Interplay between Vector like Lepton and Inert Higgs Doublet in the context of Dark Matter and Collider signature

CHANDRIMA SEN

Indian Institute of Technology Hyderabad

PHOENIX-2023

December 19, 2023

based on

arXiv: 2310.08883 P. Bandyopadhyay, M. Frank, S. Parashar, CS

भारतीय प्रौद्योगिकी संस्थान हैदराबाद Indian Institute of Technology Hyderabad

Some puzzles for physics beyond the Standard Model

- Can not explain the tiny neutrino mass, which is evident from the neutrino oscillation data.
- Can not explain dark energy and dark matter, which contains 95% of our universe.
- Can not explain the matter-antimatter asymmetry in the present universe.

Vector Like Lepton + Inert Higgs Doublet Model

We extend the SM with an $SU(2)_L$ scalar doublet Φ_2 and an vector-like SU(2) triplet fermion N with Y = 1.

Description	Field definition	Gauge charges			
Description	T left definition	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	Z_2
Vectorlike lepton (VLL)	$N = \begin{pmatrix} \frac{N^{-}}{\sqrt{2}} & N^{0} \\ N^{} & -\frac{N^{-}}{\sqrt{2}} \end{pmatrix}$	1	3	-1	_
Scalars	$\Phi_1 = (\phi_1^+ \ \phi_1^0)^T$	1	2	1/2	+
	$\Phi_2 = (\phi_2^+ \ \phi_2^0)^T$	1	2	1/2	_

• Scalar potential:

$$\begin{split} V_{\text{scalar}} &= -m_{\Phi_1}^2 \Phi_1^{\dagger} \Phi_1 - m_{\Phi_2}^2 \Phi_2^{\dagger} \Phi_2 + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) \\ &+ \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + h.c \right] \end{split}$$

• \mathbb{Z}_2 odd scalar doublet couples with VLL as

$$\mathcal{L}_{VLL} \supset \left[-\frac{M_N}{2} \overline{N_L} N_R + \mathcal{Y}_N \overline{L_L^e} N_R \Phi_2 \right] + h.c.$$

Physical masses of the particles

The physical scalar masses after electroweak symmetry breaking are:

$$\begin{split} M_h^2 &= 2\lambda_1 v^2 \\ M_{H^0/A^0}^2 &= m_{\Phi_2}^2 + \frac{1}{2} v^2 \lambda_{L/S} \\ M_{H^\pm}^2 &= m_{\Phi_2}^2 + \frac{1}{2} v^2 \lambda_3, \end{split}$$

where, $\lambda_{L/S} = \lambda_3 + \lambda_4 \pm 2\lambda_5$.

- Masses of each components of N are degenerate at the tree level, and they are equal to M_N .
- At one-loop level, mass splitting occurs as: $\Delta M_{N^{\pm}N^0} \sim 500 \,\text{MeV}, \quad \Delta M_{N^{\pm}\pm N^0} \sim 1.4 \,\text{GeV}$

Nucl.Phys.B 753 (2006) 178-194

Dark Matter Relic Density

- Annihilation modes of \mathbb{Z}_2 particles: $\Phi_2 \Phi_2 \to SM SM$ and $NN \to SM SM$.
- Co-annihilation modes of \mathbb{Z}_2 particles: $N \Phi_2 \to SM SM$.
- Co-scattering of \mathbb{Z}_2 particles: $\Phi_2 \Phi_2 \leftrightarrow N N$.
- Late decay effect: $N \to \Phi_2$ SM.

- The observed relic of $\Omega h^2 = 0.1199 \pm 0.0027$.
- A lower mass region satisfying relic around 70 GeV is due to the annihilation via s-channel Higgs boson exchange.
- Masses above 1.4 TeV are ruled out being overabundant.

Planck collaboration, Astron. Astrophys. 641 (2020) A6

Dark Matter Direct Detection

• Spin-independent scattering cross-section depends on the Higgs portal coupling as

$$\sigma_{\rm SI} \simeq \frac{\lambda_S^2 f_n^2}{4\pi M_h^4} \frac{M_n^4}{(M_n + M_{A^0})^2}$$

- The most stringent upper bound on Higgs portal coupling is from LUX-ZEPLIN experiment, excludes $|\lambda_S| \ge 0.5$ for $M_{A^0} > 500$ GeV.
- $|\lambda_S| \leq 0.01$ is excluded by neutrino floor bound.

