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Introduction

The Standard Model (SM) and its Shortcomings
A quantum field theory which provides a very good understanding of three of the four
fundamental forces: Strong, Weak, and EM.
It is based on the "Gauge Principle". SU(3)C × SU(2)L × U(1)Y

It contains 3 generations of leptons and quarks with Gauge bosons and Higgs boson.
SM stands as a remarkably successful theoretical framework, providing a comprehensive
description of all known particles and their interactions with very great accuracy.

There are various shortcomings of SM: Neutrino Mass, Dark Matter (DM),
Matter-antimatter asymmetry, CDF-II W boson mass anomaly, Muon’s anomalous magnetic
dipole moment, Vacuum stability problem etc.
Two important shortcomings are: Neutrino Mass and Dark Matter
Neutrino Mass:

1 The SM predicts neutrinos to be massless.
2 Neutrino oscillation experiments [Super-Kamiokande:1998kpq] predict masses for

neutrinos.
3 At least two neutrinos are massive.

Dark Matter:
1 Discrepancy in galactic rotation curve ⇒ One possible solution is DM.
2 Flat galactic rotation curves seem to suggest that each galaxy is surrounded by

significant amounts of non-visible matter known as dark matter.
3 There is no candidate for dark matter within SM.
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Scotogenic Model
Scotogenic Model: Minimal extension of SM (Proposed by Ernest Ma in 2006) [Ma:2006km] .

It provides tiny neutrino mass and dark matter stability simultaneously within the same
framework.

Light neutrino masses are generated via the one-loop radiative seesaw mechanism.
Two newly added BSM fields: Scalar doublet η and Fermion singlet N.
A new symmetry Z2 : new fields are odd under Z2 and SM fields are even under Z2.
Two possible DM candidates:

1 Neutral Scalar η0

2 Neutral Fermion N 1

νν

ηη

N N

⟨Φ⟩⟨Φ⟩

Figure 1: Leading neutrino mass generation diagram.
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Dirac Scotogenic Model

Dirac Scotogenic Model:

It is theoretical framework [Bonilla:2018ynb] to obtain stable dark matter along with
naturally small Dirac neutrino masses generated at the loop level.
This is achieved through the symmetry breaking of the global U(1)B−L symmetry already
present in the SM.

Dirac/Majorana nature of neutrinos is intimately connected with the U(1)B−L symmetry of
the SM and its possible breaking pattern.
U(1)B−L → Zm ≡ Z2n+1with n ∈ Z+ ⇒ neutrinos are Dirac particles
U(1)B−L → Zm ≡ Z2nwith n ∈ Z+ ⇒ neutrinos can be Dirac or Majorana

Lepton doublet Li

{
≁ ωn under Z2n ⇒ Dirac neutrinos
∼ ωn under Z2n ⇒ Majorana neutrinos (1)

where ω2n = 1 or ω = exp 2πi
2n .

This U(1)B−L is multipurpose:
1 Protect the stability of DM:

By forbidding terms that lead to decay or mixing of dark sector particles to the SM
particles.

2 Protect the Dirac nature of the neutrinos and the smallness of neutrino masses by
forbidding the tree-level coupling with the Higgs field.

3 It also predicts that the lightest neutrino is massless.
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The Model Setup

(−4, −4, 5) Chiral solutions to U(1)B−L anomaly cancellation conditions (forbidding the
tree-level neutrino Yukawa couplings).

Fields SU(2)L ⊗ U(1)Y U(1)B−L Z6

Fe
rm

io
ns Li (2, −1/2) −1 ω4

νRi (1, 0) (−4, −4, 5) (ω4, ω4, ω4)
NLl (1, 0) −1/2 ω5

NRl (1, 0) −1/2 ω5

Sc
al

ar
s H (2, 1/2) 0 1

η (2, 1/2) 1/2 ω
ξ (1, 0) 7/2 ω

Table 1: Charge assignment for all the fields.

0 B-L charge for Higgs is zero to preserve Yukawa terms for fermions that give mass to them.
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Breaking Pattern of U(1)B−L Symmetry

The U(1)B−L → Z6 breaking happens because of the presence of the soft term
(κ η†Hξ + h.c.)

