Multi-Component Dark Matter: Identifying at Collider

Purusottam Ghosh

IACS Kolkata

PHOENIX-2023 @ IIT Hyderabad
(18-20 December 2023)

What we know about DM ?

\checkmark Non-luminous and non-baryonic. $\checkmark \sim 24 \%$ of our Universe made of DM.
\checkmark Massive and interact gravitationally.
\checkmark Stable on cosmological time scale. SM fails to accomodate DM.

Thermal DM : WIMP

- Kinetic Eqlbm. ${ }_{\left(T_{\mathrm{DM}}=T_{\mathrm{SM}}\right)}$ DM SM \leftrightarrow DM SM
- Chemical Eqlbm. $\left(n_{\mathrm{DM}}^{\text {eq }}=n_{\mathrm{SM}}^{\text {eq }}\right)$ DM DM \leftrightarrow SM SM
when $\Gamma \ll H$:
$\mathrm{DM} \mathrm{DM} \nrightarrow \mathrm{SM}$ SM
DM becomes relic.
- Why multicomponent DM ?
- Why multicomponent DM ?
- Null results at direct, indirect and collider searches \Rightarrow the DM sector still remains unknown including the possibility of having more than one particle.

- Why multicomponent DM ?

- Null results at direct, indirect and collider searches \Rightarrow the DM sector still remains unknown including the possibility of having more than one particle.
- The visible sector : $\sim 4 \%$ of the universe. - many fundamental particles (fermions, gauge bosons and Higgs)
- with different interactions (strong, weak and EM).

- Why multicomponent DM ?

- Null results at direct, indirect and collider searches \Rightarrow the DM sector still remains unknown including the possibility of having more than one particle.
- The visible sector : $\sim 4 \%$ of the universe.
- many fundamental particles (fermions, gauge bosons and Higgs)
- with different interactions (strong, weak and EM).
- Too simple to assume only one kind of DM with one specific interaction to contribute $\sim 24 \%$ energy density of the universe.

- Why multicomponent DM ?

- Null results at direct, indirect and collider searches \Rightarrow the DM sector still remains unknown including the possibility of having more than one particle.
- The visible sector : $\sim 4 \%$ of the universe.
- many fundamental particles (fermions, gauge bosons and Higgs)
- with different interactions (strong, weak and EM).
- Too simple to assume only one kind of DM with one specific interaction to contribute $\sim 24 \%$ energy density of the universe.
- Features of multicomponent DM

- Why multicomponent DM ?

- Null results at direct, indirect and collider searches \Rightarrow the DM sector still remains unknown including the possibility of having more than one particle.
- The visible sector : $\sim 4 \%$ of the universe.
- many fundamental particles (fermions, gauge bosons and Higgs)
- with different interactions (strong, weak and EM).
- Too simple to assume only one kind of DM with one specific interaction to contribute $\sim 24 \%$ energy density of the universe.
- Features of multicomponent DM
- Relic: $\Omega_{\mathrm{DM}} h^{2}=\Omega_{1} h^{2}+\Omega_{2} h^{2}+\ldots=0.120 \pm 0.001$ (PLANCK)

- Why multicomponent DM ?

- Null results at direct, indirect and collider searches \Rightarrow the DM sector still remains unknown including the possibility of having more than one particle.
- The visible sector : $\sim 4 \%$ of the universe.
- many fundamental particles (fermions, gauge bosons and Higgs)
- with different interactions (strong, weak and EM).
- Too simple to assume only one kind of DM with one specific interaction to contribute $\sim 24 \%$ energy density of the universe.
- Features of multicomponent DM
- Relic: $\Omega_{\mathrm{DM}} h^{2}=\Omega_{1} h^{2}+\Omega_{2} h^{2}+\ldots=0.120 \pm 0.001$ (PLANCK)
- DM Conversion: DM1 + DM1 \rightarrow DM2 + DM2 \Rightarrow leads to modified freezeout \rightarrow Opens up over-abundance region of DM1.

- Why multicomponent DM ?

- Null results at direct, indirect and collider searches \Rightarrow the DM sector still remains unknown including the possibility of having more than one particle.
- The visible sector : $\sim 4 \%$ of the universe.
- many fundamental particles (fermions, gauge bosons and Higgs)
- with different interactions (strong, weak and EM).
- Too simple to assume only one kind of DM with one specific interaction to contribute $\sim 24 \%$ energy density of the universe.
- Features of multicomponent DM
- Relic: $\Omega_{\mathrm{DM}} h^{2}=\Omega_{1} h^{2}+\Omega_{2} h^{2}+\ldots=0.120 \pm 0.001$ (PLANCK)
- DM Conversion: DM1 + DM1 \rightarrow DM2 + DM2 \Rightarrow leads to modified freezeout \rightarrow Opens up over-abundance region of DM1.
- DD cross-section: $\sigma_{\text {eff }}^{\mathrm{DD}}(i)=\left(\Omega_{i} / \Omega_{\mathrm{DM}}\right) \sigma_{\{i-n\}}$.

- Why multicomponent DM ?

