<u>SMEFT analysis of charged</u> <u>lepton flavor violating B-meson</u> <u>decays</u>

Joydeep Roy

spsjr2729@iacs.res.in

with

Md. Isha Ali, Utpal Chattopadhyay & N. Rajeev

arXiv:2312.05071

PHOENIX-2023, 18-20 December 2023, IIT Hyderabad

Outline

- Motivation
- Procedure
- Results
- Conclusion

Motivation I

• It is well known that the neutral part of the lepton family, neutrinos, mix among themselves giving rise to lepton flavor violation (LFV).

• Similar phenomena in the charged lepton sector, known as charged Lepton Flavor Violation (cLFV) has not been observed.

Motivation I

Motivation I

• We focused on LFV processes from B meson decays (LFVBD)

Observables of cLFV modes.	Present bounds		Expected future limits		
$BR(\mu \to e\gamma)$	4.2×10^{-13}	MEG(2016) [12]	6×10^{-14}	MEGII[13]	
$BR(\mu \rightarrow eee)$	1.0×10^{-12}	SINDRUM(1988) [14]	10^{-16}	Mu3e[94]	
$CR(\mu - e, Au)$	7.0×10^{-13}	SINDRUMII(2006) [15]	-	-	
$CP(\mu = a Al)$	-	-	6×10^{-17}	COMET/Mu2e[17], [95]	
$OR(\mu = e, RI)$	-	-	10^{-15} (Phase I) & 10^{-17} (Phase II)	J-PARK[18]	
$BR(\tau \to e\gamma)$	3.3×10^{-8}	BaBar(2010) [22]	3×10^{-9}	Belle-II[24]	
$BR(\tau \rightarrow eee)$	2.7×10^{-8}	BaBar(2010) [96]	5×10^{-10}	Belle[97]	
$BR(\tau \to e\mu\mu)$	2.7×10^{-8}	BaBar(2010) [96]	5×10^{-10}	Belle-II[24]	
${ m BR}(au o \mu \gamma)$	4.2×10^{-8}	Belle(2021) [23]	10-9	Belle-II[24]	
$BR(\tau \rightarrow \mu\mu\mu)$	2.1×10^{-8}	BaBar(2010) [96]	4×10^{-10}	Belle-II[24]	
$BR(\tau \rightarrow \mu ee)$	1.8×10^{-8}	BaBar(2010) [96]	3×10^{-10}	Belle-II[24]	
$BR(\tau \rightarrow \pi \mu)$	1.1×10^{-7}	BaBar(2006) [98]	5×10^{-10}	Belle-II[24]	
$BR(\tau \to \rho \mu)$	1.2×10^{-8}	BaBar(2011) [99]	2×10^{-10}	Belle-II[24]	
$BR(Z \to \mu e)$	1.7×10^{-6} LEP (95% CL) [100	0] 7.5×10^{-7} LHC (95% CL)[101]	$10^{-8} - 10^{-10}$	CEPC/FCC-ee	
$BR(Z \to \tau e)$	9.8×10^{-6} [100]	5.0×10^{-6} [101], [102]	10 ⁻⁹	CEPC/FCC-ee	
$BR(Z \to \tau \mu)$	1.2×10^{-5} [103]	6.5×10^{-6} [101], [102]	10 ⁻⁹	CEPC/FCC-ee	
$BR(B^+ \to K^+ \mu^- e^+)$	$7.0(9.5) \times 10^{-9}$	LHCb(2019) [33]	_		
$BR(B^+ \to K^+ \mu^+ e^-)$	$6.4(8.8) \times 10^{-9}$	LHCb(2019) [33]	_	-	
$BR(B^0 \to K^{*0} \mu^+ e^-)$	$5.7(6.9) \times 10^{-9}$	LHCb(2022) [34]	-	-	
$BR(B^0 \to K^{*0} \mu^- e^+)$	$6.8(7.9) \times 10^{-9}$	LHCb(2022) [34]	-	-	
$BR(B^0 \to K^{*0} \mu^{\pm} e^{\mp})$	$10.1(11.7) \times 10^{-9}$	LHCb(2022) [34]	-	-	
$BR(B_s^0 \to \phi \mu^{\pm} e^{\mp})$	$16(19.8) \times 10^{-9}$	LHCb(2022) [34]	_	-	
$BR(B^+ \to K^+ \mu^- \tau^+)$	3.9×10^{-5}	LHCb(2020) [104]	-	-	
$BR(B^+ \to K^+ \tau^{\pm} e^{\mp})$	3.0×10^{-5}	(2022)	2.1×10^{-6}	Belle-II [24]	
$BR(B^+ \to K^+ \tau^{\pm} \mu^{\mp})$	4.8×10^{-5}	(2022)	3.3×10^{-6}	Belle-II [24]	
$BR(B^0 \to K^{*0}\tau^+\mu^-)$	$1.0(1.2) \times 10^{-5}$	LHCb(2022) [105]	-	-	
$BR(B^0 \to K^{*0} \tau^- \mu^+)$	$8.2(9.8) \times 10^{-6}$	LHCb(2022) [105]	_	-	
$BR(B_s^0 \to \mu^{\mp} e^{\pm})$	$5.4(6.3) \times 10^{-9}$	LHCb(2018) [31]	3×10^{-10}	LHCb-II [35]	
$BR(B^0 \to \mu^{\pm} e^{\mp})$	$1.0(1.3) \times 10^{-9}$	LHCb(2018) [31]	-	-	
$BR(B_s^0 \to \tau^{\pm} e^{\mp})$	$7.3 \times 10^{-4} (95\%)$	LHCb(2019) [32]	-	-	
$BR(B^0 \to \tau^{\pm} e^{\mp})$	$2.1 \times 10^{-5}(95\%)$	LHCb(2019) [32]	-	-	
$BR(B_s^0 \to \tau^{\pm} \mu^{\mp})$	$4.2 \times 10^{-5}(95\%)$	LHCb(2019) [32]	-	-	
$BR(B^0 \to \tau^{\pm} \mu^{\mp})$	$1.4 \times 10^{-5}(95\%)$	LHCb(2019) [32]	1.3×10^{-6}	Belle-II [24]	