PandaX-4T collaboration, Phys. Rev. Lett. 127 (2021) 261802 LZ collaboration, Phys.Rev.Lett. 131 (2023) 4, 041002 APPEC committee report, Rept. Prog. Phys. 85 no. 5, (2022) 056201

Dark Matter Indirect Detection

- The dominant annihilation modes of A^0 are $W^{\pm}W^{\mp}$ and ZZ.
- Fermi-LAT and HESS detect high energy photons that can come from dark matter halos annihilating into $W^{\pm}W^{\mp}$ or ZZ.

H.E.S.S. collaboration, Phys. Rev. Lett. 129 (2022) 111101 MAGIC, Fermi-LAT collaboration, JCAP 02 (2016) 039

Benchmark Points

BP	M_{A^0} (GeV)	M_{H^0} (GeV)	$M_{H^{\pm}}$ (GeV)	M_{N^0} (GeV)	M_{N^-} (GeV)	$M_{N^{}}$ (GeV)	\mathcal{Y}_N
BP1	71.57	117.16	84.76	98.25	98.61	99.28	4.2×10^{-9}
BP2	587.6	589.4	588.2	595.5	595.9	596.8	1.1×10^{-7}
BP3	1000.0	1010.5	1001.0	1010.5	1011.0	1011.9	5.4×10^{-7}

- All of the benchmark points are satisfied by correct relic abundance, direct and indirect detection constraints.
- All of them lead to displaced decays of the VLLs.

VLL and IDM Interplay

- For BP1, decay effects of N is almost negligible and A^0 decouples with higher yield compared to N, and A^0 provides the correct relic density.
- As mass increases from BP1 to BP3, N decouples with higher yield.
- For BP2 and BP3, yield of A^0 suffers a dip for more co-annihilation due to compressed spectra.
- Number density of A^0 increases when N decays off completely.
- Pure Inert doublet scalar shows overabundant for BP2 and BP3, but the interplay (co-annihilation and decay) of N sector can bring back the DM yield in correct ballpark.

Effect of mass gap and Yukawa couplings

- Lower the Yukawa couplings: less co-annihilation + very late decay of the fermions.
- Higher the mass splitting: less phase space for co-annihilation.
- \implies enhancement of dark matter number density leads to overabundance.
- Higher the DM mass, lesser the annihilation ⇒ more compressed spectrum and higher Yukawa couplings for obtaining correct relic.

Collider Signature: Production and Decay of $N^{\pm\pm}$

Collider Signature: Production and Decay of $N^{\pm\pm}$

• The decay width of $N^{\pm\pm}$:

$$\Gamma_{N^{\pm\pm}\to H^{\pm}\ell^{\pm}} = \frac{\mathcal{Y}_N^2 M_{N^{\pm\pm}}}{32\pi} \left(1 - \frac{M_{H^{\pm}}^2}{M_{N^{\pm\pm}}^2}\right)^2$$

- Small \mathcal{Y}_N and compressed mass spectrum lead to small decay width \implies larger decay length.
- Displaced four-lepton final state.

Displaced decay length distribution of $N^{\pm\pm}$

	BP1		BP2		BP3	
	$\mathcal{Y}_N = 4.2 \times 10^{-9}$		$\mathcal{Y}_N = 1.1 \times 10^{-7}$		$\mathcal{Y}_N = 5.4 \times 10^{-7}$	
$N^{\pm\pm}$	$\Gamma_{\rm tot} \ ({\rm GeV})$	$c\tau_0$ (m)	$\Gamma_{\rm tot} \ ({\rm GeV})$	$c au_0$ (m)	$\Gamma_{\rm tot} \ ({\rm GeV})$	$c au_0$ (m)
	1.27×10^{-18}	155.42	5.92×10^{-17}	3.33	1.34×10^{-15}	0.15

• Boost effect can enhance the decay length as,

$$L_{\tau} = c\tau\beta\gamma$$
$$= \frac{\tau p}{m}$$

• τ gives the distribution, boost effect comes from $\frac{p}{m}$.

