Neutrino Mass Sum Rules from Modular A₄ Symmetry (arXiv:2308.08981)

Ranjeet Kumar

IISER Bhopal

In collab: Salvador Centelles Chuliá, Oleg Popov, and Rahul Srivastava

20-Dec 2023

Neutrinos are massless in the Standard Model.

- Neutrinos are massless in the Standard Model.
- Neutrino Oscillation \implies Neutrinos are massive.

- Neutrinos are massless in the Standard Model.
- Neutrino Oscillation \implies Neutrinos are massive.
- Neutrinos tiny mass and mixing are long standing puzzle "Leptonic flavor puzzle".

- Neutrinos are massless in the Standard Model.
- Neutrino Oscillation \implies Neutrinos are massive.
- Neutrinos tiny mass and mixing are long standing puzzle "Leptonic flavor puzzle".
- Non-abelian groups "Flavor symmetries" [S_3 , A_4 , S_4 , A_5 , $\Delta(27)$, etc.] provide a deeper understanding of this puzzle.

Ma and Rajasekaran, hep-ph/0106291

Babu, Ma, and Valle, hep-ph/0206292

Altarelli and Feruglio, hep-ph/0512103

- Neutrinos are massless in the Standard Model.
- Neutrino Oscillation \implies Neutrinos are massive.
- Neutrinos tiny mass and mixing are long standing puzzle "Leptonic flavor puzzle".
- Non-abelian groups "Flavor symmetries" [S_3 , A_4 , S_4 , A_5 , $\Delta(27)$, etc.] provide a deeper understanding of this puzzle.

Ma and Rajasekaran, hep-ph/0106291

Babu, Ma, and Valle, hep-ph/0206292

Altarelli and Feruglio, hep-ph/0512103

Flavor models \rightarrow extra scalar particles, "Flavons".

Promote flavor symmetry to "Modular Symmetry".

Feruglio, 1706.08749, Altarelli and Feruglio, hep-ph/0512103

Promote flavor symmetry to "Modular Symmetry".

Feruglio, 1706.08749, Altarelli and Feruglio, hep-ph/0512103

All the Yukawa couplings are function of complex modulus τ and transform non-trivially under the modular group.

- Promote flavor symmetry to "Modular Symmetry".
 Feruglio, 1706.08749, Altarelli and Feruglio, hep-ph/0512103
- All the Yukawa couplings are function of complex modulus τ and transform non-trivially under the modular group.
- \blacktriangleright $\bar{\Gamma}$ is the modular group.
- γ is linear transformation of $\overline{\Gamma}$, which acts on τ and given by:

$$au o \gamma au = rac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}}$$

where, $a, b, c, d \in \mathbb{Z}$, ad - bc = 1 and $\text{Im}[\tau] > 0$.

- Promote flavor symmetry to "Modular Symmetry".
 Feruglio, 1706.08749, Altarelli and Feruglio, hep-ph/0512103
- All the Yukawa couplings are function of complex modulus τ and transform non-trivially under the modular group.
- \blacktriangleright $\bar{\Gamma}$ is the modular group.
- γ is linear transformation of $\overline{\Gamma}$, which acts on τ and given by:

$$au o \gamma au = \frac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}}$$

where, $a, b, c, d \in \mathbb{Z}$, ad - bc = 1 and $\text{Im}[\tau] > 0$.

• The quotient groups $\Gamma_N \equiv \overline{\Gamma}/\overline{\Gamma}(N)$ known as finite modular group.

- Promote flavor symmetry to "Modular Symmetry".
 Feruglio, 1706.08749, Altarelli and Feruglio, hep-ph/0512103
- All the Yukawa couplings are function of complex modulus τ and transform non-trivially under the modular group.
- \blacktriangleright $\bar{\Gamma}$ is the modular group.
- γ is linear transformation of $\overline{\Gamma}$, which acts on τ and given by:

$$au o \gamma au = rac{\mathbf{a} au + \mathbf{b}}{\mathbf{c} au + \mathbf{d}}$$

where, $a, b, c, d \in \mathbb{Z}$, ad - bc = 1 and $\text{Im}[\tau] > 0$.

- The quotient groups $\Gamma_N \equiv \overline{\Gamma}/\overline{\Gamma}(N)$ known as finite modular group.
- Groups Γ_N (N = 2, 3, 4, 5) are isomorphic to S_3 , A_4 , S_4 and A_5 .

