Quantum Complexity in Neutrino Oscillations

Phoenix - 2023 18-20 December 2023, IIT Hyderabad

Khushboo Dixit, Soebur Razzaque

Centre for Astro-Particle Physics (CAPP), University of Johannesburg

S. Shajidul Haque

Laboratory for Quantum Gravity & Strings, University of Cape Town

Based on the preprint arXiv:2305.17025

(日)
 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

 (日)

Motivation

- Quantum computational complexity: a problem of prime importance for quantum computation
 - Estimates the difficulty of constructing quantum states from elementary operations.
- It can also serve to study a completely different physical problem \rightarrow Information processing inside black holes.
- Extends the connection between geometry and information. Growth of complexity \equiv growth of black hole interiors. Susskind et al., 2014
- The highest rate of complexity growth has been observed for de Sitter space, most popular model for inflation, among expanding backgrounds. Bhattacharyya et al., 2020
- What characteristics complexity shows in other natural processes of evolution.
- Neutrinos have shown features such as entanglement and nonlocal correlations. Blasone et al., 2009, Formaggio et al., 2016
- How complex is an evolution of neutrino system and if complexity can also probe any open issue in the neutrino sector.
- Whether this maximization of complexity occurs in neutrino oscillations.

Neutrino Oscillations

• Flavor states $|
u_{lpha}
angle$ are superposition of mass eigenstates $|
u_i
angle$ and vice-versa as

$$\ket{
u_{lpha}} = U^* \ket{
u_i}$$

where U is a unitary matrix.

• Time evolution of the flavor states is given by

$$irac{\partial}{\partial t}\ket{
u_lpha(t)}=H_f\ket{
u_lpha(t)}$$

 $H_f = UH_m U^{-1}$ - Hamiltonian in flavor basis; $H_m = diag(E_i)$ - Hamiltonian in mass basis.

• Time-evolved states from an initial state $|
u_{lpha}(0)
angle$ at t=0

$$|
u_{lpha}(t)
angle = e^{-iH_{f}t} |
u_{lpha}(0)
angle$$

• The Hamiltonian may describe propagation of neutrinos in vacuum and/or in a potential (matter effect).

Oscillation Probabilities

• 2-flavor mixing and propagation in vacuum

$$H_m = \begin{pmatrix} E_1 & 0 \\ 0 & E_2 \end{pmatrix}, \qquad U = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}.$$

• Oscillation probabilities in vacuum for 2-flavor case

$$P_{\alpha\beta} = \sin^2 2\theta \sin^2 \left(\frac{(E_2 - E_1)L}{2}\right) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$
$$P_{\alpha\alpha} = 1 - \sin^2 2\theta \sin^2 \left(\frac{(E_2 - E_1)L}{2}\right) = 1 - \sin^2 2\theta \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

• Note: $E_2 - E_1 \approx \Delta m_{21}^2/2E$ for common neutrino energy E.

- Flavor oscillation requires non-degenerate neutrino masses.
- 3-flavor mixing

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{13}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Oscillation Parameters

Many parameters have been measured with good accuracy: θ_{12} , θ_{13} , Δm_{21}^2 and $|\Delta m_{31}^2|$. Parameter θ_{23} is measured with relatively large uncertainties.

Open problems in 3-neutrino oscillation

- CP violation: $(\delta \neq 0) \Rightarrow P(\nu_{\alpha} \rightarrow \nu_{\beta}) \neq P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})$
- Absolute neutrino mass
- Neutrino mass hierarchy: whether $m_1 \leq m_2 \leq m_3$ or $m_3 \leq m_1 \leq m_2$.

Complexity

- How difficult is it to construct a desired target state with the elementary operations (gates) at your end?
- Or, the minimum number of unitaries required to construct a "target state" through a "reference state".
- For a system $|\phi(s)\rangle$, if

$$|U_1 U_2 U_3 U_2 |\phi(s)\rangle = U_3 U_1 U_2 U_1 (U_1)^3 U_2 |\phi(s)\rangle,$$

then the complexity = 4.

 Discrete notion of complexity is closely related to quantum computational setups.

Refs: Nielsen et al. (2006), Jefferson & Meyer (2017), ...

Complexity of spread of states

Balasubramanian et al. (2022), Caputa & Liu (2022)

- Spread complexity can be defined as the spread of the target state $|\psi(t)\rangle$ in the Hilbert space relative to the reference state $|\psi(0)\rangle$ through unitary transformations
- The complexity of the state can be defined by minimizing the spread of the wavefunction over all possible bases.
- This minimum is uniquely attained by an orthonormal basis produced by applying the Gram-Schmidt procedure.