- Null results at direct, indirect and collider searches \Rightarrow the DM sector still remains unknown including the possibility of having more than one particle.
- The visible sector : $\sim 4 \%$ of the universe.
- many fundamental particles (fermions, gauge bosons and Higgs)
- with different interactions (strong, weak and EM).
- Too simple to assume only one kind of DM with one specific interaction to contribute $\sim 24 \%$ energy density of the universe.
- Features of multicomponent DM
- Relic: $\Omega_{\mathrm{DM}} h^{2}=\Omega_{1} h^{2}+\Omega_{2} h^{2}+\ldots=0.120 \pm 0.001$ (PLANCK)
- DM Conversion: DM1 + DM1 \rightarrow DM2 $+\mathrm{DM} 2 \Rightarrow$ leads to modified freezeout \rightarrow Opens up over-abundance region of DM1.
- DD cross-section: $\sigma_{\text {eff }}^{\mathrm{DD}}(i)=\left(\Omega_{i} / \Omega_{\mathrm{DM}}\right) \sigma_{\{i-n\}}$.
- ID cross-section: $\langle\sigma v\rangle_{\mathrm{eff}}^{\mathrm{ID}}(X Y)=\left(\Omega_{i} / \Omega_{\mathrm{DM}}\right)^{2}\langle\sigma(i i \rightarrow X Y) v\rangle$.

- Why multicomponent DM ?

- Null results at direct, indirect and collider searches \Rightarrow the DM sector still remains unknown including the possibility of having more than one particle.
- The visible sector : $\sim 4 \%$ of the universe.
- many fundamental particles (fermions, gauge bosons and Higgs)
- with different interactions (strong, weak and EM).
- Too simple to assume only one kind of DM with one specific interaction to contribute $\sim 24 \%$ energy density of the universe.
- Features of multicomponent DM
- Relic: $\Omega_{\mathrm{DM}} h^{2}=\Omega_{1} h^{2}+\Omega_{2} h^{2}+\ldots=0.120 \pm 0.001$ (PLANCK)
- DM Conversion: DM1 + DM1 \rightarrow DM2 + DM2 \Rightarrow leads to modified freezeout \rightarrow Opens up over-abundance region of DM1.
- DD cross-section: $\sigma_{\text {eff }}^{\mathrm{DD}}(i)=\left(\Omega_{i} / \Omega_{\mathrm{DM}}\right) \sigma_{\{i-n\}}$.
- ID cross-section: $\langle\sigma v\rangle_{\mathrm{eff}}^{\mathrm{ID}}(X Y)=\left(\Omega_{i} / \Omega_{\mathrm{DM}}\right)^{2}\langle\sigma(i i \rightarrow X Y) v\rangle$.
- larger allowed parameter space .. ref. SB, PG..., JHEP 03 (2020) 090

Single Comp. DM: scalar singlet ϕ and inert $\Phi=\left(\begin{array}{ll}H^{+} & \frac{H^{0}+i A^{0}}{\sqrt{2}}\end{array}\right)^{T}$

Single Comp. DM: scalar singlet ϕ and inert $\Phi=\left(\begin{array}{ll}H^{+} & \frac{H^{0}+i 0^{0}}{\sqrt{2}}\end{array}\right)^{T}$

Single Comp. DM: scalar singlet ϕ and inert $\Phi=\left(\begin{array}{ll}H^{+} & \frac{H^{0}+i A^{0}}{\sqrt{2}}\end{array}\right)^{T}$

Two Comp. DM: $\operatorname{DM} 1(\phi)+\operatorname{DM} 1(\phi) \rightarrow \operatorname{DM} 2(\Phi)+\operatorname{DM} 2(\Phi)$

Single Comp. DM: scalar singlet ϕ and inert $\Phi=\left(\begin{array}{ll}H^{+} & \frac{H^{0}+i A^{0}}{}{ }^{2}\end{array}\right)^{T}$

Two Comp. DM: DM1 $(\phi)+\mathrm{DM} 1(\phi) \rightarrow \mathrm{DM} 2(\Phi)+\mathrm{DM} 2(\Phi)$

How one can distinguish the signature of two component DM at collider (ILC) ?

How one can distinguish the signature of two component DM at collider (ILC) ?

Collider Signal of two component Dark Matter:

How one can distinguish the signature of two component DM at collider (ILC) ?

Collider Signal of two component Dark Matter:

1. Dark matter production via cascade decays, JHEP 12 (2022) 049 (arXiv: 2202.12097)

How one can distinguish the signature of two component DM at collider (ILC) ?

Collider Signal of two component Dark Matter:

1. Dark matter production via cascade decays, JHEP 12 (2022) 049 (arXiv: 2202.12097)
2. Dark matter production with mono-X Phys. Rev. D 108, L111703 (arXiv:2211.10749)

How one can distinguish the signature of two component DM at collider (ILC) ?

Collider Signal of two component Dark Matter:

1. Dark matter production via cascade decays, JHEP 12 (2022) 049 (arXiv: 2202.12097)
2. Dark matter production with mono-X Phys. Rev. D 108, L111703 (arXiv:2211.10749)