• A field $\phi^{(l)}$ transformation is given by:

$$\phi^{(I)} \rightarrow (\mathbf{c}\tau + \mathbf{d})^{-\mathbf{k}_I} \rho^{(I)}(\gamma) \phi^{(I)},$$

where, $-\mathbf{k}_l$ is modular weight and $\rho^{(l)}(\gamma)$ signifies an unitary representation matrix of γ .

• The superpotential: $\mathcal{W} = \sum_{n} Y_{I_1...I_N} \phi^{(I_1)}...\phi^{(I_N)}$.

For n-th order term to be invariant: $Y_{l_1...l_N}(\gamma \tau) = (c\tau + d)^{k_Y(n)} \rho(\gamma) Y_{l_1...l_N}$ with $k_Y(n)$ and ρ such that:

> (i) $k_Y(n) = k_{l_1} + \dots + k_{l_N}$. (ii) product $\rho \times \rho^{l_1} \times \dots \rho^{l_N}$ forms singlet.

Motivation

Neutrino Mass Sum Rules: Few of them are,

Barry and Rodejohann, 1007.5217

 $m_1 + m_2 = m_3$ $2m_2 + m_3 = m_1$ $\frac{1}{m_1} + \frac{1}{m_2} = \frac{1}{m_3}$ $\frac{2}{m_2} + \frac{1}{m_3} = \frac{1}{m_1}$

We have employed a modular framework based on finite modular group A_4 , which is isomorphic to Γ_3 .

We have employed a modular framework based on finite modular group A_4 , which is isomorphic to Γ_3 .

Fields	$SU(2)_L$	<i>U</i> (1) _Y	$\Gamma_3\simeq {\cal A}_4$	-k
Li	2	$-\frac{1}{2}$	3	-3
Ei	1	1	1,1',1"	-1
H _u	2	$\frac{1}{2}$	1	0
H _d	2	$-\frac{1}{2}$	1	0
Δ	3	1	1	0

Table: The charge assignments of the superfields, where -k is modular weight.

We have employed a modular framework based on finite modular group A_4 , which is isomorphic to Γ_3 .

Fields	$SU(2)_L$	<i>U</i> (1) _Y	$\Gamma_3\simeq {\cal A}_4$	-k
Li	2	$-\frac{1}{2}$	3	-3
Ei	1	1	1,1',1"	-1
H _u	2	$\frac{1}{2}$	1	0
H _d	2	$-\frac{1}{2}$	1	0
Δ	3	1	1	0

Table: The charge assignments of the superfields, where -k is modular weight.

 Neutrino masses and mixing will be generated from the type-II seesaw mechanism.

We have employed a modular framework based on finite modular group A_4 , which is isomorphic to Γ_3 .

Fields	SU(2) _L	U(1) _Y	$\Gamma_3 \simeq \mathcal{A}_4$	-k
Li	2	$-\frac{1}{2}$	3	-3
Ei	1	1	1,1',1"	-1
H _u	2	$\frac{1}{2}$	1	0
H _d	2	$-\frac{1}{2}$	1	0
Δ	3	1	1	0

 Yukawas
 $\Gamma_3 \simeq \mathcal{A}_4$ -k

 $Y_e = Y_3^{(4)}$ 3
 4

 $Y_{\nu,1} = Y_{3e}^{(6)}$ 3
 6

 $Y_{\nu,2} = Y_{3b}^{(6)}$ 3
 6

Table: Modular transformations of Yukawas and their weights.

Table: The charge assignments of the superfields, where -k is modular weight.

 Neutrino masses and mixing will be generated from the type-II seesaw mechanism.

We have employed a modular framework based on finite modular group A_4 , which is isomorphic to Γ_3 .

Fields	SU(2) _L	U(1) _Y	$\Gamma_3 \simeq \mathcal{A}_4$	-k
Li	2	$-\frac{1}{2}$	3	-3
Ei	1	1	1,1',1"	-1
H _u	2	$\frac{1}{2}$	1	0
H _d	2	$-\frac{1}{2}$	1	0
Δ	3	1	1	0

Table: The charge assignments of the superfields,

where -k is modular weight.

Table: Modular transformations of Yukawas and their weights.

Neutrino masses and mixing will be generated from the second s

- Neutrino masses and mixing will be generated from the type-II seesaw mechanism.
- Modular Yukawas for charged lepton and neutrinos are of weight 4 and 6 respectively.