Schrodinger equation for a system represented by $|\psi(t)\rangle$

$$irac{\partial}{\partial t}\ket{\psi(t)}=H\ket{\psi(t)}$$

Then, the time evolution of the state $|\psi(t)\rangle$ is obtained as

$$|\psi(t)
angle = e^{-iHt} |\psi(0)
angle$$
.

One can also write

$$|\psi(t)\rangle = \sum_{n=0}^{\infty} \frac{(-it)^n}{n!} H^n |\psi(0)\rangle = \sum_{n=0}^{\infty} \frac{(-it)^n}{n!} |\psi_n\rangle,$$

where, $|\psi_n\rangle = H^n |\psi(0)\rangle$. Hence, we can see that the time evolved system-state $|\psi(t)\rangle$ is represented as superposition of infinite $|\psi_n\rangle$ states.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

Krylov Basis and Cost Function

We have $|\psi_n\rangle = H^n |\psi(0)\rangle$.

- These states $\{|\psi_0\rangle$, $|\psi_1\rangle$, $|\psi_2\rangle$, . . . $\}$ do not comprise a orthonormal set.
- Gram-Schmidt procedure can be used to obtain an ordered orthonormal basis set

$$\begin{split} |K_0\rangle &= |\psi_0\rangle ,\\ |K_1\rangle &= |\psi_1\rangle - \frac{\langle K_0|\psi_1\rangle}{\langle K_0|K_0\rangle} |K_0\rangle ,\\ |K_2\rangle &= |\psi_2\rangle - \frac{\langle K_0|\psi_2\rangle}{\langle K_0|K_0\rangle} |K_0\rangle - \frac{\langle K_1|\psi_2\rangle}{\langle K_1|K_1\rangle} |K_1\rangle , \ \text{and so on.} \end{split}$$

 $\mathcal{K} = \{ | \mathcal{K}_n \rangle, n = 0, 1, 2 \dots \} \Rightarrow \mathsf{Krylov \ basis} \ (\mathsf{Orthonormal \ ordered \ set})$

Cost function to quantify the complexity

For a time evolved state $|\psi(t)\rangle$ and the Krylov basis defined as $\{|K_n\rangle\}$, the cost function is

$$\chi = \sum_{n=0}^{\infty} n |\langle K_n | \psi(t) \rangle|^2,$$

where n = 0, 1, 2... For such Krylov basis the above defined cost function is minimised. Balasubramanian et al. (2022)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ④□ ● ●

Complexity in 2-flavor neutrino oscillations

The evolution of flavor states can be represented by Schrodinger equation as

$$i\frac{\partial}{\partial t}\begin{pmatrix} |\nu_{e}(t)\rangle\\ |\nu_{\mu}(t)\rangle \end{pmatrix} = H_{f}\begin{pmatrix} |\nu_{e}(t)\rangle\\ |\nu_{\mu}(t)\rangle \end{pmatrix}$$
(1)

where $H_f = UH_m U^{-1}$, U being the mixing matrix and H_m is the Hamiltonian (diagonal) that governs the time evolution of neutrino mass eigenstate

$$\begin{split} H_m &= \begin{pmatrix} E_1 & 0\\ 0 & E_2 \end{pmatrix}, \qquad U = \begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix}.\\ &|\nu_e(0)\rangle &= \begin{pmatrix} 1\\ 0 \end{pmatrix}, \qquad |\nu_\mu(0)\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix} \end{split}$$

We have

$$\{|\psi_n\rangle\} = \begin{cases} |\nu_e(0)\rangle, H_f |\nu_e(0)\rangle, H_f^2 |\nu_e(0)\rangle \dots \} & \text{for initial } \nu_e \text{ flavor} \\ \{|\nu_\mu(0)\rangle, H_f |\nu_\mu(0)\rangle, H_f^2 |\nu_\mu(0)\rangle \dots \} & \text{for initial } \nu_\mu \text{ flavor} \end{cases}$$