Subhaditya Bhattacharya, P Ghosh, Jayita Lahiri and Biswarup
Mukhopadhyaya

- Dark sector with $S U(2)_{L}$ multiplet: $\left\{X^{0}\left(m_{\mathrm{DM}}\right), X^{ \pm}\left(m_{\mathrm{DM}}+\Delta m\right),.\right\}$
- Dark sector with $S U(2)_{L}$ multiplet: $\left\{X^{0}\left(m_{\mathrm{DM}}\right), X^{ \pm}\left(m_{\mathrm{DM}}+\Delta m\right),.\right\}$
- Signal: $\ell^{+} \ell^{-}+0 j+$ ME @ ILC
$\left.e^{-} \overline{e^{+} \rightarrow X^{+} X^{-} ;\left(X^{-} \rightarrow \ell^{-} \overline{\nu_{\ell}}\right.} X^{0}\right),\left(X^{+} \rightarrow \ell^{+} \nu_{\ell} X^{0}\right)($ with $\ell=e, \mu)$
- Dark sector with $S U(2)_{L}$ multiplet: $\left\{X^{0}\left(m_{\mathrm{DM}}\right), X^{ \pm}\left(m_{\mathrm{DM}}+\Delta m\right),.\right\}$
- Signal: $\ell^{+} \ell^{-}+0 j+$ ME @ ILC
$\left.e^{-} \overline{e^{+} \rightarrow X^{+} X^{-} ;\left(X^{-} \rightarrow \ell^{-} \overline{\nu_{\ell}}\right.} X^{0}\right),\left(X^{+} \rightarrow \ell^{+} \nu_{\ell} X^{0}\right)($ with $\ell=e, \mu)$

The peak of the ME distribution depends on both m_{DM} and Δm :

- Dark sector with $S U(2)_{L}$ multiplet: $\left\{X^{0}\left(m_{\mathrm{DM}}\right), X^{ \pm}\left(m_{\mathrm{DM}}+\Delta m\right),.\right\}$
- Signal: $\ell^{+} \ell^{-}+0 j+$ ME @ ILC
$e^{-} e^{+} \rightarrow X^{+} X^{-} ;\left(X^{-} \rightarrow \ell^{-} \overline{\nu_{\ell}} X^{0}\right),\left(X^{+} \rightarrow \ell^{+} \nu_{\ell} X^{0}\right)($ with $\ell=e, \mu)$

The peak of the ME distribution depends on both m_{DM} and Δm :

- Dark sector with $S U(2)_{L}$ multiplet: $\left\{X^{0}\left(m_{\mathrm{DM}}\right), X^{ \pm}\left(m_{\mathrm{DM}}+\Delta m\right),.\right\}$
- Signal: $\ell^{+} \ell^{-}+0 j+$ ME @ ILC
$e^{-} e^{+} \rightarrow X^{+} X^{-} ;\left(X^{-} \rightarrow \ell^{-} \overline{\nu_{\ell}} X^{0}\right),\left(X^{+} \rightarrow \ell^{+} \nu_{\ell} X^{0}\right)($ with $\ell=e, \mu)$

The peak of the ME distribution depends on both m_{DM} and Δm :

- Dark sector with $S U(2)_{L}$ multiplet: $\left\{X^{0}\left(m_{\mathrm{DM}}\right), X^{ \pm}\left(m_{\mathrm{DM}}+\Delta m\right),.\right\}$
- Signal: $\ell^{+} \ell^{-}+0 j+$ ME @ ILC
$e^{-} e^{+} \rightarrow X^{+} X^{-} ;\left(X^{-} \rightarrow \ell^{-} \overline{\nu_{\ell}} X^{0}\right),\left(X^{+} \rightarrow \ell^{+} \nu_{\ell} X^{0}\right)($ with $\ell=e, \mu)$

The peak of the ME distribution depends on both m_{DM} and Δm :

- Two component DM with $m_{\mathrm{DM} 1} \neq m_{\mathrm{DM} 2}$ and $\Delta m_{1} \neq \Delta m_{2}$
- Dark sector with $S U(2)_{L}$ multiplet: $\left\{X^{0}\left(m_{\mathrm{DM}}\right), X^{ \pm}\left(m_{\mathrm{DM}}+\Delta m\right),.\right\}$
- Signal: $\ell^{+} \ell^{-}+0 j+$ ME @ ILC
$e^{-} e^{+} \rightarrow X^{+} X^{-} ;\left(X^{-} \rightarrow \ell^{-} \overline{\nu_{\ell}} X^{0}\right),\left(X^{+} \rightarrow \ell^{+} \nu_{\ell} X^{0}\right)($ with $\ell=e, \mu)$

The peak of the ME distribution depends on both m_{DM} and Δm :

- Two component DM with $m_{\mathrm{DM} 1} \neq m_{\mathrm{DM} 2}$ and $\Delta m_{1} \neq \Delta m_{2}$

- Dark sector with $S U(2)_{L}$ multiplet: $\left\{X^{0}\left(m_{\mathrm{DM}}\right), X^{ \pm}\left(m_{\mathrm{DM}}+\Delta m\right),.\right\}$
- Signal: $\ell^{+} \ell^{-}+0 j+$ ME @ ILC
$e^{-} e^{+} \rightarrow X^{+} X^{-} ;\left(X^{-} \rightarrow \ell^{-} \overline{\nu_{\ell}} X^{0}\right),\left(X^{+} \rightarrow \ell^{+} \nu_{\ell} X^{0}\right)($ with $\ell=e, \mu)$

The peak of the ME distribution depends on both m_{DM} and Δm :

- Two component DM with $m_{\mathrm{DM} 1} \neq m_{\mathrm{DM} 2}$ and $\Delta m_{1} \neq \Delta m_{2}$