Mass Matrices

The superpotential of our model is given as follows:

$$\mathcal{W} = \alpha_1 (\mathbf{Y}_{\mathbf{e}}L)_1 E_1^c H_d + \alpha_2 (\mathbf{Y}_{\mathbf{e}}L)_{1''} E_2^c H_d + \alpha_3 (\mathbf{Y}_{\mathbf{e}}L)_{1'} E_3^c H_d + \alpha \left(\mathbf{Y}_{\boldsymbol{\nu}, \mathbf{1}} (LL)_{3_S} \right)_1 \Delta + \beta \left(\mathbf{Y}_{\boldsymbol{\nu}, \mathbf{2}} (LL)_{3_S} \right)_1 \Delta + \mu H_u H_d + \mu_\Delta H_d H_d \Delta$$

Mass Matrices

The superpotential of our model is given as follows:

$$\mathcal{W} = \alpha_{1} (\mathbf{Y}_{e}L)_{1} E_{1}^{c} H_{d} + \alpha_{2} (\mathbf{Y}_{e}L)_{1''} E_{2}^{c} H_{d} + \alpha_{3} (\mathbf{Y}_{e}L)_{1'} E_{3}^{c} H_{d} + \alpha \left(\mathbf{Y}_{\boldsymbol{\nu}, \mathbf{1}} (LL)_{3_{S}} \right)_{1} \Delta + \beta \left(\mathbf{Y}_{\boldsymbol{\nu}, \mathbf{2}} (LL)_{3_{S}} \right)_{1} \Delta + \mu H_{u} H_{d} + \mu_{\Delta} H_{d} H_{d} \Delta$$

Mass Matrices for charged lepton and neutrino:

$$\begin{split} \mathsf{M}_{\ell} &= \mathsf{v}_{H_d} \begin{pmatrix} \mathsf{Y}_{3,1}^{(4)} & \mathsf{Y}_{3,2}^{(4)} & \mathsf{Y}_{3,3}^{(4)} \\ \mathsf{Y}_{3,3}^{(4)} & \mathsf{Y}_{3,1}^{(4)} & \mathsf{Y}_{3,2}^{(4)} \\ \mathsf{Y}_{3,2}^{(4)} & \mathsf{Y}_{3,3}^{(4)} & \mathsf{Y}_{3,2}^{(4)} \\ \mathsf{Y}_{3,2}^{(4)} & \mathsf{Y}_{3,3}^{(4)} & \mathsf{Y}_{3,1}^{(4)} \end{pmatrix} \begin{pmatrix} \alpha_1 & 0 & 0 \\ 0 & \alpha_2 & 0 \\ 0 & 0 & \alpha_3 \end{pmatrix}, \\ \mathsf{M}_{\nu} &= \mathsf{v}_{\Delta} \begin{pmatrix} 2\mathsf{Y}_1 & -\mathsf{Y}_3 & -\mathsf{Y}_2 \\ * & 2\mathsf{Y}_2 & -\mathsf{Y}_1 \\ * & * & 2\mathsf{Y}_3 \end{pmatrix}. \end{split}$$

where $Y_i \equiv \alpha Y_{3a,i}^{(6)} + \beta Y_{3b,i}^{(6)}$ with $i \in \{1, 2, 3\}$, v_Δ is the VEV of superfield Δ and (*) represents the symmetric part of neutrino mass matrix.

A fascinating aspect of the neutrino mass matrix is the sum rule, which remains invariant irrespective of the ordering of neutrino masses.

A fascinating aspect of the neutrino mass matrix is the sum rule, which remains invariant irrespective of the ordering of neutrino masses.

$$m_{ ext{heaviest}} = rac{1}{2}\sum_{i}m_{i}$$

A fascinating aspect of the neutrino mass matrix is the sum rule, which remains invariant irrespective of the ordering of neutrino masses.

$$m_{\text{heaviest}} = rac{1}{2} \sum_{i} m_{i}$$

NO: $m_3 = m_1 + m_2 \quad \Delta m_{21}^2 = 7.5 \times 10^{-5} \,\mathrm{eV}^2, \quad \Delta m_{31}^2 = 2.55 \times 10^{-3} \,\mathrm{eV}^2$

 $m_1 = 0.0282 \,\mathrm{eV}, \quad m_2 = 0.0295 \,\mathrm{eV}, \quad m_3 = 0.0578 \,\mathrm{eV}$

A fascinating aspect of the neutrino mass matrix is the sum rule, which remains invariant irrespective of the ordering of neutrino masses.

$$m_{\text{heaviest}} = rac{1}{2} \sum_{i} m_{i}$$

NO: $m_3 = m_1 + m_2$ $\Delta m_{21}^2 = 7.5 \times 10^{-5} \,\mathrm{eV}^2$, $\Delta m_{31}^2 = 2.55 \times 10^{-3} \,\mathrm{eV}^2$