After applying Gram-Schmidt procedure we get $\{|K_n\rangle\} = \{|K_0\rangle, |K_1\rangle\}$, *i.e.*,

$$\{|\mathcal{K}_{n}\rangle\} = \begin{cases} \{|\mathcal{K}_{0}\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}, |\mathcal{K}_{1}\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}\} = \{|\nu_{e}\rangle, |\nu_{\mu}\rangle\} & \text{for initial } \nu_{e} \\ \{|\mathcal{K}_{0}\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}, |\mathcal{K}_{1}\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}\} = \{|\nu_{\mu}\rangle, |\nu_{e}\rangle\} & \text{for initial } \nu_{\mu} \end{cases}$$

Complexity and Probabilities

For a time evolved state
$$|\nu_e(t)\rangle = \begin{pmatrix} A_{ee}(t) \\ A_{e\mu}(t) \end{pmatrix} = \begin{pmatrix} \cos^2 \theta e^{-iE_1t} + \sin^2 \theta e^{-iE_2t} \\ \sin \theta \cos \theta (e^{-iE_2t} - e^{-iE_1t}) \end{pmatrix}$$

(with $\{|K_n\rangle\} = \{|\nu_e(0)\rangle, |\nu_\mu(0)\rangle\}$)

$$\chi_e = \sum_{n=0}^{1} n |\langle K_n | \nu_e(t) \rangle|^2 = \mathsf{P}_{e\mu}$$

Similarly, for state $|\nu_{\mu}(t)\rangle = (A_{\mu e}(t), A_{\mu \mu}(t))^{T}$ (with $\{|K_{n}\rangle\} = \{|\nu_{\mu}(0)\rangle, |\nu_{e}(0)\rangle\}$)

$$\chi_{\mu} = \mathsf{P}_{\mu \mathsf{e}}$$

- The more the oscillation probability of neutrino flavor, the more complex the evolution of the neutrino flavor state.
- Since P_{eµ} = P_{µe} for standard vacuum oscillations, the complexity embedded in this system comes out to be same for both cases of initial flavor, *i.e.*, complexity of the system doesn't depend on the initial flavor of neutrino.

Complexity in 3-flavor neutrino oscillations

We have three types of initial states as $|\nu_e\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$, $|\nu_{\mu}\rangle = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$, $|\nu_{\tau}\rangle = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$ with Hamiltonian $H_f = UH_m U^{-1}$, $H_m = diag(0, \Delta m_{21}^2, \Delta m_{31}^2)$ and $U \rightarrow 3 \times 3$ PMNS mixing matrix

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{13}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Here, Krylov basis \neq flavor basis.

• For initial $|\nu_e\rangle$ state $|K_0\rangle \equiv |\nu_e\rangle = \begin{pmatrix} 1\\0\\0 \end{pmatrix}$, other states spanning the Krylov basis take the form

$$\begin{split} |K_{1}\rangle &= N_{1} \begin{pmatrix} 0\\ a_{1}\\ a_{2} \end{pmatrix} = N_{1} \begin{pmatrix} \left(\frac{\Delta m_{21}^{2}}{2E}\right) U_{e2}^{*} U_{\mu 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) U_{e3}^{*} U_{\mu 3}\\ \left(\frac{\Delta m_{21}^{2}}{2E}\right) U_{e2}^{*} U_{\tau 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) U_{e3}^{*} U_{\tau 3} \end{pmatrix}, \\ |K_{2}\rangle &= N_{2} \begin{pmatrix} 0\\ b_{1}\\ b_{2} \end{pmatrix} = N_{2} \begin{pmatrix} \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{e2}^{*} U_{\mu 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{e3}^{*} U_{\mu 3} \\ \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{e2}^{*} U_{\tau 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{31}^{2}}{2E} - A\right) U_{e3}^{*} U_{\tau 3} \end{pmatrix} \end{split}$$

Complexity in 3-flavor neutrino oscillations

$$\begin{split} \chi_{e} &= P_{e\mu}(t)(N_{1}^{2}|a_{1}|^{2} + 2N_{2}^{2}|b_{1}|^{2}) + P_{e\tau}(t)(N_{1}^{2}|a_{2}|^{2} + 2N_{2}^{2}|b_{2}|^{2}) + 2\Re(N_{1}^{2}a_{1}^{*}a_{2}A_{e\mu}(t)A_{e\tau}(t)^{*}) \\ &+ 4\Re(N_{2}^{2}b_{1}^{*}b_{2}A_{e\mu}(t)A_{e\tau}(t)^{*}) \end{split}$$

with

$$A = \frac{\begin{pmatrix} \left(\Delta m_{21}^2\right)^3 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left(\Delta m_{31}^2\right)^3 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) \\ - \left(\Delta m_{21}^2\right) \left(\Delta m_{31}^2\right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2 \left(\Delta m_{21}^2 + \Delta m_{31}^2\right) \end{pmatrix}}{\left(\Delta m_{21}^2\right)^2 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left(\Delta m_{31}^2\right)^2 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) - 2 \left(\Delta m_{21}^2\right) \left(\Delta m_{31}^2\right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2}$$