- Dark sector with $S U(2)_{L}$ multiplet: $\left\{X^{0}\left(m_{\mathrm{DM}}\right), X^{ \pm}\left(m_{\mathrm{DM}}+\Delta m\right),.\right\}$
- Signal: $\ell^{+} \ell^{-}+0 j+$ ME @ ILC
$\left.e^{-} \overline{e^{+} \rightarrow X^{+} X^{-} ;\left(X^{-} \rightarrow \ell^{-} \overline{\nu_{\ell}}\right.} X^{0}\right),\left(X^{+} \rightarrow \ell^{+} \nu_{\ell} X^{0}\right)($ with $\ell=e, \mu)$
The peak of the ME distribution depends on both m_{DM} and Δm :

- Two component DM with $m_{\mathrm{DM} 1} \neq m_{\mathrm{DM} 2}$ and $\Delta m_{1} \neq \Delta m_{2}$

A Model with two component DM:
 $\mathcal{G}=\mathrm{SM} \otimes\left(\mathcal{Z}_{2} \otimes \mathcal{Z}_{2}^{\prime}\right)$

$\underline{\text { A Model with two component DM: }} \quad \mathcal{G}=\mathrm{SM} \otimes\left(\mathcal{Z}_{2} \otimes \mathcal{Z}_{2}^{\prime}\right)$

- Scalar DM $\left(\phi^{0}\right)$: Inert doublet $\Phi=\left(\phi^{+} \frac{\phi^{0}+i A^{0}}{\sqrt{2}}\right)^{T} ; \Phi \xrightarrow{\mathcal{Z}_{2}}-\Phi ;$ with $m_{\phi^{0}}<m_{\phi^{ \pm}}<m_{A^{0}}$.

A Model with two component DM:
 $$
\mathcal{G}=\mathrm{SM} \otimes\left(\mathcal{Z}_{2} \otimes \mathcal{Z}_{2}^{\prime}\right)
$$

- Scalar DM $\left(\phi^{0}\right)$: Inert doublet $\Phi=\left(\phi^{+} \frac{\phi^{0}+i A^{0}}{\sqrt{2}}\right)^{T} ; \Phi \xrightarrow{\mathcal{Z}_{2}}-\Phi$; with $m_{\phi^{0}}<m_{\phi^{ \pm}}<m_{A^{0}}$.
- Fermion DM $\left(\psi^{0}\right)$: Lepton doublet $\Psi=\left(\begin{array}{ll}\psi & \psi^{-}\end{array}\right)^{T}+$ Lepton

$$
\begin{aligned}
& \text { Singlet } \chi_{R} ; \quad(\Psi, \chi) \xrightarrow{\mathcal{Z}_{2}^{\prime}}(-\Psi,-\chi) ; \\
& \quad \text { with } m_{\psi^{0}}<m_{\psi^{ \pm}}<m_{\psi_{2}}<m_{\psi_{3}} .
\end{aligned}
$$

A Model with two component DM:
 $$
\mathcal{G}=\mathrm{SM} \otimes\left(\mathcal{Z}_{2} \otimes \mathcal{Z}_{2}^{\prime}\right)
$$

- Scalar DM $\left(\phi^{0}\right)$: Inert doublet $\Phi=\left(\phi^{+} \frac{\phi^{0}+i A^{0}}{\sqrt{2}}\right)^{T} ; \Phi \xrightarrow{\mathcal{Z}_{2}}-\Phi$; with $m_{\phi^{0}}<m_{\phi^{ \pm}}<m_{A^{0}}$.
- Fermion DM $\left(\psi^{0}\right)$: Lepton doublet $\Psi=\left(\begin{array}{ll}\psi & \psi^{-}\end{array}\right)^{T}+$ Lepton Singlet $\chi_{R} ; \quad(\Psi, \chi) \xrightarrow{\mathcal{Z}_{2}^{\prime}}(-\Psi,-\chi)$; with $m_{\psi^{0}}<m_{\psi^{ \pm}}<m_{\psi_{2}}<m_{\psi_{3}}$.
Signal and Background: $\ell^{+} \ell^{-}+0 j+$ ME

$\underline{\text { A Model with two component DM: }} \quad \mathcal{G}=\mathrm{SM} \otimes\left(\mathcal{Z}_{2} \otimes \mathcal{Z}_{2}^{\prime}\right)$

- Scalar DM $\left(\phi^{0}\right)$: Inert doublet $\Phi=\left(\phi^{+} \frac{\phi^{0}+i A^{0}}{\sqrt{2}}\right)^{T} ; \Phi \xrightarrow{\mathcal{Z}_{2}}-\Phi ;$ with $m_{\phi^{0}}<m_{\phi^{ \pm}}<m_{A^{0}}$.
- Fermion DM $\left(\psi^{0}\right)$: Lepton doublet $\Psi=\left(\begin{array}{ll}\psi & \psi^{-}\end{array}\right)^{T}+$ Lepton Singlet $\chi_{R} ; \quad(\Psi, \chi) \xrightarrow{\mathcal{Z}_{2}^{\prime}}(-\Psi,-\chi)$; with $m_{\psi^{0}}<m_{\psi^{ \pm}}<m_{\psi_{2}}<m_{\psi_{3}}$.
$\underline{\text { Signal and Background: } \ell^{+} \ell^{-}+0 j+\text { ME }}$

$\underline{\text { A Model with two component DM: }} \quad \mathcal{G}=\mathrm{SM} \otimes\left(\mathcal{Z}_{2} \otimes \mathcal{Z}_{2}^{\prime}\right)$