 $m_1 = 0.0282 \,\mathrm{eV}, \quad m_2 = 0.0295 \,\mathrm{eV}, \quad m_3 = 0.0578 \,\mathrm{eV}$

IO: $m_2 = m_1 + m_3 \quad \Delta m_{21}^2 = 7.5 \times 10^{-5} \,\mathrm{eV}^2, \quad \Delta m_{31}^2 = -2.45 \times 10^{-3} \,\mathrm{eV}^2$

A fascinating aspect of the neutrino mass matrix is the sum rule, which remains invariant irrespective of the ordering of neutrino masses.

$$m_{\text{heaviest}} = rac{1}{2} \sum_{i} m_{i}$$

NO: $m_3 = m_1 + m_2$ $\Delta m_{21}^2 = 7.5 \times 10^{-5} \text{ eV}^2$, $\Delta m_{31}^2 = 2.55 \times 10^{-3} \text{ eV}^2$

 $m_1 = 0.0282 \,\mathrm{eV}, \quad m_2 = 0.0295 \,\mathrm{eV}, \quad m_3 = 0.0578 \,\mathrm{eV}$

10: $m_2 = m_1 + m_3 \quad \Delta m_{21}^2 = 7.5 \times 10^{-5} \,\text{eV}^2, \quad \Delta m_{31}^2 = -2.45 \times 10^{-3} \,\text{eV}^2$

 $m_3 = 7.5 \times 10^{-4} \,\mathrm{eV}, \quad m_1 = 0.049 \,\mathrm{eV}, \quad m_2 = 0.050 \,\mathrm{eV}$

Effective mass of beta decay:

ł

$$egin{aligned} \langle m_{
u_e}^{ extsf{eff}}
angle &= \sqrt{\sum_i \left| U_{ei}^2 \right| m_i^2} \ &= \sqrt{c_{12}^2 c_{13}^2 m_1^2 + s_{12}^2 c_{13}^2 m_2^2 + s_{13}^2 m_3^2} \,. \end{aligned}$$

NO (IO): $m_{\nu_e}^{\text{eff}} = 0.028 \ (0.049) \text{ eV}$. It can be tested in KATRIN Aker et al., 2105.08533

Effective mass of beta decay:

$$egin{aligned} \langle m_{
u_e}^{ extsf{eff}}
angle &= \sqrt{\sum_i \left| U_{ei}^2
ight| m_i^2} \ &= \sqrt{c_{12}^2 c_{13}^2 m_1^2 + s_{12}^2 c_{13}^2 m_2^2 + s_{13}^2 m_3^2} \,, \end{aligned}$$

NO (IO): $m_{\nu_e}^{\text{eff}} = 0.028 \ (0.049) \text{ eV}$. It can be tested in KATRIN Aker et al., 2105.08533

► Considering 3σ ranges sum of neutrino masses: $\sum_{i} m_{i}^{NO} \in [0.1138, 0.1176] \text{ eV},$ $\sum_{i} m_{i}^{IO} \in [0.1007, 0.1041] \text{ eV}.$ \checkmark Consistent with the Planck 2018. Aghanim et al., 1807.06209

Neutrinoless Double Beta Decay

 Effective mass for neutrinoless double beta (0vee) decay is given by

$$\begin{split} |m_{ee}| &= \left| \sum_{i} U_{ei}^{2} m_{i} \right| \\ &= \left| c_{12}^{2} c_{13}^{2} m_{1} + s_{12}^{2} c_{13}^{2} e^{2i\phi_{12}} m_{2} + s_{13}^{2} e^{2i\phi_{13}} m_{3} \right| \end{split}$$

10

Neutrinoless Double Beta Decay

 Effective mass for neutrinoless double beta (0vee) decay is given by

$$\begin{split} m_{ee}| &= \left| \sum_{i} U_{ei}^{2} m_{i} \right| \\ &= \left| c_{12}^{2} c_{13}^{2} m_{1} + s_{12}^{2} c_{13}^{2} e^{2i\phi_{12}} m_{2} + s_{13}^{2} e^{2i\phi_{13}} m_{3} \right. \end{split}$$

 Majorana phases are strongly correlated.