Effects of different oscillation parameters

Figure: Complexity χ_{α} Vs. L/E in vacuum in case of initial flavor ν_e (blue solid line), ν_{μ} (red dashed line) and ν_{τ} (green dot-dashed line) for *CP*-violating phase $\delta = 0^{\circ}$. Here, mixing parameters $\theta_{12} = 33.64^{\circ}$, $\theta_{13} = 8.53^{\circ}$, $\theta_{23} = 47.63^{\circ}$, $\Delta m^2_{21} = 7.53 \times 10^{-5} \text{ eV}^2$ and $\Delta m^2_{31} = 2.45 \times 10^{-3} \text{ eV}^2$ are considered.

- Rapid oscillation pattern seen in the left panel (zoomed-in in the right panel) is due to Δm_{31}^2 mass-squared difference in the oscillation phase, while the longer oscillation pattern is due to Δm_{21}^2 in the oscillation phase. The oscillation length is $\sim 10^3$ km at E = 1 GeV for Δm_{31}^2 and $\sim 3 \times 10^4$ km at E = 1 GeV for Δm_{21}^2 .
- In the general case the complexity is maximum if the neutrino is produced initially as ν_e , however, this happens only at a very large L/E value of $\sim 1.6 \times 10^4$ km/GeV.
- In current experimental setups (right panel), which covers roughly one oscillation length for Δm_{31}^2 , the initial ν_e flavor provides the least complexity among all neutrino flavors.

Effects of *CP*-violating parameter δ

Figure: Complexities and 1- $P_{\alpha\alpha}$ with respect to L/E.

- Complexity mimics the features of the total oscillation probability $1 P_{\alpha\alpha}$.
- However, it is visible that χ_{α} for all three flavors provide more information regarding the *CP*-violating phase δ .

Matter Effect on Complexity

- For any initial flavor ν_{α} : $|K_0\rangle_{\alpha}^{matter} = |K_0\rangle_{\alpha}^{vacuum}$, $|K_1\rangle_{\alpha}^{matter} = |K_1\rangle_{\alpha}^{vacuum}$
- $|K_2\rangle$ contains the effects of constant matter density
- For the initial u_{μ} flavor: $|K_2\rangle_e = N_{2e}^m (0, b_1^m, b_2^m)^T$ where,

$$\begin{split} b_1^m &= \left(\frac{\Delta m_{21}^2}{2E}\right) \left(\frac{\Delta m_{21}^2}{2E} + \mathbf{V} - B_e\right) U_{e2}^* U_{\mu 2} + \left(\frac{\Delta m_{31}^2}{2E}\right) \left(\frac{\Delta m_{31}^2}{2E} + \mathbf{V} - B_e\right) U_{e3}^* U_{\mu 3}, \\ b_2^m &= \left(\frac{\Delta m_{21}^2}{2E}\right) \left(\frac{\Delta m_{21}^2}{2E} + \mathbf{V} - B_e\right) U_{e2}^* U_{\tau 2} + \left(\frac{\Delta m_{31}^2}{2E}\right) \left(\frac{\Delta m_{31}^2}{2E} + \mathbf{V} - B_e\right) U_{e3}^* U_{\tau 3}. \end{split}$$

• Similarly, for the initial ν_{μ} flavor: $|K_2\rangle_{\mu} = N_{2\mu}^m (d_1^m, 0, d_2^m)^T$ where,

$$\begin{split} d_1^m &= \left(\frac{\Delta m_{21}^2}{2E}\right) \left(\frac{\Delta m_{21}^2}{2E} + V - B_\mu\right) U_{e2} U_{\mu 2}^* + \left(\frac{\Delta m_{31}^2}{2E}\right) \left(\frac{\Delta m_{31}^2}{2E} + V - B_\mu\right) U_{e3} U_{\mu 3}^* \\ d_2^m &= \left(\frac{\Delta m_{21}^2}{2E}\right) \left(\frac{\Delta m_{21}^2}{2E} - B_\mu\right) U_{\mu 2}^* U_{\tau 2} + \left(\frac{\Delta m_{31}^2}{2E}\right) \left(\frac{\Delta m_{31}^2}{2E} - B_\mu\right) U_{\mu 3}^* U_{\tau 3}, \end{split}$$

• Similar approach can be followed for the initial u_{τ} flavor.