JOYDEEP ROY PHOENIX-2023, IIT Hyderabad

Motivation II

• To identify the most relevant operators responsible for Lepton Flavor Violating Bmeson Decays (LFVBDs).

• To analyze their effect on other LFV processes in a model-independent way.

• We want to comment on the constraints on such operators coefficients.

• Also, in view of several proposed experiments to study charged LFV processes, we want to comment on the indirect constraints on such LFVBD processes.

• Effective Hamiltonian for $b \rightarrow sl_i l_i$ transitions process is given by

$$H_{Eff}^{l_i l_j} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* + \sum_{n=9,10,S,P} [C_n(\mu)\mathcal{O}_n(\mu) + C'_n(\mu)\mathcal{O}'_n(\mu)]$$

- G_F = Fermi Constant
- $V_{tb}V_{ts}^*$ = Cabbibo-Kobayashi-Maskwa(CKM) matrix elements
- $n = 9,10 \implies$ "Semi-leptonic" operators
- n = S, P \implies Scalar and Pseudo-scalar operators

 C'_n , \mathcal{O}'_n \Longrightarrow Chiral Counterparts

JOYDEEP ROY PHOENIX-2023, IIT Hyderabad

Operator Structures

Feynman Diagrams

THEORY

$$Br[B_s \to \ell_i^- \ell_j^+] = \frac{\tau_{B_s}}{64\pi^3} \frac{\alpha^2 G_F^2}{m_{B_s}^3} f_{B_s}^2 |V_{tb} V_{ts}^*|^2 \lambda^{1/2} (m_{B_s}, m_i, m_j) \\ \times \left\{ [m_{B_s}^2 - (m_i + m_j)^2] \cdot \left| (C_9^{\ell_i \ell_j} - C_9'^{\ell_i \ell_j}) (m_i - m_j) + (C_S^{\ell_i \ell_j} - C_S'^{\ell_i \ell_j}) \frac{m_{B_s}^2}{m_b + m_s} \right|^2 \right\} \\ + [m_{B_s}^2 - (m_i - m_j)^2] \cdot \left| (C_{10}^{\ell_i \ell_j} - C_{10}'^{\ell_i \ell_j}) (m_i + m_j) + (C_P^{\ell_i \ell_j} - C_P'^{\ell_i \ell_j}) \frac{m_{B_s}^2}{m_b + m_s} \right|^2 \right\}$$

$$\begin{split} \operatorname{Br}[B \to K^{(*)}\ell_i^+\ell_j^-] &= 10^{-9} \bigg\{ a_{K^{(*)}\ell_i\ell_j} \left| C_9^{\ell_i\ell_j} + C_9^{\prime\ell_i\ell_j} \right|^2 + b_{K^{(*)}\ell_i\ell_j} \left| C_{10}^{\ell_i\ell_j} + C_{10}^{\prime\ell_i\ell_j} \right|^2 \\ &+ c_{K^*\ell_i\ell_j} \left| C_9^{\ell_i\ell_j} - C_9^{\prime\ell_i\ell_j} \right|^2 + d_{K^*\ell_i\ell_j} \left| C_{10}^{\ell_i\ell_j} - C_{10}^{\prime\ell_i\ell_j} \right|^2 \\ &+ e_{K^{(*)}\ell_i\ell_j} \left| C_S^{\ell_i\ell_j} + C_S^{\prime\ell_i\ell_j} \right|^2 + f_{K^{(*)}\ell_i\ell_j} \left| C_P^{\ell_i\ell_j} + C_P^{\prime\ell_i\ell_j} \right|^2 \\ &+ g_{K^{(*)}\ell_i\ell_j} \left| C_S^{\ell_i\ell_j} - C_S^{\prime\ell_i\ell_j} \right|^2 + h_{K^{(*)}\ell_i\ell_j} \left| C_P^{\ell_i\ell_j} - C_P^{\prime\ell_i\ell_j} \right|^2 \bigg\}. \end{split}$$

