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Introduction-I

I Neutrinos are massless in the Standard Model.

I Neutrino Oscillation =⇒ Neutrinos are massive.
I Neutrinos tiny mass and mixing are long standing puzzle =⇒

“Leptonic flavor puzzle”.
I Non-abelian groups "Flavor symmetries" [S3, A4, S4, A5, ∆(27),

etc.] provide a deeper understanding of this puzzle.
Ma and Rajasekaran, hep-ph/0106291 Babu, Ma, and Valle, hep-ph/0206292

Altarelli and Feruglio, hep-ph/0512103

I Flavor models→ extra scalar particles, “Flavons”.
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Introduction-II

I Promote flavor symmetry to “Modular Symmetry”.
Feruglio, 1706.08749, Altarelli and Feruglio, hep-ph/0512103

I All the Yukawa couplings are function of complex modulus τ and
transform non-trivially under the modular group.

I Γ̄ is the modular group.
I γ is linear transformation of Γ̄, which acts on τ and given by:

τ → γτ =
aτ + b
cτ + d

where, a, b, c, d ∈ Z, ad− bc = 1 and Im[τ ] > 0.
I The quotient groups ΓN ≡ Γ̄/Γ̄(N) known as finite modular group.
I Groups ΓN (N = 2,3,4,5) are isomorphic to S3, A4, S4 and A5.
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Introduction-II

I A field φ(I) transformation is given by:

φ(I) → (cτ + d)−kIρ(I)(γ)φ(I),

where, −kI is modular weight and ρ(I)(γ) signifies an unitary
representation matrix of γ.

I The superpotential:W =
∑

n YI1...INφ
(I1)...φ(IN).

I For n-th order term to be invariant:
YI1...IN(γτ) = (cτ + d)kY(n)ρ(γ)YI1...IN with kY(n) and ρ such that:

(i) kY(n) = kI1 + ...+ kIN .

(ii) product ρ× ρI1 × ...ρIN forms singlet.
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Motivation

Neutrino Mass Sum Rules: Few of them are,
Barry and Rodejohann, 1007.5217
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Our Set-Up

We have employed a modular framework based on finite
modular group A4, which is isomorphic to Γ3.

Fields SU(2)L U(1)Y Γ3 ' A4 −k
Li 2 − 1

2 333 −3
Ec
i 1 1 1, 1′, 1′′1, 1′, 1′′1, 1′, 1′′ −1

Hu 2 1
2 111 0

Hd 2 − 1
2 111 0

∆ 3 1 111 0

Table: The charge assignments of the superfields,
where−k is modular weight.

Yukawas Γ3 ' A4 −k
Ye = Y(4)

3Ye = Y(4)
3Ye = Y(4)
3 333 4

Yν,1 = Y(6)
3aYν,1 = Y(6)
3aYν,1 = Y(6)
3a 333 6

Yν,2 = Y(6)
3bYν,2 = Y(6)
3bYν,2 = Y(6)
3b 333 6

Table: Modular transformations
of Yukawas and their weights.

I Neutrino masses and mixing will be generated from the type-II
seesaw mechanism.

I Modular Yukawas for charged lepton and neutrinos are of weight
4 and 6 respectively.
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Mass Matrices

The superpotential of our model is given as follows:

W = α1 (YeYeYeL)1 E
c
1Hd + α2 (YeYeYeL)1′′ E

c
2Hd + α3 (YeYeYeL)1′ E

c
3Hd

+ α
(
Yν,1Yν,1Yν,1 (LL)3S

)
1

∆ + β
(
Yν,2Yν,2Yν,2 (LL)3S

)
1

∆

+ µHuHd + µ∆HdHd∆

Mass Matrices for charged lepton and neutrino:

M` = vHd


Y(4)
3,1 Y(4)

3,2 Y(4)
3,3

Y(4)
3,3 Y(4)

3,1 Y(4)
3,2

Y(4)
3,2 Y(4)

3,3 Y(4)
3,1


α1 0 0

0 α2 0
0 0 α3

 ,

Mν = v∆

2Y1 −Y3 −Y2
∗ 2Y2 −Y1
∗ ∗ 2Y3

 .

where Yi ≡ αY(6)
3a,iY(6)
3a,iY(6)
3a,i + β Y(6)

3b,iY(6)
3b,iY(6)
3b,i with i ∈ {1, 2, 3}, v∆ is the VEV of superfield ∆ and (∗)

represents the symmetric part of neutrino mass matrix.
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Sum Rules Implications
I A fascinating aspect of the neutrino mass matrix is the sum

rule, which remains invariant irrespective of the ordering of
neutrino masses.

mheaviest =
1
2

∑
i

mi

NO: m3 = m1 + m2 ∆m2
21 = 7.5× 10−5 eV2, ∆m2

31 = 2.55× 10−3 eV2

m1 = 0.0282 eV, m2 = 0.0295 eV, m3 = 0.0578 eV .

IO: m2 = m1 + m3 ∆m2
21 = 7.5× 10−5 eV2, ∆m2

31 = −2.45× 10−3 eV2

m3 = 7.5× 10−4 eV, m1 = 0.049 eV, m2 = 0.050 eV .
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Sum Rules Implications

I Effective mass of beta decay:

〈meff
νe 〉 =

√∑
i

∣∣U2
ei
∣∣m2

i

=
√

c212c
2
13m

2
1 + s212c

2
13m

2
2 + s213m

2
3 .

NO (IO): meff
νe = 0.028 (0.049) eV. It can be tested in KATRIN

Aker et al., 2105.08533

I Considering 3σ ranges sum of neutrino masses:∑
i mNO

i ∈ [0.1138,0.1176] eV,∑
i mIO

i ∈ [0.1007,0.1041] eV.
X Consistent with the Planck 2018. Aghanim et al., 1807.06209
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Neutrinoless Double Beta Decay

◦ Effective mass for
neutrinoless double beta
(0νee) decay is given by

|mee| =

∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣
= |c212c

2
13m1 + s212c

2
13e

2iφ12m2 + s213e
2iφ13m3|

I Majorana phases are strongly
correlated.

X A precise prediction for
neutrinoless double beta
(0νee) decay.
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Neutrino Oscillations Predictions
I In our proposal modular symmetry plays a crucial role in

constraining the mixing angles.

I Yukawas transform as modular forms, i.e. their values are
controlled by modulus τ only.

X Atmospheric angle θ23 is strongly correlated with imaginary
part of modulus τ in both NO and IO.
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Neutrino Oscillations Predictions
AHEP global fit

de Salas, Forero, Gariazzo, Martínez-Miravé, Mena, Ternes, Tórtola, and Valle, 2006.11237

I We have precise predictions for mixing angles.
X NO: θ13 > 8.36◦.
X IO: θ23 < 46.8◦.
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Neutrino Oscillations Predictions

I In our model there is sharp correlation between θ23 and δCP.
I Future experiments like DUNE can probe these correlations.
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Final Remarks

◦ Modular A4 symmetry has been employed in type-II
seesaw mechanism.

X Neutrino mass structure leads to a sum rule for physical
neutrino masses valid for both NO and IO.

X Sum rule fixes neutrino mass and provides a testable
prediction for the sum of neutrino mass, neutrinoless
double beta decay and beta decay.

X Model features correlation between modular symmetry
parameter modulus τ and mixing angles.

X We also have sharp predictions for mixing angles and
Dirac CP phase which can be tested in future experiments.
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Thank YouThank You
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