Matter effects on complexity

Figure: Cost function χ_e (left), χ_{μ} (middle) and χ_{τ} (right) w. r. t. neutrino-energy *E* is shown. Here, *L* = 810 km, $\delta = -90^{\circ}$ and higher octant of θ_{23} is considered. Solid and dashed curves represent the case of vacuum and matter oscillations, respectively. $V = 1.01 \times 10^{-13}$ eV.

• Matter effect increases complexity of the system in all cases of initial flavors of the neutrino, most significantly for ν_e as expected.

Complexity in Long Baseline Neutrino Experiments: T2K

Figure: T2K: Cost function (upper panel) and 1- $P_{\alpha\alpha}$ (lower panel) in the plane of $E - \delta$ in case of initial flavor ν_e (left), ν_{μ} (middle) and ν_{τ} (right). Here, L = 295 km and mixing parameters $\theta_{12} = 33.64^{\circ}$, $\theta_{13} = 8.53^{\circ}$, $\theta_{23} = 47.63^{\circ}$, $\Delta m_{21}^2 = 7.53 \times 10^{-5} \text{ eV}^2$ and $\Delta m_{31}^2 = 2.45 \times 10^{-3} \text{ eV}^2$ are considered.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ④□ ● ●

Complexity in Long Baseline Neutrino Experiments: NOvA

Figure: NO ν A: Cost function (upper panel) and 1- $P_{\alpha\alpha}$ (lower panel) in the plane of $E - \delta$ in case of initial flavor ν_e (left), ν_{μ} (middle) and ν_{τ} (right). Here, L = 810 km, and higher octant of θ_{23} (47.63°) is considered.

- For both the experiments, the maxima of χ_{μ} and χ_{τ} are found at $\delta \approx -\pi/2$ and $\delta = \pi/2$, respectively.
- This means that the matter effect just enhances the magnitude of complexities, however, the characteristics of χ_{α} with respect to δ are almost similar for both T2K and NOvA experiments.

What complexity tells us about neutrino oscillation

- In the T2K and NOvA experimental setups, where only ν_μ beams are produced, the only relevant complexity is $\chi_\mu.$
- For both the T2K and NOvA χ_{μ} is maximized at $\delta \approx -1.5$ radian at the relevant experimental energies. The T2K best-fit value of $\delta = -2.14^{+0.90}_{-0.69}$ radian is consistent with this expectation.
- The NOvA best-fit, however, is at $\delta \approx 2.58$ radian which is far away from the maximum χ_{μ} in the lower-half plane of δ but is still within a region of high χ_{μ} value in the upper-half plane of δ .
- $P_{\mu e}$, which is the only oscillation probability accessible to the T2K and NOvA setups, it becomes maximum at $\delta \approx -1.5$ radian. This is compatible with T2K best-fit but is in odd with the NOvA best-fit.
- Complexity provides correct prediction for the δ in experimental setups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

Summary & Conclusions

- We examined the spread complexity of neutrino states in two- and three-flavor oscillation scenarios.
- In the two-flavor scenario, complexity and transition probabilities yield equivalent information.
- In case of three-flavor oscillation, initial flavor state evolves into two mixed final states. Hence, the complexity contains additional information regarding open issues related to neutrinos, compared to the total oscillation probability.
- Remarkably, we found that the complexity is maximized for a value of the phase angle for which CP is also maximally violated. T2K experimental data also favors this phase angle, which is obtained from flavor transition.
- Quantum spread complexity emerges as a potent and novel quantity for investigating neutrino
 oscillations. It successfully reproduces existing results, also demonstrates the potential to serve
 as a theoretical tool for predicting new outcomes in future experiments.

Thank you for your attention!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□= ◇Qペ

BACKUP SLIDES

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ◆○◆

Comparing the effects of neutrino mass ordering for neutrinos & antineutrinos

For antineutrino $\rightarrow \{V \rightarrow -V, \delta \rightarrow -\delta\}$

Figure: NOvA: Complexities and $P_{\mu e}$ with respect to neutrino-energy *E* where red and blue curves represent neutrino and antineutrino case, respectively, with solid (normal ordering) and dashed (inverted ordering) lines. Here L = 810 km and $\delta = -90^{\circ}$ are considered.