- Scalar DM $\left(\phi^{0}\right)$: Inert doublet $\Phi=\left(\phi^{+} \frac{\phi^{0}+i A^{0}}{\sqrt{2}}\right)^{T} ; \Phi \xrightarrow{\mathcal{Z}_{2}}-\Phi ;$

$$
\text { with } m_{\phi^{0}}<m_{\phi^{ \pm}}<m_{A^{0}} .
$$

- Fermion DM $\left(\psi^{0}\right)$: Lepton doublet $\Psi=\left(\begin{array}{ll}\psi & \psi^{-}\end{array}\right)^{T}+$ Lepton Singlet $\chi_{R} ; \quad(\Psi, \chi) \xrightarrow{\mathcal{Z}_{2}^{\prime}}(-\Psi,-\chi)$; with $m_{\psi^{0}}<m_{\psi^{ \pm}}<m_{\psi_{2}}<m_{\psi_{3}}$.
Signal and Background: $\ell^{+} \ell^{-}+0 j+$ ME

Subhaditya Bhattacharya, PG, Jayita Lahiri, Biswarup Mukhopadhyaya JHEP12(2022)049

- Beam Polarization+Lepton Energy cut
- Beam Polarization+Lepton Energy cut

$$
P\left(e^{-}\right)=-0.8, P\left(e^{+}\right)=0.3
$$

- Beam Polarization+Lepton Energy cut

$$
P\left(e^{-}\right)=-0.8, P\left(e^{+}\right)=0.3
$$

$$
P_{e^{-}}=+0.8, P_{e}+=-0.3
$$

- Beam Polarization+Lepton Energy cut

$P\left(e^{-}\right)=-0.8, P\left(e^{+}\right)=0.3$

$P_{e^{-}}=+0.8, P_{e^{+}}=-0.3$

$E\left(\ell_{1}\right)<150 \mathrm{GeV}$
- Beam Polarization+Lepton Energy cut

$P\left(e^{-}\right)=-0.8, P\left(e^{+}\right)=0.3$
$P_{e^{-}}=+0.8, P_{e^{+}}=-0.3$

$E\left(\ell_{1}\right)<150 \mathrm{GeV}$
- The signal+background distribution with $S / B=3 \quad \mathcal{S}=11 \sigma$ for BP1.

- Beam Polarization+Lepton Energy cut

$P\left(e^{-}\right)=-0.8, P\left(e^{+}\right)=0.3$
$P_{e^{-}}=+0.8, P_{e^{+}}=-0.3$

$E\left(\ell_{1}\right)<150 \mathrm{GeV}$
- The signal+background distribution with $S / B=3 \quad \mathcal{S}=11 \sigma$ for BP1.
- The distribution retain the double hump behaviour \rightarrow signature of two component DM.
- Beam Polarization+Lepton Energy cut

$$
P\left(e^{-}\right)=-0.8, P\left(e^{+}\right)=0.3
$$

$$
P_{e^{-}}=+0.8, P_{e^{+}}=-0.3
$$

$E\left(\ell_{1}\right)<150 \mathrm{GeV}$

- The signal+background distribution with $S / B=3 \quad \mathcal{S}=11 \sigma$ for BP1.
- The distribution retain the double hump behaviour \rightarrow signature of two component DM.
- The separation of the peaks depends on Δm; while height depnd on production crosssection.

The next question is: how to quantify the distinguishability of the two peaks in a ME distribution?

The next question is: how to quantify the distinguishability of the two peaks in a ME distribution?

JHEP12(2022)049
Two peak Gaussian Fitting : $\quad y_{H}=G(t)=A_{1} e^{-\frac{\left(t-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}+A_{2} e^{-\frac{\left(t-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}+\mathcal{B}$

$$
\text { with } \chi^{2}\left(\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}\right)=\sum_{i=1}^{n} \frac{\left(G\left(\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}\right)\left[t_{H}^{i}\right]-y_{H}^{i}\right)^{2}}{y_{H}^{i}} \text {. }
$$

The next question is: how to quantify the distinguishability of the two peaks in a ME distribution?

JHEP12(2022)049
Two peak Gaussian Fitting : $\quad y_{H}=G(t)=A_{1} e^{-\frac{\left(t-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}+A_{2} e^{-\frac{\left(t-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}+\mathcal{B}$

$$
\text { with } \chi^{2}\left(\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}\right)=\sum_{i=1}^{n} \frac{\left(G\left(\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}\right)\left[t_{H}^{i}\right]-y_{H}^{i}\right)^{2}}{y_{H}^{i}} \text {. }
$$

The next question is: how to quantify the distinguishability of the two peaks in a ME distribution?

JHEP12(2022)049
Two peak Gaussian Fitting : $\quad y_{H}=G(t)=A_{1} e^{-\frac{\left(t-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}+A_{2} e^{-\frac{\left(t-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}+\mathcal{B}$

$$
\text { with } \chi^{2}\left(\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}\right)=\sum_{i=1}^{n} \frac{\left(G\left(\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}\right)\left[t_{H}^{i}\right]-y_{H}^{i}\right)^{2}}{y_{H}^{i}} \text {. }
$$

The next question is: how to quantify the distinguishability of the two peaks in a ME distribution?

