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Motivation

Motivation

Quantum computational complexity: a problem of prime importance for
quantum computation

▶ Estimates the difficulty of constructing quantum states from elementary
operations.

It can also serve to study a completely different physical problem
→ Information processing inside black holes.

Extends the connection between geometry and information.
Growth of complexity ≡ growth of black hole interiors. Susskind et al., 2014

The highest rate of complexity growth has been observed for de Sitter space,
most popular model for inflation, among expanding backgrounds.
Bhattacharyya et al., 2020

What characteristics complexity shows in other natural processes of evolution.

Neutrinos have shown features such as entanglement and nonlocal
correlations. Blasone et al., 2009, Formaggio et al., 2016

How complex is an evolution of neutrino system and if complexity can also
probe any open issue in the neutrino sector.

Whether this maximization of complexity occurs in neutrino oscillations.
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Neutrino Oscillation

Neutrino Oscillations

Flavor states |να⟩ are superposition of mass eigenstates |νi ⟩ and vice-versa as

|να⟩ = U∗ |νi ⟩

where U is a unitary matrix.

Time evolution of the flavor states is given by

i
∂

∂t
|να(t)⟩ = Hf |να(t)⟩

Hf = UHmU
−1 - Hamiltonian in flavor basis;

Hm = diag(Ei ) - Hamiltonian in mass basis.

Time-evolved states from an initial state |να(0)⟩ at t = 0

|να(t)⟩ = e−iHf t |να(0)⟩

The Hamiltonian may describe propagation of neutrinos in vacuum and/or in
a potential (matter effect).
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Neutrino Oscillation

Oscillation Probabilities

2-flavor mixing and propagation in vacuum

Hm =

(
E1 0
0 E2

)
, U =

(
cos θ sin θ
− sin θ cos θ

)
.

Oscillation probabilities in vacuum for 2-flavor case

Pαβ = sin2 2θ sin2
(
(E2 − E1)L

2

)
= sin2 2θ sin2

(
∆m2

21L

4E

)
Pαα = 1− sin2 2θ sin2

(
(E2 − E1)L

2

)
= 1− sin2 2θ sin2

(
∆m2

21L

4E

)
Note: E2 − E1 ≈ ∆m2

21/2E for common neutrino energy E .

Flavor oscillation requires non-degenerate neutrino masses.

3-flavor mixing

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s13s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13
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Neutrino Oscillation

Oscillation Parameters

Many parameters have been measured with good accuracy: θ12, θ13, ∆m2
21 and

|∆m2
31|. Parameter θ23 is measured with relatively large uncertainties.

Open problems in 3-neutrino oscillation

CP violation: (δ ̸= 0) ⇒ P(να → νβ) ̸= P(ν̄α → ν̄β)

Absolute neutrino mass

Neutrino mass hierarchy: whether m1 ≤ m2 ≤ m3 or m3 ≤ m1 ≤ m2.
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Complexity

Complexity

How difficult is it to construct a desired target state with the elementary
operations (gates) at your end?

Or, the minimum number of unitaries required to construct a “target state”
through a “reference state”.

For a system |ϕ(s)⟩, if

U1U2U3U2 |ϕ(s)⟩ = U3U1U2U1(U1)
3U2 |ϕ(s)⟩ ,

then the complexity = 4.

Discrete notion of complexity is closely related to quantum computational
setups.

Refs: Nielsen et al. (2006), Jefferson & Meyer (2017), ...
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Complexity

Complexity of spread of states

Balasubramanian et al. (2022), Caputa & Liu (2022)

Spread complexity can be defined as the spread of the target state |ψ(t)⟩ in the Hilbert space
relative to the reference state |ψ(0)⟩ through unitary transformations

The complexity of the state can be defined by minimizing the spread of the wavefunction over
all possible bases.

This minimum is uniquely attained by an orthonormal basis produced by applying the
Gram-Schmidt procedure.

Schrodinger equation for a system represented by |ψ(t)⟩

i
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩

Then, the time evolution of the state |ψ(t)⟩ is obtained as

|ψ(t)⟩ = e−iHt |ψ(0)⟩ .

