### Searching for effects beyond SMEFT in flavour physics

#### Siddhartha Karmakar

Tata Institute of Fundamental Research, Mumbai, India

Based on : arXiv:2305.16007

In collaboration with Susobhan Chattopadhyay and Amol Dighe.

PHOENIX - 2023, IIT Hyderabad

- Motivation
- Comparison SMEFT, HEFT and LEFT
- Preferred regions for semileptonic operators in  $b \to c \tau \bar{\nu}_{\tau}$  processes.
- Angular distribution for  $\Lambda_b \to \Lambda_c (\to \Lambda \pi) \tau \nu_{\tau}$ .
- Observables that can distinguish effects beyond SMEFT

## Motivation:

Standard Model Effective Field Theory (SMEFT) :

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{SM} + \frac{1}{\Lambda} C^{(5)} O^{(5)} + \frac{1}{\Lambda^2} \sum_i C_i^{(6)} O_i^{(6)} + \mathcal{O}\left(\frac{1}{\Lambda^3}\right)$$

- Includes SM fields only.
- Follows  $SU(3)_C \times SU(2)_L \times U(1)_Y$ .
- Electroweak (EW) symmetry linearly realized.

Current uncertainties in Higgs coupling measurements allow more generalized EFTs e.g. **Higgs Effective Field Therory (HEFT)**. In HEFT:

- $SU(2)_L \times U(1)_Y$  non-linearly realized.
- Higgs boson is not embedded in a  $SU(2)_L$ -doublet:  $\longrightarrow$  More general coupling of Higgs.
- HEFT  $\supset$  SMEFT  $\supset$  SM
- In the energy scale much below the EW symmetry breaking, the relevant EFT is **Low Energy Effective Field Theory (LEFT)**
- LEFT can be derived from HEFT by integrating out the heavier particles  $W^{\pm}$ , Z, Higgs and top quark.

## HEFT, SMEFT and LEFT



• Certain EFT operator appears in LEFT but not in SMEFT (at dim-6).

- Example:  $\mathcal{O}_V^{LR} \equiv (\bar{\tau}\gamma_\mu P_L \nu_\tau)(\bar{c}\gamma^\mu P_R b)$  which contributes to  $R(D^{(*)})$ ,  $R(J/\psi)$ ,  $\Lambda_b \to \Lambda_c \tau \nu_\tau$  etc.
- Large contribution from  $\mathcal{O}_V^{LR} \implies$  non-SMEFT effects.

Operators involved in  $b \to c \tau \bar{\nu}_{\tau}$ 

$$\mathcal{H}_{\text{eff}} = \frac{4 G_F V_{cb}}{\sqrt{2}} \left[ (1+g_L) \mathcal{O}_V^{LL} + g_R \mathcal{O}_V^{LR} + g_S \mathcal{O}_S + g_P \mathcal{O}_P + g_T \mathcal{O}_T \right] \,.$$

$$\mathcal{O}_{V}^{LL} = (\bar{\tau}\gamma_{\mu}P_{L}\nu_{\tau})(\bar{c}\gamma^{\mu}P_{L}b), \qquad \qquad \mathcal{O}_{V}^{LR} = (\bar{\tau}\gamma_{\mu}P_{L}\nu_{\tau})(\bar{c}\gamma^{\mu}P_{R}b) , \qquad (1)$$

$$\mathcal{O}_{S} = \frac{1}{2}(\bar{\tau}P_{L}\nu_{\tau})(\bar{c}b), \qquad \qquad \mathcal{O}_{P} = \frac{1}{2}(\bar{\tau}P_{L}\nu_{\tau})(\bar{c}\gamma_{5}b), \qquad (2)$$

$$\mathcal{O}_{T} = (\bar{\tau}\sigma_{\mu\nu}P_{L}\nu_{\tau})(\bar{c}\sigma^{\mu\nu}b). \qquad \qquad (3)$$