Events at CMS, ATLAS

- The electrons, produced displaced, can be identified by reconstructing the tracker hits at CMS/ATLAS ECal.
- The events are shown for BP1 for with the integrated luminosity of 300 fb^{-1} .
- Corresponding decay channel is: $p p \rightarrow N^{++}N^{--} \rightarrow (H^+e^+)(H^-e^-) \rightarrow (A^0\ell^+e^+)(A^0\ell^-e^-)$

4 displaced leptons at $E_{\rm CM} =$						
$14 { m TeV}$		27	TeV	100 TeV		
CMS	ATLAS	CMS	ATLAS	FCC-hh detector		
14.8	37.0	16.8	33.6	1096.2		

Events at MATHUSLA

• MATHUSLA decay volume: $25 \times 100 \times 100 \text{ m}^3$.

Co-ordinates: 60 < x < 85 m-50 < y < 50 m68 < z < 168 m

• Since MATHUSLA is proposed to be situated above CMS and at one of the hemispheres, one can not observe pair production processes there.

Alpigiani et al. [arXiv:2009.01693 [physics.ins-det]]

	2 displaced leptons at $E_{\rm CM} =$			
Production mode	$14 { m TeV}$	$27 { m ~TeV}$	$100 { m TeV}$	
$p p \rightarrow N^{++} N^{}$	249.1	507.7	1690.6	

Conclusions

- We study the interplay between the \mathbb{Z}_2 odd Higgs doublet scalar and the SU(2) triplet vector like lepton.
- The parameter space is highly constrained from Plank data, direct and indirect detection experiments.
- A compressed spectrum in the dark sector, and small Yukawa couplings lead to interplay between the VLL and the IDM in obtaining the correct relic.
- The same factors lead to displaced vertex signatures at the colliders, which can be studied in CMS, ATLAS, and MATHUSLA.

Backup Slides

Boltzmann equations

$$\frac{dY_{A^{0}}}{dx} = -\frac{1}{x^{2}} \frac{s(M_{A^{0}})}{H(M_{A^{0}})} \left[\langle \sigma v \rangle_{1100} \left(Y_{A^{0}}^{2} - (Y_{A^{0}}^{eq})^{2} \right) + \langle \sigma v \rangle_{1122} \left(Y_{A^{0}}^{2} - Y_{N^{0}}^{2} \frac{(Y_{A^{0}}^{eq})^{2}}{(Y_{N^{0}}^{eq})^{2}} \right) + \langle \sigma v \rangle_{1200} \left(Y_{A^{0}} Y_{N^{0}} - Y_{A^{0}}^{eq} Y_{N^{0}}^{eq} \right) \right] + \frac{x \Gamma_{N^{0} \to A^{0} \nu}}{H(M_{A^{0}})} \left(Y_{N^{0}} - Y_{A^{0}} \frac{Y_{N^{0}}^{eq}}{Y_{A^{0}}^{eq}} \right),$$
(1)

$$\frac{dY_{N^{0}}}{dx} = -\frac{1}{x^{2}} \frac{s(M_{A^{0}})}{H(M_{A^{0}})} \left[\langle \sigma v \rangle_{2200} \left(Y_{N^{0}}^{2} - (Y_{N^{0}}^{eq})^{2} \right) - \langle \sigma v \rangle_{1122} \left(Y_{A^{0}}^{2} - Y_{N^{0}}^{2} \frac{(Y_{A^{0}}^{eq})^{2}}{(Y_{N^{0}}^{eq})^{2}} \right) + \langle \sigma v \rangle_{1200} \left(Y_{A^{0}} Y_{N^{0}} - Y_{A^{0}}^{eq} Y_{N^{0}}^{eq} \right) \right] - \frac{x\Gamma_{N^{0} \to A^{0}\nu}}{H(M_{A^{0}})} \left(Y_{N^{0}} - Y_{A^{0}} \frac{Y_{N^{0}}^{eq}}{Y_{A^{0}}^{eq}} \right).$$
(2)

We denote the scalar dark sector with $1 \equiv [A^0, H^0, H^{\pm}]$, the fermionic dark sector with $2 \equiv [N^0, N^{\pm}, N^{\pm\pm}]$ and with $0 \equiv$ all SM particles.

p_T and p_T distribution of leptons

• Leptons are very soft due to compressed mass spectrum.