One can also write

|ψ(t)⟩ =

∞∑
n=0

(−it)n

n!
Hn |ψ(0)⟩ =

∞∑
n=0

(−it)n

n!
|ψn⟩ ,

where, |ψn⟩ = Hn |ψ(0)⟩. Hence, we can see that the time evolved system-state |ψ(t)⟩ is represented
as superposition of infinite |ψn⟩ states.
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Complexity

Krylov Basis and Cost Function

We have |ψn⟩ = Hn |ψ(0)⟩.
These states {|ψ0⟩, |ψ1⟩, |ψ2⟩, . . . } do not comprise a orthonormal set.

Gram-Schmidt procedure can be used to obtain an ordered orthonormal basis set

|K0⟩ = |ψ0⟩ ,

|K1⟩ = |ψ1⟩ −
⟨K0|ψ1⟩
⟨K0|K0⟩

|K0⟩ ,

|K2⟩ = |ψ2⟩ −
⟨K0|ψ2⟩
⟨K0|K0⟩

|K0⟩ −
⟨K1|ψ2⟩
⟨K1|K1⟩

|K1⟩ , and so on.

K = {|Kn⟩ , n = 0, 1, 2 . . . } ⇒ Krylov basis (Orthonormal ordered set)

Cost function to quantify the complexity

For a time evolved state |ψ(t)⟩ and the Krylov basis defined as {|Kn⟩}, the cost function is

χ =

∞∑
n=0

n|⟨Kn|ψ(t)⟩|2,

where n = 0, 1, 2 . . . For such Krylov basis the above defined cost function is minimised.
Balasubramanian et al. (2022)
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Complexity in neutrino oscillations

Complexity in 2-flavor neutrino oscillations

The evolution of flavor states can be represented by Schrodinger equation as

i
∂

∂t

(
|νe(t)⟩
|νµ(t)⟩

)
= Hf

(
|νe(t)⟩
|νµ(t)⟩

)
(1)

where Hf = UHmU
−1, U being the mixing matrix and Hm is the Hamiltonian (diagonal) that governs

the time evolution of neutrino mass eigenstate

Hm =

(
E1 0
0 E2

)
, U =

(
cos θ sin θ
− sin θ cos θ

)
.

|νe(0)⟩ =

(
1
0

)
, |νµ(0)⟩ =

(
0
1

)
We have

{|ψn⟩} =

{
{|νe(0)⟩ ,Hf |νe(0)⟩ ,H2

f |νe(0)⟩ . . . } for initial νe flavor

{|νµ(0)⟩ ,Hf |νµ(0)⟩ ,H2
f |νµ(0)⟩ . . . } for initial νµ flavor

After applying Gram-Schmidt procedure we get {|Kn⟩} = {|K0⟩ , |K1⟩}, i.e.,

{|Kn⟩} =


{|K0⟩ =

(
1

0

)
, |K1⟩ =

(
0

1

)
} = {|νe⟩ , |νµ⟩} for initial νe

{|K0⟩ =

(
0

1

)
, |K1⟩ =

(
1

0

)
} = {|νµ⟩ , |νe⟩} for initial νµ
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Complexity in neutrino oscillations

Complexity and Probabilities

For a time evolved state |νe(t)⟩ =

(
Aee(t)
Aeµ(t)

)
=

(
cos2 θe−iE1t + sin2 θe−iE2t

sin θ cos θ(e−iE2t − e−iE1t )

)
(with {|Kn⟩} = {|νe(0)⟩ , |νµ(0)⟩})

χe =

1∑
n=0

n|⟨Kn|νe(t)⟩|2 = Peµ

Similarly, for state |νµ(t)⟩ = (Aµe(t),Aµµ(t))
T (with {|Kn⟩} = {|νµ(0)⟩ , |νe(0)⟩})

χµ = Pµe

The more the oscillation probability of neutrino flavor, the more complex the evolution of the
neutrino flavor state.