THEORY

$$\begin{split} C_{9}^{\ell_{i}\ell_{j}} &= \frac{(4\pi)^{2}}{e^{2}\lambda_{bs}} \frac{v^{2}}{\Lambda^{2}} \left(C_{qe}^{\ell_{i}\ell_{j}} + C_{\ell q}^{(1)\ell_{i}\ell_{j}} + C_{\ell q}^{(3)\ell_{i}\ell_{j}} \right), \\ C_{9}^{\prime\ell_{i}\ell_{j}} &= \frac{(4\pi)^{2}}{e^{2}\lambda_{bs}} \frac{v^{2}}{\Lambda^{2}} \left(C_{ed}^{\ell_{i}\ell_{j}} + C_{\ell d}^{\ell_{i}\ell_{j}} \right), \\ C_{10}^{\ell_{i}\ell_{j}} &= \frac{(4\pi)^{2}}{e^{2}\lambda_{bs}} \frac{v^{2}}{\Lambda^{2}} \left(C_{qe}^{\ell_{i}\ell_{j}} - C_{\ell q}^{(1)\ell_{i}\ell_{j}} - C_{\ell q}^{(3)\ell_{i}\ell_{j}} \right), \\ C_{10}^{\prime\ell_{i}\ell_{j}} &= \frac{(4\pi)^{2}}{e^{2}\lambda_{bs}} \frac{v^{2}}{\Lambda^{2}} \left(C_{ed}^{\ell_{i}\ell_{j}} - C_{\ell d}^{\ell_{i}\ell_{j}} \right) \end{split}$$

$$\begin{split} C_{S}^{\ell_{i}\ell_{j}} &= -C_{P}^{\ell_{i}\ell_{j}} = \frac{(4\pi)^{2}}{e^{2}\lambda_{bs}} \frac{v^{2}}{\Lambda^{2}} C_{\ell e d q}^{\ell_{i}\ell_{j}}, \\ C_{S}^{\prime\ell_{i}\ell_{j}} &= C_{P}^{\prime\ell_{i}\ell_{j}} = \frac{(4\pi)^{2}}{e^{2}\lambda_{bs}} \frac{v^{2}}{\Lambda^{2}} C_{\ell e d q}^{\prime\ell_{i}\ell_{j}}, \end{split}$$

JOYDEEP ROY PHOENIX-2023, IIT Hyderabad

Procedure THEORY

• The decay rates (tree-level) of such LFVBD processes depend on

4-	fermion Operator	Chirality
$Q_{\ell q}^{(1)}$	$(\overline{\ell}_i \gamma_\mu \ell_j) (\overline{q}_k \gamma^\mu q_l)$	$(\overline{L}L)(\overline{L}L)$
$Q_{\ell q}^{(3)}$	$(\overline{\ell}_i \gamma_\mu \tau^I \ell_j) (\overline{q}_k \gamma^\mu \tau^I q_l)$	$(\overline{L}L)(\overline{L}L)$
Q_{qe}	$(\overline{q}_i \gamma_\mu q_j) (\overline{e}_k \gamma^\mu e_l)$	$(\overline{L}L)(\overline{R}R)$
$Q_{\ell d}$	$(\overline{\ell}_i \gamma_\mu \ell_j) (\overline{d}_k \gamma^\mu d_l)$	$(\overline{L}L)(\overline{R}R)$
Q_{ed}	$(\overline{e}_i \gamma_\mu e_j) (\overline{d}_k \gamma^\mu d_l)$	$(\overline{R}R)(\overline{R}R)$
$Q_{\ell edq}$	$(\overline{\ell}_i^a e_j)(\overline{d}_k q_l^a)$	$(\overline{L}R)(\overline{R}L)$

ANALYSIS

• In order to impose experimental constraints on the

coefficients of higher dimensional operators, one

needs to evaluate the Renormalization Group (RG)

running from the scale Λ to the energy scale

relevant for a given experiment.