JHEP12(2022)049
Two peak Gaussian Fitting : $\quad y_{H}=G(t)=A_{1} e^{-\frac{\left(t-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}+A_{2} e^{-\frac{\left(t-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}+\mathcal{B}$

$$
\text { with } \chi^{2}\left(\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}\right)=\sum_{i=1}^{n} \frac{\left(G\left(\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}\right)\left[t_{H}^{i}\right]-y_{H}^{i}\right)^{2}}{y_{H}^{i}} \text {. }
$$

The next question is: how to quantify the distinguishability of the two peaks in a ME distribution?

JHEP12(2022)049
Two peak Gaussian Fitting : $\quad y_{H}=G(t)=A_{1} e^{-\frac{\left(t-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}+A_{2} e^{-\frac{\left(t-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}+\mathcal{B}$

$$
\text { with } \chi^{2}\left(\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}\right)=\sum_{i=1}^{n} \frac{\left(G\left(\mu_{1}, \sigma_{1} ; \mu_{2}, \sigma_{2}\right)\left[t_{H}^{i}\right]-y_{H}^{i}\right)^{2}}{y_{H}^{i}} \text {. }
$$

- $R_{C_{1-4}}(\mathcal{L})>2 \sigma \rightarrow$ There is definitely the presence of second peak.

mono-X signal $(X=h, Z, \gamma)$

Two comp. DM with mono-Z signal

mono-X signal $(X=h, Z, \gamma)$

Two comp. DM with mono-Z signal

$$
\text { DM1: } O_{3}^{s}=\frac{c}{\Lambda^{2}}\left(B_{\mu \nu} B^{\mu \nu}+W_{\mu \nu} W^{\mu \nu}\right)\left(\chi^{2}\right)
$$

mono-X signal $(X=h, Z, \gamma)$

Two comp. DM with mono-Z signal

$$
\begin{aligned}
& \text { DM1: } O_{3}^{s}=\frac{c}{\Lambda^{2}}\left(B_{\mu \nu} B^{\mu \nu}+W_{\mu \nu} W^{\mu \nu}\right)\left(\chi^{2}\right) \\
& \text { DM2: } O_{1}^{f}=\frac{c}{\Lambda^{2}}\left(\bar{L} \gamma^{\mu} L+\bar{\ell}_{R} \gamma^{\mu} \ell_{R} \overline{)}\left(\bar{\chi} \gamma_{\mu} \chi\right)\right.
\end{aligned}
$$

Two comp. DM with mono-Z signal

$$
\begin{aligned}
& \text { DM1: } O_{3}^{s}=\frac{c}{\Lambda^{2}}\left(B_{\mu \nu} B^{\mu \nu}+W_{\mu \nu} W^{\mu \nu}\right)\left(\chi^{2}\right) \\
& \text { DM2: } O_{1}^{f}=\frac{c}{\Lambda^{2}}\left(\bar{L} \gamma^{\mu} L+\bar{\ell}_{R} \gamma^{\mu} \ell_{R} \overline{)}\left(\bar{\chi} \gamma_{\mu} \chi\right)\right.
\end{aligned}
$$

mono-X signal $(X=h, Z, \gamma)$

Individual DM distribution.

Two comp. DM with mono-Z signal

DM1: $O_{3}^{s}=\frac{c}{\Lambda^{2}}\left(B_{\mu \nu} B^{\mu \nu}+W_{\mu \nu} W^{\mu \nu}\right)\left(\chi^{2}\right)$
DM2: $O_{1}^{f}=\frac{c}{\Lambda^{2}}\left(\bar{L} \gamma^{\mu} L+\bar{\ell}_{R} \gamma^{\mu} \ell_{R}\right)\left(\bar{\chi} \gamma_{\mu} \chi\right)$
mono-X signal $(X=h, Z, \gamma)$

Individual DM distribution.

Two comp. DM with background.

Two comp. DM with mono-Z signal

DM1: $O_{3}^{s}=\frac{c}{\Lambda^{2}}\left(B_{\mu \nu} B^{\mu \nu}+W_{\mu \nu} W^{\mu \nu}\right)\left(\chi^{2}\right)$
DM2: $O_{1}^{f}=\frac{c}{\Lambda^{2}}\left(\bar{L} \gamma^{\mu} L+\bar{\ell}_{R} \gamma^{\mu} \ell_{R}\right)\left(\bar{\chi} \gamma_{\mu} \chi\right)$
mono-X signal $(X=h, Z, \gamma)$

Individual DM distribution.

Two comp. DM with background.

- The large SM background cannot be reduced beyond a certain limit.

Two comp. DM with mono-Z signal

DM1: $O_{3}^{s}=\frac{c}{\Lambda^{2}}\left(B_{\mu \nu} B^{\mu \nu}+W_{\mu \nu} W^{\mu \nu}\right)\left(\chi^{2}\right)$
DM2: $O_{1}^{f}=\frac{c}{\Lambda^{2}}\left(\bar{L} \gamma^{\mu} L+\bar{\ell}_{R} \gamma^{\mu} \ell_{R}\right)\left(\bar{\chi} \gamma_{\mu} \chi\right)$
mono-X signal $(X=h, Z, \gamma)$

Individual DM distribution.

Two comp. DM with background.

- The large SM background cannot be reduced beyond a certain limit.
- Signal+Background distribution can barely show two peak behaviour.

Then the question is: how can we potentially observe a double-hump distribution in a mono- X signal?

Then the question is: how can we potentially observe a double-hump distribution in a mono- X signal?

- We propose to look for bin wise signal significance!