Since Peµ = Pµe for standard vacuum oscillations, the complexity embedded in this system
comes out to be same for both cases of initial flavor, i.e., complexity of the system doesn’t
depend on the initial flavor of neutrino.
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Complexity in neutrino oscillations

Complexity in 3-flavor neutrino oscillations

We have three types of initial states as |νe⟩ =

(
1
0
0

)
, |νµ⟩ =

(
0
1
0

)
, |ντ ⟩ =

(
0
0
1

)
with Hamiltonian

Hf = UHmU
−1, Hm = diag(0,∆m2

21,∆m2
31) and U → 3 × 3 PMNS mixing matrix

U =

(
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

)
=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s13s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


Here, Krylov basis ̸= flavor basis.

For initial |νe⟩ state |K0⟩ ≡ |νe⟩ =

(
1
0
0

)
, other states spanning the Krylov basis take the form

|K1⟩ = N1

(
0
a1
a2

)
= N1


0(

∆m2
21

2E

)
U∗

e2Uµ2 +
(

∆m2
31

2E

)
U∗

e3Uµ3(
∆m2

21
2E

)
U∗

e2Uτ2 +
(

∆m2
31

2E

)
U∗

e3Uτ3

 ,

|K2⟩ = N2

(
0
b1

b2

)
= N2


0(

∆m2
21

2E

)(
∆m2

21
2E − A

)
U∗

e2Uµ2 +
(

∆m2
31

2E

)(
∆m2

31
2E − A

)
U∗

e3Uµ3(
∆m2

21
2E

)(
∆m2

21
2E − A

)
U∗

e2Uτ2 +
(

∆m2
31

2E

)(
∆m2

31
2E − A

)
U∗

e3Uτ3
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Complexity in neutrino oscillations

Complexity in 3-flavor neutrino oscillations

χe = Peµ(t)(N
2
1 |a1|

2 + 2N2
2 |b1|2) + Peτ (t)(N

2
1 |a2|

2 + 2N2
2 |b2|2) + 2ℜ(N2

1a
∗
1 a2Aeµ(t)Aeτ (t)

∗)

+ 4ℜ(N2
2b

∗
1 b2Aeµ(t)Aeτ (t)

∗)

with

A =

((
∆m2

21

)3 |Uα2|2(1 − |Uα2|2) +
(
∆m2

31

)3 |Uα3|2(1 − |Uα3|2)
−
(
∆m2

21

) (
∆m2

31

)
|Uα2|2|Uα3|2

(
∆m2

21 + ∆m2
31

))
(
∆m2

21

)2 |Uα2|2(1 − |Uα2|2) +
(
∆m2

31

)2 |Uα3|2(1 − |Uα3|2) − 2
(
∆m2

21

) (
∆m2

31

)
|Uα2|2|Uα3|2

,
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Complexity in neutrino oscillations

Effects of different oscillation parameters
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Figure: Complexity χα Vs. L/E in vacuum in case of initial flavor νe (blue solid line), νµ (red dashed line) and ντ
(green dot-dashed line) for CP-violating phase δ = 0o . Here, mixing parameters θ12 = 33.64o , θ13 = 8.53o ,

θ23 = 47.63o , ∆m2
21 = 7.53 × 10−5 eV 2 and ∆m2

31 = 2.45 × 10−3 eV 2 are considered.

Rapid oscillation pattern seen in the left panel (zoomed-in in the right panel) is due to ∆m2
31

mass-squared difference in the oscillation phase, while the longer oscillation pattern is due to
∆m2

21 in the oscillation phase. The oscillation length is ∼ 103 km at E = 1 GeV for ∆m2
31 and

∼ 3 × 104 km at E = 1 GeV for ∆m2
21.

In the general case the complexity is maximum if the neutrino is produced initially as νe ,
however, this happens only at a very large L/E value of ∼ 1.6 × 104 km/GeV.

In current experimental setups (right panel), which covers roughly one oscillation length for

∆m2
31, the initial νe flavor provides the least complexity among all neutrino flavors.
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Complexity in neutrino oscillations

Effects of CP-violating parameter δ
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Figure: Complexities and 1-Pαα with respect to L/E .

Complexity mimics the features of the total oscillation probability 1 − Pαα.