<u>Results (1-D Analysis)</u> <u>RGE Effects</u>

Processes	Most relevant operators			
$B \to K \ell_i \ell_j$	$Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{qc}, Q_{\ell d}, Q_{ed}, Q_{\ell edq}$			
$B \to K^* \ell_i \ell_j$	$Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{q c}, Q_{\ell d}, Q_{e d}, Q_{\ell e d q}$			
$B_s ightarrow \mu e$	$Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{q c}, Q_{\ell d}, Q_{e d}, Q_{\ell e d q}$			
$\ell_i ightarrow \ell_j \gamma$	Q_{eB}, Q_{eW}			
$\ell_i \to \ell_j \ell_j \overline{\ell}_j$	$Q^{(1)}_{arphi\ell}, Q^{(3)}_{arphi\ell}, Q_{arphi e}, Q_{\ell\ell}, Q_{\ell e}, Q_{ee}$			
$\ell_i o \ell_j \ell_k \overline{\ell}_k$	$Q_{\varphi\ell}^{(1)}, Q_{\varphi\ell}^{(3)}, Q_{\varphi e}, Q_{\ell\ell}, Q_{\ell e}, Q_{ee}$			
$CR(\mu \rightarrow e)$	$Q_{\varphi\ell}^{(1)}, Q_{\varphi\ell}^{(3)}, Q_{\varphi e}, Q_{eu}, Q_{\ell u}, Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{qe}, Q_{\ell d}, Q_{ed}, Q_{\ell edq}, Q_{\ell equ}$			
$Z \to \ell_i \ell_j$	$Q^{(1)}_{arphi\ell},Q^{(3)}_{arphi\ell},Q_{arphi e},Q_{eB},Q_{eW}$			
$ au o \mathcal{V}\ell \ (\mathcal{V} = ho, \phi)$	$Q_{\varphi\ell}^{(1)}, Q_{\varphi\ell}^{(3)}, Q_{\varphi e}, Q_{\ell u}, Q_{e u}, Q_{\ell e q u}, Q_{e B}, Q_{e W}, Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{q e}, Q_{\ell d}, Q_{e d}$			
$\tau \to \mathcal{P}\ell \ (\mathcal{P} = \pi^0, K^0)$	$Q_{\varphi\ell}^{(1)}, Q_{\varphi\ell}^{(3)}, Q_{\varphi e}, Q_{\ell u}, Q_{eu}, Q_{\ell equ}, Q_{eB}, Q_{eW}, Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{qe}, Q_{\ell d}, Q_{ed}, Q_{\ell edq}$			