- For both neutrino and antineutrino, the effects of NH and IH are significantly distinguishable for all three flavors.
- In case of χ_e, red-solid line (neutrinos for NH) and blue-dashed line (antineutrinos for IH) exhibit more complexity, *i.e.*, complete swap between the NH (IH) hierarchy and ν (ν̄).
- For χ_{μ} and χ_{τ} the maximum is achieved in case of neutrinos with NH and Antineutrinos with IH, respectively.

Spread complexity in three flavor (vacuum) neutrino oscillations

• Similarly, for initial $|
u_{\mu}
angle$, $|K_{0}
angle\equiv|
u_{\mu}
angle=(0,1,0)^{T}$, then we get

$$\begin{split} |K_{1}\rangle &= N_{1\mu} \begin{pmatrix} c_{1} \\ 0 \\ c_{2} \end{pmatrix} = N_{1\mu} \begin{pmatrix} \left(\frac{\Delta m_{21}^{2}}{2E}\right) U_{\mu 2}^{*} U_{e2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) U_{\mu 3}^{*} U_{e3} \\ 0 \\ \left(\frac{\Delta m_{21}^{2}}{2E}\right) U_{\mu 2}^{*} U_{\tau 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) U_{\mu 3}^{*} U_{\tau 3} \end{pmatrix}, \\ K_{2}\rangle &= N_{2\mu} \begin{pmatrix} d_{1} \\ 0 \\ d_{2} \end{pmatrix} = N_{2\mu} \begin{pmatrix} \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{\mu 2}^{*} U_{e2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{\mu 3}^{*} U_{e3} \\ 0 \\ \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - A\right) U_{\mu 2}^{*} U_{\tau 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{31}^{2}}{2E} - A\right) U_{\mu 3}^{*} U_{\tau 3} \end{pmatrix} \end{split}$$

$$\begin{split} \chi_{\mu} &= P_{\mu e}(t) (N_{1 \mu}^2 |c_1|^2 + 2 N_{2 \mu}^2 |d_1|^2) + P_{\mu \tau}(t) (N_{1 \mu}^2 |c_2|^2 + 2 N_{2 \mu}^2 |d_2|^2) + 2 \Re (N_{1 \mu}^2 c_1^* c_2 A_{\mu e}(t) A_{\mu \tau}(t)^*) \\ &+ 4 \Re (N_{2 \mu}^2 d_1^* d_2 A_{\mu e}(t) A_{\mu \tau}(t)^*). \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Spread complexity in three flavor neutrino oscillations

• In case of
$$|K_0\rangle \equiv |
u_{ au}\rangle = (0,0,1)^T$$
,

$$\begin{split} |K_{1}\rangle &= \textit{N}_{1\tau}(\textit{e}_{1},\textit{e}_{2},0)^{T} = \textit{N}_{1\tau} \begin{pmatrix} \left(\frac{\Delta m_{21}^{2}}{2E}\right) \textit{U}_{\tau 2}^{*}\textit{U}_{e2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \textit{U}_{\tau 3}^{*}\textit{U}_{e3} \\ \left(\frac{\Delta m_{21}^{2}}{2E}\right) \textit{U}_{\tau 2}^{*}\textit{U}_{\mu 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \textit{U}_{\tau 3}^{*}\textit{U}_{\mu 3} \\ 0 \end{pmatrix}, \\ |K_{2}\rangle &= \textit{N}_{2\tau}(\textit{f}_{1},\textit{f}_{2},0)^{T} = \textit{N}_{2\tau} \begin{pmatrix} \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - \textit{A}\right) \textit{U}_{\tau 2}^{*}\textit{U}_{e2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{31}^{2}}{2E} - \textit{A}\right) \textit{U}_{\tau 3}^{*}\textit{U}_{\mu 2} \\ \left(\frac{\Delta m_{21}^{2}}{2E}\right) \left(\frac{\Delta m_{21}^{2}}{2E} - \textit{A}\right) \textit{U}_{\tau 2}^{*}\textit{U}_{\mu 2} + \left(\frac{\Delta m_{31}^{2}}{2E}\right) \left(\frac{\Delta m_{31}^{2}}{2E} - \textit{A}\right) \textit{U}_{\tau 3}^{*}\textit{U}_{\mu 3} \\ 0 \end{pmatrix} \end{split}$$