Signal significance (S / \sqrt{B})

Then the question is: how can we potentially observe a double-hump distribution in a mono- X signal?

- We propose to look for bin wise signal significance!

Signal significance (S / \sqrt{B})

$$
\begin{aligned}
R_{C 3} & =\frac{\int_{t_{1}^{-}}^{t_{1}^{+}} y d t-\int_{t_{2}^{-}}^{t_{2}^{+}} y d t}{\int_{t_{1}^{-}}^{t_{1}^{+}} y d t+\int_{t_{2}^{-}}^{t_{2}^{+}} y d t}, \\
R_{C 4} & =\frac{y\left(t^{\prime}\right)-y\left(t_{\text {min }}\right)}{\sqrt{y\left(t_{\text {min }}\right)}}
\end{aligned}
$$

$$
G(t) \equiv y(t)=A_{1} e^{-\frac{\left(t-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}+A_{2} e^{-\frac{\left(t-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}+\mathcal{B}
$$

Then the question is: how can we potentially observe a double-hump distribution in a mono- X signal?

- We propose to look for bin wise signal significance!

Signal significance (S / \sqrt{B})

$$
\begin{aligned}
R_{C 3} & =\frac{\int_{t_{1}^{-}}^{t_{1}^{+}} y d t-\int_{t_{2}^{-}}^{t_{2}^{+}} y d t}{\int_{t_{1}^{-}}^{t_{1}^{+}} y d t+\int_{t_{2}^{-}}^{t_{2}^{+}} y d t}, \\
R_{C 4} & =\frac{y\left(t^{\prime}\right)-y\left(t_{\min }\right)}{\sqrt{y\left(t_{\min }\right)}}
\end{aligned}
$$

$$
G(t) \equiv y(t)=A_{1} e^{-\frac{\left(t-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}}+A_{2} e^{-\frac{\left(t-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}}+\mathcal{B}
$$

The bin-wise significance comes to the rescue, where one ends up with two-peak only at the presence of the two DM components with

$$
R_{C_{3-4}}>2 \sigma .
$$

Can we observe two peak distribution at LHC? Signal: $\ell^{-} \ell^{+}+0 j+X$

- Two peaks can be observed in the signal.
- The signal encounter a huge QCD background.

Works in Progress \qquad
The paper JHEP 04 (2010) 086 by Partha Konar et al. studied the signature of multicomponent dark matter at LHC using the $M_{T 2}$ topology.

- Double hump distribution is the possible signature of two DMs at ILC.
- Double hump distribution is the possible signature of two DMs at ILC.

I. Two DM components producing via cascade decays.
- Double hump distribution is the possible signature of two DMs at ILC.

I. Two DM components producing via cascade decays.

II. Two DM components producing with mono-X.
- Double hump distribution is the possible signature of two DMs at ILC.

I. Two DM components producing via cascade decays.

II. Two DM components producing with mono-X.
- Conditions $C_{1-4}\left(R_{C_{1-4}}>2 \sigma\right)$ can successfully distinguish double peak behaviour in the ME spectrum.
-Double hump distribution is the possible signature of two DMs at ILC.

I. Two DM components producing via cascade decays.

II. Two DM components producing with mono-X.
- Conditions $C_{1-4}\left(R_{C_{1-4}}>2 \sigma\right)$ can successfully distinguish double peak behaviour in the ME spectrum.
- High luminosity and High energy avoid statistical fluctuations and meets peak separation conditions.
-Double hump distribution is the possible signature of two DMs at ILC.

I. Two DM components producing via cascade decays.

II. Two DM components producing with mono-X.
- Conditions $C_{1-4}\left(R_{C_{1-4}}>2 \sigma\right)$ can successfully distinguish double peak behaviour in the ME spectrum.
- High luminosity and High energy avoid statistical fluctuations and meets peak separation conditions.

Email id pghoshiitg@gmail.com

The minimal renormalizable Lagrangian for this model then reads,

$$
\begin{equation*}
\mathcal{L} \supset \mathcal{L}^{\mathrm{SDM}}+\mathcal{L}^{\mathrm{FDM}} \tag{1}
\end{equation*}
$$

The Lagrangian for the SDM sector, having inert scalar doublet Φ can be written as :

$$
\begin{aligned}
\mathcal{L}^{\mathrm{SDM}}= & \left|\left(\partial^{\mu}-i g_{2} \frac{\sigma^{a}}{2} W^{a \mu}-i g_{1} \frac{Y}{2} B^{\mu}\right) \Phi\right|^{2}-V(\Phi, H) \\
V(\Phi, H)= & \mu_{\Phi}^{2}\left(\Phi^{\dagger} \Phi\right)+\lambda_{\Phi}\left(\Phi^{\dagger} \Phi\right)^{2}+\lambda_{1}\left(H^{\dagger} H\right)\left(\Phi^{\dagger} \Phi\right)+\lambda_{2}\left(H^{\dagger} \Phi\right)\left(\Phi^{\dagger} H\right) \\
& +\frac{\lambda_{3}}{2}\left[\left(H^{\dagger} \Phi\right)^{2}+\text { h.c. }\right]
\end{aligned}
$$