Neutrinoless Double Beta Decay

 Effective mass for neutrinoless double beta (0vee) decay is given by

$$m_{ee}| = \left| \sum_{i} U_{ei}^{2} m_{i} \right|$$
$$= |c_{12}^{2} c_{13}^{2} m_{1} + s_{12}^{2} c_{13}^{2} e^{2i\phi_{12}} m_{2} + s_{13}^{2} e^{2i\phi_{13}} m_{3}$$

- Majorana phases are strongly correlated.
- ✓ A precise prediction for neutrinoless double beta (0*vee*) decay.

Neutrino Oscillations Predictions

In our proposal modular symmetry plays a crucial role in constraining the mixing angles.

- Yukawas transform as modular forms, i.e. their values are controlled by modulus τ only.
- $\checkmark~$ Atmospheric angle θ_{23} is strongly correlated with imaginary part of modulus τ in both NO and IO.

Neutrino Oscillations Predictions

AHEP global fit

de Salas, Forero, Gariazzo, Martínez-Miravé, Mena, Ternes, Tórtola, and Valle, 2006.11237

- We have precise predictions for mixing angles.
- ✓ NO: $\theta_{13} > 8.36^{\circ}$.
- ✓ **IO:** $\theta_{23} < 46.8^{\circ}$.

Neutrino Oscillations Predictions

▶ In our model there is sharp correlation between θ_{23} and δ_{CP} .

• Future experiments like DUNE can probe these correlations.

• Modular A₄ symmetry has been employed in type-II seesaw mechanism.

- Modular A₄ symmetry has been employed in type-II seesaw mechanism.
- ✓ Neutrino mass structure leads to a sum rule for physical neutrino masses valid for both NO and IO.

- Modular A₄ symmetry has been employed in type-II seesaw mechanism.
- ✓ Neutrino mass structure leads to a sum rule for physical neutrino masses valid for both NO and IO.
- ✓ Sum rule fixes neutrino mass and provides a testable prediction for the sum of neutrino mass, neutrinoless double beta decay and beta decay.

- Modular A₄ symmetry has been employed in type-II seesaw mechanism.
- ✓ Neutrino mass structure leads to a sum rule for physical neutrino masses valid for both NO and IO.
- Sum rule fixes neutrino mass and provides a testable prediction for the sum of neutrino mass, neutrinoless double beta decay and beta decay.
- ✓ Model features correlation between modular symmetry parameter modulus τ and mixing angles.

- Modular A₄ symmetry has been employed in type-II seesaw mechanism.
- ✓ Neutrino mass structure leads to a sum rule for physical neutrino masses valid for both NO and IO.
- Sum rule fixes neutrino mass and provides a testable prediction for the sum of neutrino mass, neutrinoless double beta decay and beta decay.
- ✓ Model features correlation between modular symmetry parameter modulus *τ* and mixing angles.
- ✓ We also have sharp predictions for mixing angles and Dirac CP phase which can be tested in future experiments.

Thank You

References

- N. Aghanim et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 641:A6, 2020. doi: 10.1051/0004-6361/201833910. [Erratum: Astron.Astrophys. 652, C4 (2021)].
- M. Aker et al. Direct neutrino-mass measurement with sub-electronvolt sensitivity. Nature Phys., 18(2):160–166, 2022. doi: 10.1038/s41567-021-01463-1.
- G. Altarelli and F. Feruglio. Tri-bimaximal neutrino mixing, A(4) and the modular symmetry. Nucl. Phys. B, 741:215–235, 2006. doi: 10.1016/j.nuclphysb.2006.02.015.
- K. S. Babu, E. Ma, and J. W. F. Valle. Underlying A(4) symmetry for the neutrino mass matrix and the quark mixing matrix. Phys. Lett. B, 552:207–213, 2003. doi: 10.1016/S0370-2693(02)03153-2.
- J. Barry and W. Rodejohann. Neutrino Mass Sum-rules in Flavor Symmetry Models. Nucl. Phys. B, 842:33–50, 2011. doi: 10.1016/j.nuclphysb.2010.08.015.
- P. F. de Salas, D. V. Forero, S. Gariazzo, P. Martínez-Miravé, O. Mena, C. A. Ternes, M. Tórtola, and J. W. F. Valle. 2020 global reassessment of the neutrino oscillation picture. JHEP, 02:071, 2021. doi: 10.1007/JHEP02(2021)071.
- F. Feruglio. Are neutrino masses modular forms?, pages 227–266. 2019. doi: 10.1142/9789813238053_0012.
- E. Ma and G. Rajasekaran. Softly broken A(4) symmetry for nearly degenerate neutrino masses. Phys. Rev. D, 64:113012, 2001. doi: 10.1103/PhysRevD.64.113012.