$$\begin{split} \chi_{\tau} &= P_{\tau e}(t) (N_{1}^{2} |\mathbf{e}_{1}|^{2} + 2N_{2}^{2} |f_{1}|^{2}) + P_{\tau \mu}(t) (N_{1}^{2} |\mathbf{e}_{2}|^{2} + 2N_{2}^{2} |f_{2}|^{2}) + 2\Re (N_{1}^{2} \mathbf{e}_{1}^{*} \mathbf{e}_{2} A_{\tau e}(t) A_{\tau \mu}(t)^{*}) \\ &+ 4\Re (N_{2}^{2} f_{1}^{*} f_{2} A_{\tau e}(t) A_{\tau \mu}(t)^{*}). \end{split}$$

Here,

$$A = \frac{\left[\left(\Delta m_{21}^2 \right)^3 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left(\Delta m_{31}^2 \right)^3 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) - \left(\Delta m_{21}^2 \right) \left(\Delta m_{21}^2 \right) \left(\Delta m_{31}^2 \right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2 \left(\Delta m_{21}^2 + \Delta m_{31}^2 \right) \right]}{\left(\Delta m_{21}^2 \right)^2 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left(\Delta m_{31}^2 \right)^2 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) - 2 \left(\Delta m_{21}^2 \right) \left(\Delta m_{31}^2 \right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三世 のへで

Spread complexity in three flavor neutrino oscillations

$$N_{1\alpha} = \left(\left(\frac{\Delta m_{21}^2}{2E} \right)^2 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left(\frac{\Delta m_{31}^2}{2E} \right)^2 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) - 2 \left(\frac{\Delta m_{21}^2}{2E} \right) \left(\frac{\Delta m_{31}^2}{2E} \right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2 \right)^{-1/2},$$

$$\begin{split} N_{2\alpha} &= \left(\left(\frac{\Delta m_{21}^2}{2E} \right)^2 \left(\frac{\Delta m_{21}^2}{2E} - A \right)^2 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) \\ &+ \left(\frac{\Delta m_{31}^2}{2E} \right)^2 \left(\frac{\Delta m_{31}^2}{2E} - A \right)^2 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) \\ &- 2 \left(\frac{\Delta m_{21}^2}{2E} \right) \left(\frac{\Delta m_{31}^2}{2E} \right) \left(\frac{\Delta m_{21}^2}{2E} - A \right) \left(\frac{\Delta m_{31}^2}{2E} - A \right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2 \right)^{-1/2} \end{split}$$

Matter effects on complexity

$$\begin{split} B_{e} &= \left[\left(\Delta m_{21}^{2} \right)^{2} \left(\Delta m_{21}^{2} + 2EV \right) |U_{e2}|^{2} (1 - |U_{e2}|^{2}) + \left(\Delta m_{31}^{2} \right)^{2} \left(\Delta m_{31}^{2} + 2EV \right) |U_{e3}|^{2} \\ &\left(1 - |U_{e3}|^{2} \right) - \left(\Delta m_{21}^{2} \right) \left(\Delta m_{31}^{2} \right) |U_{e2}|^{2} |U_{e3}|^{2} \left((\Delta m_{21}^{2} + 2EV) + (\Delta m_{31}^{2} + 2EV) \right) \right] \\ &\left[2E \left[\left(\Delta m_{21}^{2} \right)^{2} |U_{e2}|^{2} (1 - |U_{e2}|^{2}) + \left(\Delta m_{31}^{2} \right)^{2} |U_{e3}|^{2} (1 - |U_{e3}|^{2}) \\ &- 2 \left(\Delta m_{21}^{2} \right) \left(\Delta m_{31}^{2} \right) |U_{e2}|^{2} |U_{e3}|^{2} \right] \right]^{-1}. \end{split}$$