These operators can contribute to the following observables:

| Observables     | SM value           | Experimental value        | Recent updates             |
|-----------------|--------------------|---------------------------|----------------------------|
| $R_D$           | $0.298 \pm 0.004$  | $0.357 \pm 0.029$         | Belle(2020), LHCb(2023)    |
| $R_D^*$         | $0.254 \pm 0.005$  | $0.284 \pm 0.012$         | Belle II(2023), LHCb(2023) |
| $R_{j/\psi}$    | $0.258 \pm 0.004$  | $0.71 \pm 0.17 \pm 0.18$  | LHCb(2018)                 |
| $P_{	au}^{D^*}$ | $-0.497 \pm 0.013$ | $-0.38 \pm 0.51 \pm 0.21$ | Belle(2017)                |
| $F_L^{D^*}$     | $0.46\pm0.04$      | $0.60 \pm 0.08 \pm 0.035$ | Belle(2019)                |

#### NP parameter space

| Scenario      | SM    | $g_L$        | $g_R$             | $s_L$           | $s_R$        |  |
|---------------|-------|--------------|-------------------|-----------------|--------------|--|
| Best-fit      | -     | 0.03 - 0.30i | $0.018 \pm 0.39i$ | $-0.73\pm0.85i$ | 0.18 + 0.00i |  |
| $\chi^2_{bf}$ | 22.35 | 5.86         | 5.56              | 3.76            | 9.76         |  |



branching ratio  $\mathcal{B}(B_c \rightarrow au ar{
u}_{ au})$  puts conthe scalar

- $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) < 30\%$
- $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) < 10\%$







 $\Lambda_b \to \Lambda_c (\to \Lambda \pi) \tau \nu_{\tau}$  angular distribution.

- We consider the process  $\Lambda_b \to \Lambda_c (\to \Lambda \pi) \tau \nu_{\tau}.$
- Recently  $\Lambda \to \Lambda_c \tau \nu_{\tau}$  was observed at LHCb for the first time.
- Angular distribution of the final state particles offer multiple observables to probe the effect of *g<sub>R</sub>*.



$$\begin{split} &\frac{1}{(d\Gamma/dq^2)} \frac{d\Gamma}{dq^2 d\cos\theta_c d\cos\theta_l d\chi} \\ &= A_0 + A_1 \cos\theta_c + A_2 \cos\theta_l + A_3 \cos\theta_c \cos\theta_l + A_4 \cos^2\theta_l + A_5 \cos\theta_c \cos^2\theta_l \\ &+ A_6 \sin\theta_c \sin\theta_l \cos\chi + A_7 \sin\theta_c \sin\theta_l \sin\chi + A_8 \sin\theta_c \sin\theta_l \cos\theta_l \cos\chi \\ &+ A_9 \sin\theta_c \sin\theta_l \cos\theta_l \sin\chi \;. \end{split}$$

Angular Observables with  $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) < 30\%$ 



Angular observables  $A_2$ ,  $R_{3,1}$ ,  $R_{6,8}$  and  $A_7$ . The values of  $s_L$  and  $s_R$  are varied within their  $2\sigma$  allowed ranges, while  $g_R$  kept fixed at its best-fit value. For each scenario,  $2\sigma$  errors from the hadronic form factors and the polarization asymmetry  $\alpha$  have been included.

Angular Observables with  $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) < 10\%$ 



Angular observables  $A_2$ ,  $R_{3,1}$ ,  $R_{6,8}$  and  $A_7$ . The values of  $s_L$  and  $s_R$  are varied within their  $2\sigma$  allowed ranges, while  $g_R$  kept fixed at its best-fit value. For each scenario,  $2\sigma$  errors from the hadronic form factors and the polarization asymmetry  $\alpha$  have been included.