WCs	$[C_{\ell q}^{(1)}]_{1223}$	$[C_{\ell q}^{(3)}]_{1223}$	$[C_{qe}]_{2312}$	$[C_{ed}]_{1223}$	$[C_{\ell d}]_{1223}$	$[C_{\ell edq}]_{1223}$	$[C_{\varphi \ell}^{(1)}]_{12}$	$[C_{\varphi\ell}^{(3)}]_{12}$	$[C_{\varphi e}]_{12}$
$[C_{\ell q}^{(1)}]_{1223}$	10^{-6}	10^{-8}	10^{-17}	10^{-24}	10^{-14}	10^{-16}	10^{-10}	10-11	10-20
$[C_{\ell q}^{(\hat{3})}]_{1223}$	10-8	10^{-6}	10^{-19}	10^{-25}	10^{-16}	10^{-16}	10^{-12}	10-9	10^{-23}
$[C_{qe}]_{2312}$	10^{-17}	10^{-18}	10^{-6}	10^{-14}	10^{-24}	10^{-18}	10^{-20}	10^{-22}	10^{-10}
$[C_{ed}]_{1223}$	10^{-23}	10^{-23}	10^{-13}	10^{-6}	10-17	10^{-16}	10^{-27}	10^{-27}	10-17
$[C_{\ell d}]_{1223}$	10^{-13}	10^{-15}	10^{-24}	10^{-17}	10^{-6}	10^{-14}	10^{-17}	10^{-19}	10^{-27}
$[C_{\ell e d q}]_{1223}$	10^{-15}	10^{-14}	10^{-17}	10^{-15}	10-13	10^{-6}	10^{-18}	10-18	10^{-21}
$[C_{\varphi\ell}^{(1)}]_{12}$	10^{-9}	10-11	10^{-20}	10^{-26}	10^{-16}	10-18	10^{-6}	10^{-12}	10^{-17}
$[C_{\varphi\ell}^{(3)}]_{12}$	10 ⁻¹¹	10^{-9}	10^{-22}	10^{-27}	10 ⁻¹⁹	10^{-18}	10^{-12}	10^{-6}	10^{-23}
$[C_{\varphi e}]_{12}$	10^{-19}	10^{-21}	10^{-9}	10^{-16}	10^{-26}	10^{-20}	10^{-17}	10^{-22}	10^{-6}
$[C_{\ell\ell}]_{1112}$	10^{-14}	10^{-15}	10^{-22}	10^{-30}	10^{-22}	10^{-21}	10^{-10}	10^{-9}	10^{-20}
$[C_{\ell e}]_{1112}$	10^{-20}	10^{-19}	10^{-15}	10^{-24}	10^{-27}	10^{-20}	10^{-20}	10^{-20}	10-10
$[C_{\ell e}]_{1211}$	10^{-15}	10^{-14}	10^{-20}	10^{-27}	10^{-24}	10^{-21}	10^{-9}	10^{-12}	10^{-20}
$[C_{ee}]_{1112}$	10^{-22}	10^{-22}	10^{-14}	10^{-23}	10-30	10^{-23}	10^{-20}	10^{-22}	10^{-9}
$[C_{eu}]_{1211}$	10^{-22}	10^{-22}	10^{-15}	10^{-24}	10-31	10^{-24}	10^{-20}	10^{-22}	10-10
$[C_{\ell u}]_{1211}$	10^{-15}	10^{-15}	10^{-22}	10-30	10^{-24}	10^{-21}	10-10	10^{-12}	10^{-20}
$[C_{\ell q}^{(1)}]_{1211}$	10^{-15}	10^{-15}	10^{-23}	10-30	10^{-22}	10^{-21}	10-10	10-11	10^{-21}
$[C_{\ell q}^{(\hat{3})}]_{1211}$	10^{-14}	10^{-15}	10^{-23}	10-30	10^{-22}	10^{-21}	10^{-13}	10-9	10^{-23}
$[C_{qe}]_{1112}$	10^{-23}	10^{-23}	10^{-15}	10^{-22}	10^{-31}	10^{-24}	10^{-20}	10^{-21}	10^{-10}
$[C_{ed}]_{1211}$	10^{-23}	10^{-22}	10^{-15}	10^{-19}	10-29	10^{-24}	10^{-20}	10^{-23}	10^{-10}
$[C_{\ell d}]_{1211}$	10^{-15}	10^{-15}	10^{-23}	10^{-29}	10^{-19}	10^{-21}	10^{-10}	10^{-12}	10^{-20}
$[C_{\ell e d q}]_{1211}$	10^{-19}	10^{-18}	10^{-21}	10^{-25}	10^{-23}	10^{-16}	10^{-19}	10-18	10^{-22}
$[C_{\ell e d q}]_{1222}$	10-19	10^{-17}	10^{-23}	10^{-19}	10^{-16}	10^{-9}	10-17	10-17	10^{-21}
$[C_{\ell equ}^{(1)}]_{1211}$	10 ⁻¹⁹	10^{-19}	10^{-21}	10^{-28}	10^{-26}	10^{-19}	10^{-19}	10^{-19}	10^{-22}
$[C_{eB}]_{12}$	10^{-15}	10^{-14}	10^{-17}	10^{-25}	10^{-23}	10-17	10^{-16}	10^{-15}	10^{-18}
$[C_{eB}]_{21}$	10-17	10^{-17}	10^{-15}	10-23	10^{-25}	10^{-26}	10^{-18}	10^{-18}	10^{-16}
$[C_{eW}]_{12}$	10^{-15}	10^{-14}	10^{-17}	10^{-25}	10^{-22}	10-17	10^{-16}	10^{-15}	10^{-18}
$[C_{eW}]_{21}$	10^{-17}	10^{-17}	10^{-15}	10-22	10^{-25}	10^{-26}	10^{-18}	10-18	10^{-16}

Single Operator Dominance at Ц m_b

Observable	WC	UL from $BR(\mu \rightarrow eee)$	UL fro	$\operatorname{cm}\operatorname{CR}(\mu o e, \operatorname{Al}), \operatorname{I}$	Phase I	UL from $CR(\mu \rightarrow e, Al)$, Phase II
	$[C_{\ell q}^{(1)}]_{1223}$	2.9×10^{-11}		2.2×10^{-10}		1.5×10^{-12}
$BB(B^+ \rightarrow K^+ \mu^- e^+)$	$[C_{\ell q}^{(\hat{3})}]_{1223}$	1.9×10^{-11}		1.5×10^{-10}		9.8×10^{-13}
$\operatorname{BR}(B^{*} \to K^{*} \mu^{*} e^{*})$	$[C_{qe}]_{2312}$	$3.2 imes 10^{-11}$		1.8×10^{-10}		1.2×10^{-12}
	$[C_{ledq}]_{1223}$	-		-		1.9×10^{-11}
	$[C_{\ell q}^{(1)}]_{1223}$	$6.3 imes10^{-11}$		4.7×10^{-10}		3.4×10^{-12}
$BB(B^0 \rightarrow K^{*0} \mu^- e^+)$	$[C_{\ell q}^{(3)}]_{1223}$	4.2×10^{-11}		3.3×10^{-10}		2.3×10^{-12}
$\mathrm{DR}(D \to K^- \mu^- e^-)$	$[C_{qe}]_{2312}$	6.9×10^{-11}		3.8×10^{-10}		2.9×10^{-12}
	$[C_{ledq}]_{1223}$	-		-		7.9×10^{-12}
	$[C_{\ell q}^{(1)}]_{1223}$	$6.7 imes10^{-11}$		4.9×10^{-10}		3.4×10^{-12}
$BB(B \rightarrow \phi u^- e^+)$	$[C_{\ell q}^{(\hat{3})}]_{1223}$	4.5×10^{-11}		3.5×10^{-10}		2.3×10^{-12}
$\operatorname{BR}(D_s \to \phi \mu^- e^-)$	$[C_{qe}]_{2312}$	7.5×10^{-11}		4.1×10^{-10}		2.8×10^{-12}
	$[C_{ledq}]_{1223}$	-		-		8.6×10^{-12}
	$[C_{\ell q}^{(1)}]_{1223}$	$8.0 imes10^{-14}$		5.9×10^{-13}		4.0×10^{-15}
$BR(B_s \to \mu^- e^+)$	$[C_{\ell q}^{(\hat{3})}]_{1223}$	5.3×10^{-14}		4.2×10^{-13}		2.7×10^{-15}
	$[C_{qe}]_{2312}$	8.9×10^{-14}		4.9×10^{-13}		3.4×10^{-15}
	$[C_{ledq}]_{1223}$	-		-		1.4×10^{-10}

