Exploring Sub-GeV DM Boosted by DSNB: Insights from XENONnT and LZ Experiments

Anirban Majumdar

(In collaboration with V. D. Romeri, D. K. Papoulias and R. Srivastava)

arXiv:2309.04117

Table of contents

- 1 Overview
- 2 Introduction
- **3** Dark Matter Direct Detection Experiment
- 4 Dark Matter Landscape
- 5 Thermal Relic Dark Matter vs Boosted Dark Matter
- 6 DSNB Boosted Dark Matter
 - DSNB
 - Boosted Dark Matter Flux At The Underground Detectors
 - Resulting Limits

7 Conclusions

Introduction

Motivation for searching the Dark Matter (DM)

- Cold DM: a non-luminous matter which occupied 27% of the mass and energy in the observable universe and which does not interact with photons and only "weakly" with ordinary matter.
- Astronomical and cosmological observations at various scales:
 - (i) Rotation curves of spiral galaxies and galaxy clusters
 - (ii) Gravitational lensing
 - (iii) Cosmic Microwave background (CMB) fluctuations

- Direct Detection Experiments: XENONnT, LUX-ZEPLIN, Super-CDMS, Dark-Side, PandaX-4T, etc.
- Indirect Detection Experiment: IceCube, HESS, MAGIC, etc.
- Accelerator searches: ATLAS, CMS at CERN

DM Direct Detection Facility

Image courtesy: Kudryavtsev, Universe, 2019

DM Landscape: A Wide Mass Range

DM Landscape: A Wide Mass Range

Thermal Relic DM vs Boosted DM

The maximum recoil energy of the target:

 $T_r^{\max} pprox rac{Q^2}{2m_T} pprox rac{2m_\chi^2 m_T v_\chi^2}{(m_\chi + m_T)^2}$

Thermal Relic DM vs Boosted DM

The maximum recoil energy of the target:

Thermal Relic DM vs Boosted DM

The maximum recoil energy of the target:

Anirban Majumdar

DSNB Boosted Dark Matter

19th December, 2023 5 / 12

DSNB Boosted Dark Matter

Diffuse Supernova Neutrino Background (2) IISER Bhopal

Right after the first star formation event, the Universe has been surrounded by an isotropic flux of MeV-energy neutrinos and antineutrinos of all flavors, produced from all supernovae events from the core-collapse explosions of huge stars throughout the Universe. This cumulative and isotropic flux of MeV neutrinos form DSNB.

Anirban Maiumdar

BDM Flux At The Underground Detectors (2) IISER Bhopal

The DSNB-boosted DM differential flux,

$$\frac{d\Phi_{\chi}}{dT_{\chi}} = D_{\rm halo} \int_{E_{\nu}^{\rm min}}^{E_{\nu}^{\rm max}} dE_{\nu} \frac{1}{m_{\chi}} \frac{d\sigma_{\nu\chi}}{dT_{\chi}} \frac{d\Phi_{\nu}^{\rm DSNB}}{dE_{\nu}}$$

BDM Flux At The Underground Detectors

The DSNB-boosted DM differential flux,

$$\frac{d\Phi_{\chi}}{dT_{\chi}} = D_{\rm halo} \int_{E_{\nu}^{\rm min}}^{E_{\nu}^{\rm max}} dE_{\nu} \frac{1}{m_{\chi}} \frac{d\sigma_{\nu\chi}}{dT_{\chi}} \frac{d\Phi_{\nu}^{\rm DSNB}}{dE_{\nu}}$$

DM flux gets attenuated by the elemnts of Earth before reaching to the underground detector

BDM Flux At The Underground Detectors (2) IISER Bhopal

The DSNB-boosted DM differential flux,

$$\frac{d\Phi_{\chi}}{dT_{\chi}} = D_{\rm halo} \int_{E_{\nu}^{\rm min}}^{E_{\nu}^{\rm max}} dE_{\nu} \frac{1}{m_{\chi}} \frac{d\sigma_{\nu\chi}}{dT_{\chi}} \frac{d\Phi_{\nu}^{\rm DSNB}}{dE_{\nu}}$$

DM flux gets attenuated by the elemnts of Earth before reaching to the underground detector

Anirban Majumdar

DSNB Boosted Dark Matter

Implications of Nuclear Form Factor

Resulting Limits

A. Majumdar et al., arXiv: 2309.04117

DSNB Boosted DM produces a subdominant, semi-relativistic component of Galactic DM.

- SNB Boosted DM produces a subdominant, semi-relativistic component of Galactic DM.
- Consideration of Earth attenuation is crucial for accurate interpretation of experimental results.

- SNB Boosted DM produces a subdominant, semi-relativistic component of Galactic DM.
- Consideration of Earth attenuation is crucial for accurate interpretation of experimental results.
- Although a significant part of our constraints lie in a region of parameter space already probed by other searches, these results highlight the complementarity and significance of the LZ and XENONnT data in probing the sub-GeV DM parameter space.

- SNB Boosted DM produces a subdominant, semi-relativistic component of Galactic DM.
- © Consideration of Earth attenuation is crucial for accurate interpretation of experimental results.
- Although a significant part of our constraints lie in a region of parameter space already probed by other searches, these results highlight the complementarity and significance of the LZ and XENONnT data in probing the sub-GeV DM parameter space.

THANK YOU

Simulations of events

 $m_{\chi} = 300 \text{ MeV}$

Effect of Earth attenuation in the resulting limits