| ObservableScenario | $\mathcal{B}(B_c \to \tau \bar{\nu}_\tau) < 30\%$ |                         |              | $\mathcal{B}(B_c \to \tau \bar{\nu}_\tau) < 10\%$ |              |                  |
|--------------------|---------------------------------------------------|-------------------------|--------------|---------------------------------------------------|--------------|------------------|
| ObservableSeenano  | SM , $g_L$                                        | $s_L$                   | $s_R$        | SM , $g_L$                                        | $s_L$        | $s_R$            |
| $d\Gamma/dq^2$     | ×                                                 | ×                       | ×            | Х                                                 | $\checkmark$ | ×                |
| $A_0$              | ×                                                 | ×                       | ×            | Х                                                 | $\checkmark$ | ×                |
| $A_1$              | ×                                                 | ×                       | ×            | Х                                                 | $\checkmark$ | ×                |
| $A_2$              | $\checkmark$                                      | $\checkmark^{(\times)}$ | ×            | $\checkmark$                                      | $\checkmark$ | ×                |
| $A_3$              | $\checkmark^{(\times)}$                           | ×                       | ×            | $\checkmark^{(\times)}$                           | $\checkmark$ | ✓ <sup>(×)</sup> |
| $A_4$              | ×                                                 | ×                       | ×            | Х                                                 | $\checkmark$ | ×                |
| $A_5$              | ×                                                 | ×                       | ×            | Х                                                 | $\checkmark$ | ×                |
| $A_6$              | ×                                                 | ×                       | ×            | ×                                                 | $\checkmark$ | ×                |
| $A_7$              | $\checkmark$                                      | $\checkmark$            | $\checkmark$ | $\checkmark$                                      | $\checkmark$ | $\checkmark$     |
| $A_8$              | ×                                                 | ×                       | ×            | Х                                                 | $\checkmark$ | ×                |
| $A_{3}/A_{1}$      | $\checkmark$                                      | ×                       | ×            | $\checkmark$                                      | $\checkmark$ | $\checkmark$     |
| $A_{3}/A_{5}$      | $\checkmark$                                      | $\checkmark^{(\times)}$ | ×            | $\checkmark$                                      | $\checkmark$ | $\checkmark$     |
| $A_{6}/A_{8}$      | $\checkmark$                                      | ✓ <sup>(×)</sup>        | ×            | $\checkmark$                                      | $\checkmark$ | ✓ <sup>(×)</sup> |

The effectiveness of angular observables and their ratios in distinguishing the  $g_R$  scenario from the SM and other NP scenarios. Results for  $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) < 30\%$  and  $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau}) < 10\%$  are shown.

## Bin-wise possibility of distinguishing $g_R$ contribution



Regions where the  $g_R$  scenario can be distinguished from SM,  $g_L$ ,  $s_L$  and  $s_R$  (orange), from only SM and  $g_L$  (cyan) and from neither (black). Bins C, D, E and F corresponds to  $q^2$  ranges ( 3.67 - 5.5, 5.50 - 7.33, 7.33 - 9.17, 9.17 - 11.13) GeV<sup>2</sup>.

## Summary

- Effects beyond SMEFT can be probed indirectly in low energy flavour physics observables.
- We find the effectiveness of different angular observables in  $\Lambda_b \rightarrow \Lambda_c(\rightarrow \Lambda \pi) \tau \nu_{\tau}$  decay which can distinguish non-SMEFT effects from other NP scenarios present within SMEFT.
- It is observed that their effectiveness strongly depends on the constraints on the branching ratio  $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau})$ .
- We find that the angular observables A<sub>7</sub> (asymmetry w.r.t the angle between the decay planes) shows the most distinguishable effects coming from non-SMEFT contributions.
- Reduction in the hadronic uncertainties, better constraints on  $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau})$  and precise measurement of  $\Lambda_b$  decay distribution in future will improve the sensitivity of angular observables in understanding the distinct effects of SMEFT vs HEFT and how the  $SU(2)_L \times U(1)_Y$  symmetry is realized above EW scale.

## Summary

- Effects beyond SMEFT can be probed indirectly in low energy flavour physics observables.
- We find the effectiveness of different angular observables in  $\Lambda_b \rightarrow \Lambda_c(\rightarrow \Lambda \pi) \tau \nu_{\tau}$  decay which can distinguish non-SMEFT effects from other NP scenarios present within SMEFT.
- It is observed that their effectiveness strongly depends on the constraints on the branching ratio  $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau})$ .
- We find that the angular observables A<sub>7</sub> (asymmetry w.r.t the angle between the decay planes) shows the most distinguishable effects coming from non-SMEFT contributions.
- Reduction in the hadronic uncertainties, better constraints on  $\mathcal{B}(B_c \to \tau \bar{\nu}_{\tau})$  and precise measurement of  $\Lambda_b$  decay distribution in future will improve the sensitivity of angular observables in understanding the distinct effects of SMEFT vs HEFT and how the  $SU(2)_L \times U(1)_Y$  symmetry is realized above EW scale.

# Thank you for your attention!