Indirect upper limits on LFVBDs from other LFV processes in μ sector

Operator	$BR(Z \rightarrow \mu \tau)$	$BR(\tau \rightarrow \mu \gamma)$	$BR(\tau \rightarrow \mu\mu\mu)$	$\mathrm{BR}(\tau \to eee)$	$\mathrm{BR}(\tau \to \pi \mu)$	$\mathrm{BR}(\tau \to \rho \mu)$
$Q_{\ell q}^{(1)\mu au}$	$\frac{5.668\times10^{-12}}{5.668\times10^{-12}}$	2.529×10^{-13}	1.327×10^{-12}	9.661×10^{-13}	2.570×10^{-12}	1.455×10^{-12}
$Q_{\ell q}^{(1)\mu au}$	7.179×10^{-12}	2.222×10^{-12}	$1.664 imes 10^{-12}$	1.252×10^{-12}	3.258×10^{-12}	1.743×10^{-12}
$Q^{\mu au}_{qe}$	5.017×10^{-12}	2.128×10^{-13}	1.307×10^{-12}	8.489×10^{-13}	2.260×10^{-12}	1.264 × 10 ⁻¹²

Indirect upper limits on other LFV processes in au sector

Processes	Most relevant operators				
$B \to K \ell_i \ell_j$	$Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{qc}, Q_{\ell d}, Q_{ed}, Q_{\ell edq}$				
$B \to K^* \ell_i \ell_j$	$Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{qc}, Q_{\ell d}, Q_{ed}, Q_{\ell edq}$				
$B_s ightarrow \mu e$	$Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{qc}, Q_{\ell d}, Q_{ed}, Q_{\ell edq}$				
$\ell_i ightarrow \ell_j \gamma$	Q_{eB}, Q_{eW}				
$\ell_i \to \ell_j \ell_j \overline{\ell}_j$	$Q^{(1)}_{arphi\ell}, Q^{(3)}_{arphi\ell}, Q_{arphi e}, Q_{\ell\ell}, Q_{\ell e}, Q_{ee}$				
$\ell_i o \ell_j \ell_k \overline{\ell}_k$	$Q^{(1)}_{arphi\ell}, Q^{(3)}_{arphi\ell}, Q_{arphi e}, Q_{\ell\ell}, Q_{\ell e}, Q_{ee}$				
$CR(\mu \rightarrow e)$	$Q_{\varphi\ell}^{(1)}, Q_{\varphi\ell}^{(3)}, Q_{\varphi e}, Q_{eu}, Q_{\ell u}, Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{qe}, Q_{\ell d}, Q_{ed}, Q_{\ell edq}, Q_{\ell equ}$				
$Z \to \ell_i \ell_j$	$Q^{(1)}_{arphi\ell},Q^{(3)}_{arphi\ell},Q_{arphi e},Q_{eB},Q_{eW}$				
$ au o \mathcal{V}\ell \ (\mathcal{V} = ho, \phi)$	$Q_{\varphi\ell}^{(1)}, Q_{\varphi\ell}^{(3)}, Q_{\varphi e}, Q_{\ell u}, Q_{e u}, Q_{\ell e q u}, Q_{e B}, Q_{e W}, Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{q e}, Q_{\ell d}, Q_{e d}$				
$ au o \mathcal{P}\ell \ (\mathcal{P}=\pi^0,K^0)$	$Q_{\varphi\ell}^{(1)}, Q_{\varphi\ell}^{(3)}, Q_{\varphi e}, Q_{\ell u}, Q_{eu}, Q_{\ell equ}, Q_{eB}, Q_{eW}, Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{qe}, Q_{\ell d}, Q_{ed}, Q_{\ell edq}$				

