the WAN

❖ Single control plane / 
endpoint
▪ Very simple and natural 

experience for developers 

❖ PRP/NRP team manages 
the whole stack from 
IPMI, through OS, 
through K8S
▪ Easy for sites to bring 

resources to the table

7



Multi-site K8S examples - PATh Facility

❖ In the PATh Facility, each 
site is treated as a separate 
cluster

❖ PATh team uses Flux tenants 
to manage the Kubernetes 
objects at each site via 
GitOps

❖ Hardware/networking 
managed by the site

❖ OS, Kubernetes, 
Applications managed by 
the PATh team 

8



Multi-site K8S examples - SLATE

❖ SLATE federates at a high-level 
with no assumption of direct 
control over any resource 
▪ Minimizes its presence and 

privilege on clusters

❖ Operates as a sort of 
concierge between resource 
providers and resource 
consumers

❖ Tightly curated application 
catalog with strong focus on 
security
▪ Platform is agnostic to who uses 

it and where they run 
applications, so the SLATE team 
focuses on what can be run

9



Multi-site K8S for US ATLAS

❖ We want to build a K8S platform for US ATLAS that blends the 
best aspects of these approaches

❖ Start very modest (2 sites), perhaps using OKD
▪ Later adding the rest of the T2s (MS#340)

❖ We can make managing the node part of our Facility R&D 
effort, if desired
▪ This requires someone on the Facility R&D team having root

❖ Stretched over the WAN, single API endpoint
❖ Tag resources by geographic location

▪ Run services close to where data lives

❖ Single identity system via the ATLAS IAM
❖ Fold in resources such as:

▪ Existing SLATE servers at each site
▪ Retired workers (CPU, services) and storage nodes (caches or object 

stores)

❖ Backfill with ATLAS production, no CPU wasted 10



Multi-site Resource Tagging 
(MS #336)

❖ Once we have established our multi-site K8S, want to add 
labels to each site for scheduling decisions

❖ Selectors for geographic location, data availability, and so on
❖ Tools like PanDA-Dask, ServiceX, etc could use these tags to 

place jobs nearest to the site that has the appropriate data in 
Rucio

11

MWT2

AGLT2

NET2

SWT2

Services

Services

Services

Services

C
on

tro
l P

la
ne

Kubernetes commands

site=mwt2

site=aglt2

site=net2

site=swt2



Identity & Authorization
(MS#337)

❖ Our stretched Facility R&D platform ought 
to use a single sign on technology that uses 
existing identity providers

❖ Minimize the need for yet another account
❖ We will plan to leverage Keycloak 

connected to the ATLAS IAM 
▪ Others (BNL) have experience in this 

area as well
❖ Users will login with CERN credentials, get 

their Kubernetes credentials via OIDC 
authentication flow to the IAM

❖ Also useful for any other applications we 
may want to incorporate (e.g. Jupyter)

❖ As well as other identity providers (Globus, 
CI Logon, etc) supporting OIDC

12



Continuous Integration Framework
(MS#341)

❖ The Facility R&D platform will support two styles of object 
deployment 
▪ Production Deployment

o Utilizing GitOps via Flux or ArgoCD
o All long-lived services must have provenance in a Git repository
o Monitored, alerted upon, etc

▪ Scratch deployment
o Namespaces attached to individual users
o Directly deploy things via ‘kubectl’ or your favorite tool after IAM 

login
o Objects are aggressively cleaned after a few days

❖ Idea is to cut down on ‘junk’ deployments of broken and 
forgotten stuff. 

❖ Additional policies can be applied with Pod Security 
Standards, Gatekeeper, Kyverno, etc

13



Backfilling with Retired & Overpledged CPU 
(MS#342)

❖ Plan to add additional resources to our seedling cluster
❖ At MWT2, we will start off by adding 25-35kHS06 of 

over-pledge and retired worker nodes to this cluster
▪ Invite other T2s to do the same

❖ This will add non-trivial resources to the platform for any 
R&D efforts 

❖ We will backfill these with production using the same 
approach used by the UTA cluster as well as the Google Cloud 
project

❖ Can also consider adding retired storage for scratch 
purposes, either as some form of Ceph storage (Object, 
Block, Filesystem) or XRootD caches with varying QOS 
expectation

14



Evaluating Scheduling technologies (MS#338)

❖ Assuming we’re successful and we keep the R&D Platform 
full of work, we’ll want to look into scheduling technologies 
to 

❖ Simplest strategy to start will be to use Pod Priorities, 
including preemption

❖ However we will also want to investigate a number of other 
technologies including:
▪ Volcano Batch Scheduler, originally developed by Huawei
▪ Kueue, a “Kube Native” scheduler that came out of the Kubernetes 

Batch Working Group
▪ Descheduler, a tool for rescheduling Kubernetes pods based on 

changing cluster conditions

15



Horizontal Pod Autoscaling
(MS#339)

❖ The applications that we run on the Facility R&D Platform 
need to be responsive to changes in demand

❖ For example, ServiceX transformers should scale up or down 
as appropriate based on the number of files needing to be 
transformed

❖ Caches could likewise scale up/down depending on the 
number of jobs demanding data or changes in the working 
set size

❖ We will provide a demonstrator of a working HPA recipe for 
services on the Platform

16



Monitoring, Alerting, APEL accounting (MS#335)

❖ Adopt tools used in the Kubernetes community for 
monitoring and alerting, including Prometheus, Grafana, etc.

❖ These can be especially noisy, need to refine them to have a 
good signal to noise ratio

❖ Accounting for jobs run on the various Tier 2 K8S efforts 
(UTA, NET2, stretched Facility R&D platform) need to be 
reported to APEL 
▪ Adopt KAPEL from UVic? 
▪ Work with our OSG-LHC colleagues as appropriate

17



Bursting to cloud/T2s 
(MS#332)

❖ Analysis Facility workloads are more latency sensitive (in 
terms of turnaround time) than our traditional jobs

❖ We plan to investigate a number of approaches for getting 
resources to AFs quickly, including:
▪ Demonstrating the ability to burst into Tier 2 facilities via HTCondor 

flocking/glideins
▪ Demonstrating the ability to burst to cloud resources 

❖ This will require understanding the limitations/requirements 
for users. 
▪ Many workflows depend on shared filesystems, local accounts, etc 

like a traditional HPC-style cluster
▪ How much effort for users to adapt their workloads?
▪ What can we do to adapt the resources to the user?

18



Bi-Weekly Meeting

❖ Incorporate input from our various K8S-related efforts
▪ K8S T2 testbed at UTA
▪ K8S T2 at NET2
▪ K8S SLATE GitOps platforms at each Tier 2 

❖ Include interested folks from PATh, IRIS-HEP
❖ Discuss common issues/solutions, experiences, technology 

choices
❖ Build & share recipes and documentation
❖ Newdle poll for figuring out an appropriate timeslot:

▪ https://newdle.cern.ch/newdle/zTGxgRkZ

19

https://newdle.cern.ch/newdle/zTGxgRkZ


Summary

❖ A flexible R&D platform is needed within the facility to 
explore and innovate with new systems, services, and 
infrastructure

❖ This will inform the next generation T2 and future analysis 
facilities 

❖ This work aligns nicely with the IRIS-HEP 2.0 strategic plan 
and effort we are receiving

❖ We expect this work will also greatly benefit sites that have 
already taken the plunge into the world of 
Kubernetes/GitOps/etc

20