L(ω4) NR(ω
5) NL(ω

5) νR(ω
4)

η(ω) ξ(ω)

Y Y ′

κ

⟨H⟩(1)

1

Figure 2: Charge assignment and symmetry breaking pattern for U(1)B−L → Z6.

This residual Z6 symmetry simultaneously protects the Dirac nature of neutrinos and the
stability of DM.
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The Scalar Potential

The general form of the scalar potential is given by

V = −µ2
HH†H + µ2

ηη†η + µ2
ξξ∗ξ +

1
2

λ1(H†H)2 +
1
2

λ2(η†η)2 +
1
2

λ3(ξ∗ξ)2

+λ4(H†H)(η†η) + λ6(η†η)(ξ∗ξ) + λ7(H†η)(η†H) + λ8(H†H)(ξ∗ξ)
+(κ η†Hξ + h.c.) (2)

Bounded from below scalar potential, ensured by the following conditions [Kannike:2016fmd]

λ1, λ2, λ3 ≥ 0; λ4 > −
√

λ1λ2, λ6 > −
√

λ2λ3, λ8 > −
√

λ1λ3,√
λ3
2

λ4 +

√
λ1
2

λ6 +

√
λ2
2

λ8 +

√
λ1λ2λ3

8

> −
√

(λ4 +
√

λ1λ2)(λ8 +
√

λ1λ3)(λ6 +
√

λ2λ3) (3)
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Neutrino Mass

L(ω4) NR(ω
5) NL(ω

5) νR(ω
4)

η(ω) ξ(ω)

Y Y ′

κ

⟨H⟩(1)

1

Figure 3: Leading neutrino mass generation diagram.

The relevant Yukawa Lagrangian for neutrino masses is given by

−LY ⊃ Yil L̄i η̃NRl + Y ′
li N̄Ll νRi ξ + MlmN̄Rl NLm + h.c. (4)

We can calculate neutrino masses from the diagram Fig.3 as

(Mν)ij =
1

16π2

3∑
k=1

YikY ′
kj

κv
m2

ξ
− m2

η

Mk

2∑
l=1

(−1)l B0(0, m2
l , M2

k ). (5)
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Phenomenology

We performed a detailed numerical scan for the model parameters with various experimental
and theoretical constraints.
We have implemented the model in SARAH-4.14.5 [Staub:2015kfa] and SPheno-4.0.5

[Porod:2011nf] to calculate all the vertices, mass matrices and tadpole equations.

Thermal component to the DM relic abundance as well as the DM nucleon scattering cross
sections are determined by micrOMEGAS-5.2.13 [Belanger:2014vza]

we have also imposed the following additional conditions when generating the allowed points:
Neutrino oscillation parameters.
Bounded from below scalar potential, ensured by the vacuum stability constraints.
Perturbativity of Yukawas and quartic couplings.
If η0 is the DM particle its mass must be smaller than the charged counterpart η+. This
implies λ7 < 0 in the small mixing limit.
Finally, we impose the LEP constraint on the light-neutral component of a doublet. This
limit is actually simply mηR + mηI > mZ which in our case translates to mη0 > mZ /2 ≈ 45.6
GeV.

(Phenomenology of Dirac Scotogenic Model)



Phenomenology

We performed a detailed numerical scan for the model parameters with various experimental
and theoretical constraints.
We have implemented the model in SARAH-4.14.5 [Staub:2015kfa] and SPheno-4.0.5

[Porod:2011nf] to calculate all the vertices, mass matrices and tadpole equations.

Thermal component to the DM relic abundance as well as the DM nucleon scattering cross
sections are determined by micrOMEGAS-5.2.13 [Belanger:2014vza]

we have also imposed the following additional conditions when generating the allowed points:
Neutrino oscillation parameters.
Bounded from below scalar potential, ensured by the vacuum stability constraints.
Perturbativity of Yukawas and quartic couplings.
If η0 is the DM particle its mass must be smaller than the charged counterpart η+. This
implies λ7 < 0 in the small mixing limit.
Finally, we impose the LEP constraint on the light-neutral component of a doublet. This
limit is actually simply mηR + mηI > mZ which in our case translates to mη0 > mZ /2 ≈ 45.6
GeV.