 Flat directions between the pairs of LFVBD WCs are trivial

$$Br\left[B_{s} \to \ell_{i}^{+}\ell_{j}^{-}\right] \sim k_{1}\left\{k_{2}\left(C_{\ell q}^{(1)}+C_{\ell q}^{(3)}+C_{q e}\right)+k_{3}\left(C_{\ell e d q}-C_{\ell e d q}^{\prime}\right)\right\}^{2} + k_{4}\left\{k_{5}\left(C_{\ell q}^{(1)}+C_{\ell q}^{(3)}-C_{q e}\right)+k_{6}\left(C_{\ell e d q}+C_{\ell e d q}^{\prime}\right)\right\}^{2},$$

$$Br\left[B^{0} \to K^{(*)}\ell_{i}^{+}\ell_{j}^{-}\right] \sim k_{7}\left\{\left(C_{\ell q}^{(1)}+C_{\ell q}^{(3)}\right)^{2}+\left(-C_{q e}\right)^{2}\right\} + k_{8}\left\{\left(C_{\ell q}^{(1)}+C_{\ell q}^{(3)}\right)^{2}+\left(C_{q e}\right)^{2}\right\} + k_{9}\left(C_{\ell e d q}-C_{\ell e d q}^{\prime}\right)^{2},$$

28

• Flat directions for other LFVs are non-trivial. These cancellations occur between $C_{\varphi\ell}^{(1)}$ and $C_{\varphi\ell}^{(3)}$ and is a direct consequence of the RGE effects

$$\Gamma_{\mu \to e \text{ conv}} = \frac{m_{\mu}^{5}}{\omega_{\text{capt}} \Lambda^{4}} \left\{ \left| \widetilde{C}_{DL} D + \widetilde{C}_{SL}^{(p)} S^{(p)} + \widetilde{C}_{SL}^{(n)} S^{(n)} + \widetilde{C}_{VL}^{(p)} V^{(p)} + \widetilde{C}_{VL}^{(n)} V^{(n)} \right|^{2} + \left| L \leftrightarrow R \right|^{2} \right\}$$
$$\widetilde{C}_{VL}^{(p)} = 2g_{LV,RV}^{(u)} + g_{LV,RV}^{(d)}, \qquad \widetilde{C}_{VL}^{(n)} = g_{LV,RV}^{(u)} + 2g_{LV,RV}^{(d)},$$

with

$$\begin{split} g_{VL}^{(u)} &= \left(C_{\ell q}^{(1)} - C_{\ell q}^{(3)} + C_{\ell u}\right)^{e\mu u u} + (1 - \frac{8}{3}s_{\rm w}^2) \left(C_{\varphi l}^{(1)} + C_{\varphi l}^{(3)}\right)^{e\mu},\\ g_{VL}^{(d)} &= \left(C_{\ell q}^{(1)} + C_{\ell q}^{(3)} + C_{\ell d}\right)^{e\mu d d} - (1 - \frac{4}{3}s_{\rm w}^2) \left(C_{\varphi l}^{(1)} + C_{\varphi l}^{(3)}\right)^{e\mu},\\ g_{VR}^{(u)} &= C_{eu}^{e\mu u u} + C_{qe}^{uue\mu} + (1 - \frac{8}{3}s_{\rm w}^2)C_{\varphi e}^{e\mu},\\ g_{VR}^{(d)} &= C_{ed}^{e\mu d d} + C_{qe}^{dde\mu} - (1 - \frac{4}{3}s_{\rm w}^2)C_{\varphi e}^{e\mu}, \end{split}$$

$$\left[C_{\phi\ell}^{(1)}(\mu) + C_{\phi\ell}^{(3)}(\mu)\right]_{12} \approx \frac{3Y_c Y_t}{8\pi^2} \log(\frac{\mu}{\Lambda}) \left[C_{\ell q}^{(1)}(\Lambda) - C_{\ell q}^{(3)}(\Lambda)\right]_{1223}.$$