For initial ν_{μ} and ν_{τ} state the constant ${\it B}_{\alpha}$ is

$$\begin{split} B_{\alpha} &= \left[\left(\Delta m_{21}^2 \right)^3 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left(\Delta m_{31}^2 \right)^3 |U_{\alpha 3}|^2 (1 - |U_{\alpha 3}|^2) - \left(\Delta m_{21}^2 \right) \left(\Delta m_{31}^2 \right) \right. \\ &\left. \left. \left| U_{\alpha 2} \right|^2 |U_{\alpha 3}|^2 \left(\Delta m_{21}^2 + \Delta m_{31}^2 \right) + 2EV \left(\left(\Delta m_{21}^2 \right)^2 |U_{e2}|^2 |U_{\alpha 2}|^2 + \left(\Delta m_{31}^2 \right)^2 |U_{e3}|^2 |U_{\alpha 3}|^2 \right. \right. \\ &\left. + 2 \left(\Delta m_{21}^2 \right) \left(\Delta m_{31}^2 \right) \Re (U_{e2}^* U_{\alpha 2} U_{e3} U_{\alpha 3}^*) \right) \right] \left[2E \left[\left(\Delta m_{21}^2 \right)^2 |U_{\alpha 2}|^2 (1 - |U_{\alpha 2}|^2) + \left(\Delta m_{31}^2 \right)^2 \right. \\ &\left. \left. \left| U_{\alpha 3} \right|^2 (1 - |U_{\alpha 3}|^2) - 2 \left(\Delta m_{21}^2 \right) \left(\Delta m_{31}^2 \right) |U_{\alpha 2}|^2 |U_{\alpha 3}|^2 \right] \right]^{-1}, \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ◆○◆

Matter effects on complexity

$$\begin{split} N_{2e}^{m} &= \left(\left(\frac{\Delta m_{21}^{2}}{2E} \right)^{2} |U_{e2}|^{2} (1 - |U_{e2}|^{2}) \left[\left(\frac{\Delta m_{21}^{2}}{2E} + V - B_{e} \right)^{2} \right] \\ &+ \left(\frac{\Delta m_{31}^{2}}{2E} \right)^{2} |U_{e3}|^{2} (1 - |U_{e3}|^{2}) \left[\left(\frac{\Delta m_{31}^{2}}{2E} + V - B_{e} \right)^{2} \right] \\ &- 2 \left(\frac{\Delta m_{21}^{2}}{2E} \right) \left(\frac{\Delta m_{31}^{2}}{2E} \right) \left(\frac{\Delta m_{21}^{2}}{2E} + V - B_{e} \right) \left(\frac{\Delta m_{31}^{2}}{2E} + V - B_{e} \right) |U_{e2}|^{2} |U_{e3}|^{2} \right)^{-1/2}, \\ N_{2\mu}^{m} &= \left(\left(\frac{\Delta m_{21}^{2}}{2E} \right)^{2} |U_{\mu 2}|^{2} \left[\left(\frac{\Delta m_{21}^{2}}{2E} + V - B_{\mu} \right)^{2} |U_{e2}|^{2} + \left(\frac{\Delta m_{21}^{2}}{2E} - B_{\mu} \right)^{2} |U_{\tau 2}|^{2} \right] \\ &+ \left(\frac{\Delta m_{31}^{2}}{2E} \right)^{2} |U_{\mu 3}|^{2} \left[\left(\frac{\Delta m_{31}^{2}}{2E} + V - B_{\mu} \right)^{2} |U_{e3}|^{2} + \left(\frac{\Delta m_{31}^{2}}{2E} - B_{\mu} \right)^{2} |U_{\tau 3}|^{2} \right] \\ &+ 2 \left(\frac{\Delta m_{21}^{2}}{2E} \right) \left(\frac{\Delta m_{31}^{2}}{2E} \right) \left[\left(\frac{\Delta m_{21}^{2}}{2E} + V - B_{\mu} \right) \left(\frac{\Delta m_{31}^{2}}{2E} - B_{\mu} \right) \Re (U_{\mu 2}^{*} U_{e2} U_{\mu 3} U_{e3}^{*}) \right] \right]^{-1/2}, \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼ ◆○◆

Figure: T2K: Cost function (upper panel) and 1- $P_{\alpha\alpha}$ (lower panel) in the plane of $E - \delta$ in case of initial flavor ν_e (left), ν_{μ} (middle) and ν_{τ} (right). Here, L = 295 km is considered.

Figure: Complexity for small L/E range (upper panels), large L/E range (lower panels) with respect to L/E for initial flavor is ν_e (left), ν_{μ} (middle) and ν_{τ} (right) for different values of the *CP*-phase δ depicted by different colors.

- For large L/E range the complexities are maximized and the corresponding δ = +90° or −90° for χ_μ and χ_τ, and at δ = ±90° for χ_e where CP is maximally violated.
- In the limited L/E range χ_{μ} and χ_{τ} are maximized at $\delta = -90^{\circ}$ (red-dashed line) and at $\delta = +90^{\circ}$ (red-solid line), respectively. However, χ_e is maximized at $\delta = +135^{\circ}$ and at -45° .