However, it is visible that χα for all three flavors provide more information regarding the
CP-violating phase δ.
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Complexity in neutrino oscillations

Matter Effect on Complexity

For any initial flavor να : |K0⟩matter
α = |K0⟩vacuumα , |K1⟩matter

α = |K1⟩vacuumα

|K2⟩ contains the effects of constant matter density

For the initial νµ flavor: |K2⟩e = Nm
2e(0, b

m
1 , b

m
2 )

T

where,

bm1 =

∆m2
21

2E

∆m2
21

2E
+ V − Be

 U∗
e2Uµ2 +

∆m2
31

2E

∆m2
31

2E
+ V − Be

 U∗
e3Uµ3,

bm2 =

∆m2
21

2E

∆m2
21

2E
+ V − Be

 U∗
e2Uτ2 +

∆m2
31

2E

∆m2
31

2E
+ V − Be

 U∗
e3Uτ3.

Similarly, for the initial νµ flavor: |K2⟩µ = Nm
2µ(d

m
1 , 0, dm

2 )T

where,

dm1 =

∆m2
21

2E

∆m2
21

2E
+ V − Bµ

 Ue2U
∗
µ2 +

∆m2
31

2E

∆m2
31

2E
+ V − Bµ

 Ue3U
∗
µ3

dm2 =

∆m2
21

2E

∆m2
21

2E
− Bµ

 U∗
µ2Uτ2 +

∆m2
31

2E

∆m2
31

2E
− Bµ

 U∗
µ3Uτ3,

Similar approach can be followed for the initial ντ flavor.
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Complexity in neutrino oscillations

Matter effects on complexity
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Figure: Cost function χe (left), χµ (middle) and χτ (right) w. r. t. neutrino-energy E is shown. Here, L = 810 km,
δ = −90o and higher octant of θ23 is considered. Solid and dashed curves represent the case of vacuum and matter

oscillations, respectively. V = 1.01 × 10−13 eV.

Matter effect increases complexity of the system in all cases of initial flavors
of the neutrino, most significantly for νe as expected.

Khushboo Dixit (CAPP, University of Johannesburg) 15 / 19



Complexity in neutrino oscillations

Complexity in Long Baseline Neutrino Experiments: T2K
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Figure: T2K: Cost function (upper panel) and 1-Pαα (lower panel) in the plane of E − δ in case of initial flavor νe
(left), νµ (middle) and ντ (right). Here, L = 295 km and mixing parameters θ12 = 33.64o , θ13 = 8.53o ,

θ23 = 47.63o , ∆m2
21 = 7.53 × 10−5 eV 2 and ∆m2

31 = 2.45 × 10−3 eV 2 are considered.
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Complexity in neutrino oscillations

Complexity in Long Baseline Neutrino Experiments: NOvA
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Figure: NOνA: Cost function (upper panel) and 1-Pαα (lower panel) in the plane of E − δ in case of initial flavor νe
(left), νµ (middle) and ντ (right). Here, L = 810 km, and higher octant of θ23 (47.63o ) is considered.

For both the experiments, the maxima of χµ and χτ are found at δ ≈ −π/2 and δ = π/2,
respectively.

This means that the matter effect just enhances the magnitude of complexities, however, the
characteristics of χα with respect to δ are almost similar for both T2K and NOvA experiments.
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Complexity in neutrino oscillations

What complexity tells us about neutrino oscillation

In the T2K and NOvA experimental setups, where only νµ beams are produced, the only
relevant complexity is χµ.

For both the T2K and NOvA χµ is maximized at δ ≈ −1.5 radian at the relevant experimental

energies. The T2K best-fit value of δ = −2.14+0.90
−0.69 radian is consistent with this expectation.

The NOvA best-fit, however, is at δ ≈ 2.58 radian which is far away from the maximum χµ in
the lower-half plane of δ but is still within a region of high χµ value in the upper-half plane of δ.

Pµe , which is the only oscillation probability accessible to the T2K and NOvA setups, it
becomes maximum at δ ≈ −1.5 radian. This is compatible with T2K best-fit but is in odd with
the NOvA best-fit.

Complexity provides correct prediction for the δ in experimental setups.
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Summary & Conclusions

Summary & Conclusions

We examined the spread complexity of neutrino states in two- and three-flavor oscillation
scenarios.