The minimal renormalizable Lagrangian for FDM having one vector-like doublet (Ψ) and one right-handed singlet $\left(\chi_{R}\right)$ reads:
$\mathcal{L}^{\mathrm{FDM}}=\bar{\Psi}_{L(R)}\left[i \gamma^{\mu}\left(\partial_{\mu}-i g_{2} \frac{\sigma^{a}}{2} W_{\mu}^{a}-i g_{1} \frac{Y^{\prime}}{2} B_{\mu}\right)\right] \Psi_{L(R)}+\overline{\chi_{R}}\left(i \gamma^{\mu} \partial_{\mu}\right) \chi_{1}$

$$
-m_{\psi} \bar{\Psi} \Psi-\left(\frac{1}{2} m_{\chi} \overline{\chi_{R}}\left(\chi_{R}\right)^{c}+h . c\right)-\frac{Y}{\sqrt{2}}\left(\overline{\Psi_{L}} \widetilde{H} \chi_{R}+\overline{\Psi_{R}} \widetilde{H} \chi_{R}^{c}\right.
$$

where $\Psi_{L(R)}=P_{L(R)} \Psi ; P_{L / R}=\frac{1}{2}\left(1 \mp \gamma_{5}\right)$.

BPs	SDM sector $\left\{m_{\phi^{0}}, \Delta m_{1}, \lambda_{L}\right\}$	FDM sector $\left\{m_{\psi_{1}}, \Delta m_{2}, \sin \theta\right\}$	$\Omega_{\phi^{0}} h^{2}$	$\Omega_{\psi_{1} h^{2}}$	$\sigma_{\phi^{0}}^{\text {eff }}\left(\mathrm{cm}^{2}\right)$	$\sigma_{\psi_{1}}^{\text {eff }}\left(\mathrm{cm}^{2}\right)$	BR $\left(H_{\text {inv }}\right) \%$
BP1	$100,10,0.01$	$60.5,370,0.022$	0.00221	0.1195	3.45×10^{-46}	2.03×10^{-47}	0.25
BP2	$100,10,0.01$	$58.91,285,0.032$	0.00221	0.10962	3.45×10^{-46}	5.38×10^{-47}	1.60
BP3	$100,10,0.01$	$58.87,176,0.04$	0.00221	0.11941	3.45×10^{-46}	5.00×10^{-47}	1.50
BP4	$100,10,0.01$	$58.48,190,0.042$	0.00221	0.1114	3.45×10^{-46}	7.01×10^{-47}	2.4

Table 2. Benchmark points of the model; contribution to relic density, spin-independent direct detection cross-section as well as that of invisible Higgs decay branching ratios of the DM components ϕ^{0} and ψ_{1} are mentioned.

Benchmarks		Collider cross-section (fb)								
		$\sigma_{\text {total }}(\mathrm{OSD})$			$\sigma_{\phi+\phi}$ - (OSD)			$\sigma_{\psi+\psi}$ (OSD)		
\sqrt{s}	Points	P1	P2	P3	P1	P2	P3	P1	P2	P3
1000	BP1	232(10.8)	115(5.5)	58.5(2.75)	57.4(2.9)	28.9(1.5)	14.5(0.75)	173(8.4)	83.0(4.0)	44.0(2.0)
	BP2	276(13.4)	141(6.6)	70.0(3.3)	57.4(2.9)	28.9(1.5)	14.5(0.75)	218(10.4)	111(5.3)	$55.5(2.7)$
500	BP3	686(33.0)	339(15.9)	168.1(7.8)	180(8.9)	90.3(4.5)	44.3(2.3)	494(22.2)	253(11.3)	123.8(5.5)
	BP4	345(16.7)	170(8.4)	83.5(3.9)	180(8.9)	90.3(4.5)	44.3(2.3)	171.4(7.4)	82.4(3.9)	$39.2(1.9)$

Table 3. Signal cross-sections for HDSP pair production (OSD final state) at ILC. Total crosssection ($\left.\sigma_{\text {tolal }}\right)$, as well as individual contributions from SDM ($\sigma_{\phi^{+} \phi^{-}}$) and FDM ($\sigma_{\psi^{+} \psi^{-}}$) are mentioned. Three choices of beam polarisation are used: $\mathrm{P} 1 \equiv\left\{P_{e^{-}}:-0.8, P_{e^{+}}:+0.3\right\}, \mathrm{P} 2$ $\equiv\left\{P_{c^{-}}: 0, P_{e^{+}}: 0\right\}$ and $\mathrm{P} 3 \equiv\left\{P_{e^{-}}:+0.8, P_{e^{+}}:-0.3\right\}$. CM energy (\sqrt{s}) is in the units of GeV.

Backgrounds		Cross-section(fb)		
\sqrt{s}	Processes	P1	P2	P3
1 TeV	$W W$	296	128	18.3
	$Z Z$	7.5	4.4	3.5
	$W W Z$	1.2	0.5	0.08
500 GeV	$W W$	802	342	51
	$Z Z$	21	12	9.6
	$W W Z$	0.8	0.37	0.06

Table 4. Production cross-sections for $W^{+}\left(\ell^{+} \nu\right) W^{-}\left(\ell^{-} \bar{\nu}\right), \quad Z\left(\ell^{+} \ell^{-}\right) Z(\nu \bar{\nu})$ and $W^{+}\left(\ell^{+} \nu\right) W^{-}\left(\ell^{-} \bar{\nu}\right) Z(\nu \bar{\nu})$ background at $\sqrt{s}=1 \mathrm{TeV}$ and 500 GeV for various polarization combinations P1, P2 and P3 (see caption of Table 3).