(Phenomenology of Dirac Scotogenic Model)



Dark Matter
Doublet DM Case:

Relic density computation and direct detection prospects for doblet DM case involve the
exchange of a Higgs or Z boson.
Our analysis shows that magenta points cover three mass regions in the relic density plot:

1 The low mass region from 10 GeV to around 30 GeV (Ruled out by LEP constraints).
2 The medium mass region from 58 GeV to around 122 GeV.
3 The high mass region from 200 GeV to around 4.8 TeV.

Figure 4: Left: Relic density plot for η0 dominated DM. Right: Spin-independent WIMP-nucleon cross section
for the η0 dominated DM candidate case.
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Dark Matter

Singlet DM Case:
Relic density computation and direct detection prospects involve just a Higgs portal in the
singlet case.
Magenta points cover a broad mass region up to around 5 TeV that satisfy all theoretical and
experimental constraints.

Figure 5: Left: Relic density vs singlet DM mass. Right: Spin-independent WIMP-nucleon cross section for the
ξ dominated DM candidate vs DM mass.
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Dark Matter
Fermionic DM Case:

Fermionic DM candidate satisfies all the constraints up to around 2 TeV.
In the relic density computation for fermionic DM, coannihilation channels between dark
fermion and doublet scalar become important if the relative dark fermion-scalar mass
difference is below 10 GeV.

Fermionic DM

Figure 6: Relic density vs fermionic DM mass.
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Higgs Vacuum in Standard Model

In SM, there exists a problem with the stability of the electroweak vacuum since the
electroweak vacuum becomes unstable at large scale (∼ 1010GeV ).
At this elevated scale, the quartic coupling of the SM Higgs, denoted as λHH , undergoes a
transition to a negative value as dictated by the evolution of the renormalization group
equations (RGE).

1000 107 1011 1015 1019
μ(GeV)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Couplings
SM

λHH

g1

g2

g3

Ytop

Figure 7: The RG evolution of the SM gauge couplings g1, g2, g3, the top quark Yukawa coupling Ytop and the
quartic Higgs boson self-coupling λHH in the Standard Model.
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Vacuum Stability in Dirac Scotogenic Model

The beta functions for various gauge, quartic and Yukawa couplings in the model are
evaluated up to the two-loop level.

In our analysis, we observe a notable dependence of the quartic Higgs self-coupling (λHH) on
various interaction couplings, namely λHη , λ′

Hη and λHξ denoted by λ4, λ7 and λ8,
respectively, within the scalar potential.
As we explore the parameter space, we find that the values of these couplings within the
range of 0.15 to 0.50 yield significant corrections to λHH .

107 1011 1015
μ(GeV)

-0.2

0.0
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0.4

0.6

0.8
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Doublet DM

λHH

g1

g2
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Figure 8: The RG evolution of the SM gauge couplings g1, g2, g3, the top quark Yukawa coupling Ytop and the
quartic Higgs boson self-coupling λHH in the Dirac Scotogenic Model.
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CDF-II W anomaly

In 2022, the CDF-II collaboration reported a 7σ excess on the mass of the W boson with
respect to the SM prediction.
In the Dirac Scotogenic model, the doublet dark scalar leads to radiative corrections to W
boson mass. [CentellesChulia:2022vpz] arXiv:2206.11903

W+ W+

η+

η0

Z Z

η+/η0

η−/η0
∗

Z γ

η+

η−

γ γ

η+

η−

1

Figure 9: One loop polarization diagrams that contribute to the oblique S, T and U parameters.
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Doublet Scalar DM

CDF-II mW analysis for doublet scalar DM:
Doublet scalar mass is constrained to the medium mass region (58-86 GeV) after applying
CDF-II mW constraints.

Figure 10: Left: Relic density plot for η0 dominated DM. Right: Spin-independent WIMP-nucleon cross section
for the η0 dominated DM candidate case.
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Singlet Scalar DM

CDF-II mW analysis for singlet scalar DM:
Singlet scalar mass is constrained to up to around 500 GeV after applying CDF-II mW
constraints.