In the two-flavor scenario, complexity and transition probabilities yield equivalent information.

In case of three-flavor oscillation, initial flavor state evolves into two mixed final states. Hence,
the complexity contains additional information regarding open issues related to neutrinos,
compared to the total oscillation probability.

Remarkably, we found that the complexity is maximized for a value of the phase angle for which
CP is also maximally violated. T2K experimental data also favors this phase angle, which is
obtained from flavor transition.

Quantum spread complexity emerges as a potent and novel quantity for investigating neutrino
oscillations. It successfully reproduces existing results, also demonstrates the potential to serve
as a theoretical tool for predicting new outcomes in future experiments.

Thank you for your attention!
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Comparing the effects of neutrino mass ordering for neutrinos &
antineutrinos

For antineutrino → {V → −V , δ → −δ}
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Figure: NOvA: Complexities and Pµe with respect to neutrino-energy E where red and blue curves represent neutrino
and antineutrino case, respectively, with solid (normal ordering) and dashed (inverted ordering) lines. Here L = 810 km
and δ = −90o are considered.

For both neutrino and antineutrino, the effects of NH and IH are significantly distinguishable for
all three flavors.

In case of χe , red-solid line (neutrinos for NH) and blue-dashed line (antineutrinos for IH)
exhibit more complexity, i .e., complete swap between the NH (IH) hierarchy and ν (ν̄).

For χµ and χτ the maximum is achieved in case of neutrinos with NH and Antineutrinos with
IH, respectively.
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Spread complexity in three flavor (vacuum) neutrino oscillations

Similarly, for initial |νµ⟩, |K0⟩ ≡ |νµ⟩ = (0, 1, 0)T , then we get
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)
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)
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 ,
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0
d2

)
= N2µ


(
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)(
∆m2
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)
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)(
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χµ = Pµe(t)(N
2
1µ|c1|

2 + 2N2
2µ|d1|2) + Pµτ (t)(N

2
1µ|c2|

2 + 2N2
2µ|d2|2) + 2ℜ(N2

1µc
∗
1 c2Aµe(t)Aµτ (t)

∗)

+ 4ℜ(N2
2µd

∗
1 d2Aµe(t)Aµτ (t)

∗).
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Spread complexity in three flavor neutrino oscillations

In case of |K0⟩ ≡ |ντ ⟩ = (0, 0, 1)T ,

|K1⟩ = N1τ (e1, e2, 0)
T = N1τ


(
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)
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 ,
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 .

χτ = Pτe(t)(N
2
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1 e
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Here,

A =

[(
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)3 |Uα2|2(1 − |Uα2|2) +
(
∆m2

31

)3 |Uα3|2(1 − |Uα3|2)
−
(
∆m2

21

) (
∆m2

31

)
|Uα2|2|Uα3|2

(
∆m2

21 + ∆m2
31

)]
(
∆m2

21

)2 |Uα2|2(1 − |Uα2|2) +
(
∆m2

31

)2 |Uα3|2(1 − |Uα3|2) − 2
(
∆m2

21

) (
∆m2

31

)
|Uα2|2|Uα3|2

,
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Spread complexity in three flavor neutrino oscillations

N1α =

((
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Matter effects on complexity

Be =

[(
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For initial νµ and ντ state the constant Bα is
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Matter effects on complexity
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Figure: T2K: Cost function (upper panel) and 1-Pαα (lower panel) in the plane of E − δ in case of initial flavor νe
(left), νµ (middle) and ντ (right). Here, L = 295 km is considered.
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Figure: Complexity for small L/E range (upper panels), large L/E range (lower panels) with respect to L/E for initial
flavor is νe (left), νµ (middle) and ντ (right) for different values of the CP-phase δ depicted by different colors.

For large L/E range the complexities are maximized and the corresponding δ = +90o or −90o

for χµ and χτ , and at δ = ±90o for χe where CP is maximally violated.

In the limited L/E range χµ and χτ are maximized at δ = −90o (red-dashed line) and at
δ = +90o (red-solid line), respectively. However, χe is maximized at δ = +135o and at −45o .
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