Figure 11: Left: Relic density vs singlet DM mass. Right: Spin-independent WIMP-nucleon cross section for
the ξ dominated DM candidate vs DM mass.
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Conclusion

We have shown that the Dirac scotogenic model can reproduce the neutrino masses and
mixing, the DM relic abundance and explain the CDF-II W boson mass anomaly while also
ensuring the stability of electroweak vacuum up to the Planck energy scale.

We find that the case of a mainly scalar doublet DM is constrained for the mass range of
58-86 GeV by the combination of the requirements that W boson mass remains within 1σ of
the CDF-II measurement and the constraints coming from DM relic density, direct detection
and invisible Z boson decays.

We showed that if the singlet scalar is the DM candidate then all the above constraints are
simultaneously satisfied along with W boson mass within 1σ range of the CDF-II
measurement, where the singlet DM mass is constrained up to around 500 GeV.

Fermionic DM is permissible within a mass range extending from 10 GeV to approximately
2000 GeV.

Moreover, we find that we have to take some scalar couplings within the range of 0.15 to
0.50 to get enough correction to Higgs self-coupling so that electroweak vacuum will remain
stable up to the Planck energy scale
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Thank you for your attention!
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Dirac Scoto Mass Spectrum

Fleshing out the SU(2)L components of the scalars, we can write the doublets as

H =
(

H+

H0

)
, η =

(
η+

η0

)
(6)

H0 =
1

√
2

(v + h + iA), η0 =
1

√
2

(ηR + iηI), ξ =
1

√
2

(ξR + iξI) . (7)

We can now compute the masses of the physical scalar states after symmetry breaking

m2
h = λ1v2, (8)

m2
η± = µ2

η +
λ4
2

v2, (9)

The real part of ξ will mix with the real part of η0 and similarly the imaginary part of ξ will mix
with the imaginary part of η0 with the same mixing matrix.

m2
(ξR ,ηR ) = m2

(ξI ,ηI )
=

(
µ2

ξ + λ8
v2

2 κ v√
2

κ v√
2

µ2
η + (λ4 + λ7) v2

2

)
(10)
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Mass Spectrum

We can compute the mixing angle

tan 2θ =
√

2κ v
(µ2

ξ
− µ2

η) + (λ8 − λ4 − λ7) v2
2

, (11)

and the mass eigenstates for the real/imaginary part of neutral scalars η0 and ξ are given by

m2
1R = m2

1I =
(

µ2
ξ + λ8

v2

2

)
cos2 θ +

(
µ2

η + (λ4 + λ7)
v2

2

)
sin2 θ − 2κv sin θ cos θ = m2

ξ (12)

m2
2R = m2

2I =
(

µ2
ξ + λ8

v2

2

)
sin2 θ +

(
µ2

η + (λ4 + λ7)
v2

2

)
cos2 θ + 2κv sin θ cos θ = m2

η0 (13)

(Phenomenology of Dirac Scotogenic Model)



W mass and the S,T,U parameters

We can calculate the BSM contributions to S, T and U of the model as

S =
1

12π
log

m2
η0

m2
η+

(14)

T =
GF

4
√

2π2αem

(m2
η0 + m2

η+

2
−

m2
η0 m2

η+

m2
η+ − m2

η0
log

m2
η+

m2
η0

)
(15)

U =
1

12π

 (m2
η0 + m2

η+ )
(

m4
η0 − 4m2

η0 m2
η+ + m4

η+

)
log

(
m2

η+
m2

η0

)
(m2

η+ − m2
η0 )3

−
5m4

η0 − 22m2
η0 m2

η+ + 5m4
η+

3(m2
η+ − m2

η0 )2


In terms of the oblique S, T and U parameters, the corrections to the W boson mass are given by

m2
W = m2

W
(SM) +

αem cos2 θw

cos2 θw − sin2 θw
m2

Z

[
−

1
2

S + cos2
θw T +

(cos2 θw − sin2 θw )
4 sin2 θw

U
]

(16)

where θw is the weak angle, αem is the fine-structure constant and m(SM)
W is the Standard Model prediction for

mW .

(Phenomenology of Dirac Scotogenic Model)