29

Processes	Most relevant operators				
$B \to K \ell_i \ell_j$	$Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{qc}, Q_{\ell d}, Q_{ed}, Q_{\ell edq}$				
$B o K^* \ell_i \ell_j$	$Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{qc}, Q_{\ell d}, Q_{ed}, Q_{\ell edq}$				
$B_s ightarrow \mu e$	$Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{qc}, Q_{\ell d}, Q_{ed}, Q_{\ell edq}$				
$\ell_i ightarrow \ell_j \gamma$	Q_{eB}, Q_{eW}				
$\ell_i \to \ell_j \ell_j \overline{\ell}_j$	$Q^{(1)}_{arphi\ell}, Q^{(3)}_{arphi\ell}, Q_{arphi e}, Q_{arphi e}, Q_{\ell \ell}, Q_{\ell e}, Q_{ee}$				
$\ell_i o \ell_j \ell_k \overline{\ell}_k$	$Q^{(1)}_{arphi\ell},Q^{(3)}_{arphi\ell},Q_{arphi e},Q_{\ell\ell},Q_{\ell e},Q_{ee}$				
$CR(\mu \rightarrow e)$	$Q_{\varphi\ell}^{(1)}, Q_{\varphi\ell}^{(3)}, Q_{\varphi e}, Q_{eu}, Q_{\ell u}, Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{qe}, Q_{\ell d}, Q_{ed}, Q_{\ell edq}, Q_{\ell equ}$				
$Z o \ell_i \ell_j$	$Q^{(1)}_{arphi\ell},Q^{(3)}_{arphi\ell},Q_{arphi e},Q_{eB},Q_{eW}$				
$ au o \mathcal{V}\ell \ (\mathcal{V} = ho, \phi)$	$Q_{\varphi\ell}^{(1)}, Q_{\varphi\ell}^{(3)}, Q_{\varphi e} = Q_{\ell u}, Q_{e u}, Q_{\ell e q u}, Q_{e B}, Q_{e W}, Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{q e}, Q_{\ell d}, Q_{e d}$				
$ au o \mathcal{P}\ell \ (\mathcal{P}=\pi^0,K^0)$	$Q_{\varphi\ell}^{(1)}, Q_{\varphi\ell}^{(3)}, Q_{\varphie} \ Q_{\ell u}, Q_{eu}, Q_{\ell equ}, Q_{eB}, Q_{eW}, Q_{\ell q}^{(1)}, Q_{\ell q}^{(3)}, Q_{qe}, Q_{\ell d}, Q_{ed}, Q_{\ell edq}$				

- $2q2\ell$ operators responsible for LFVBDs are best constrained by LFVDs only
- More similar plots in <u>arXiv:2312.05071</u>

Two Operators Interference

at μ

 \geq

Conclusion

- Out of six operators responsible for LFVBDs, operators with left-handed quark currents, such as $c_{\ell q}^{(1,3)}$ and C_{qe} , only contribute to other LFV processes significantly.
- If new physics primarily generates the LFVBD operators between the scales 100 1000 TeV, we expect that LFVBDs and CR($\mu \rightarrow e$) to be quite promising in regard to future experiments.
- In μ sector, two processes, $\mu \rightarrow eee$ and $CR(\mu \rightarrow e)$ can put indirect constraints on BRs of several B-decay processes (~10⁻¹⁰) which are within the future limits.
- The relevant operators of this analysis receives strongest constraints from LFVBDs only.

THANK YOU

Extra slides

• Effective Hamiltonian for $b \rightarrow sl_i l_j$ transitions process is given by

	$H_{Eff}^{l_i l_j} =$	$-\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^* +$	$\sum_{n=1}^{10,S,P} \left[C_n(\mu) \mathcal{O}_n(\mu) + C'_n(\mu) \mathcal{O}'_n(\mu) \right]$	
	G_F	=	Fermi Constant	
	$V_{tb}V_{ts}^*$	=	Cabbibo-Kobayashi-Maskwa(CKM) matrix elements	
<i>n</i> =1,2		⇔	"Current-Current" operators mediated by W boson or	[.] gluon
n = 3, 4, 5, 6)	⇔	"QCD-Penguin" operators	
<i>n</i> = 7,8		⇒	"Magnetic-Penguin" operators	
<i>n</i> = 9,10		⇔	"Semi-leptonic" operators	
<i>n</i> = S,P		⇔	Scalar and Pseudo-scalar operators	
19-Dec-23		JOYDEEP RO	<pre>PHOENIX-2023, IIT Hyderabad</pre>	35

Analysis with Single operator

- For example, we consider the operator $Q_{\phi e}$ and the coefficient $C_{\phi e}^{fi}$.
- Modified branching ratio formula becomes

$$Br[\ell_i \to \ell_j \ell_k \overline{\ell_l}]_{\phi e} = \frac{N_c M^5}{6144\pi^3 \Lambda^4 \Gamma_{l_i}} (|C'_{VRR}|^2 + |C'_{VRL}|^2 + |C'_{SLR}|^2)$$

with

$$C_{VRR}' = 2\left(2s_W^2 C_{\phi e}^{ji}\right)$$

$$C'_{VRL} = -\frac{1}{2}C'_{SLR} = (2s_W^2 - 1)C_{\phi e}^{ji}$$

JOYDEEP ROY PHOENIX-2023, IIT Hyderabad

<u>Results (1-D Analysis)</u> <u>RGE Effects</u>

- $C_{q\ell}^{(1/3)ij}$ has significant RGE impacts on $C_{q\ell}^{(3/1)ij}$, $C_{\varphi\ell}^{(1)ij}$ and $C_{\varphi\ell}^{(3)ij}$.
- C_{qe}^{ij} has significant RGE impact on $C_{\varphi e}^{ij}$.
- C_{ledq}^{1223} has RGE impact on C_{ledq}^{1222}

Operators

• Contribution of different operators to different decay types

	Decay Types			
Operators	$\ell_i \to \ell_j \ell_k \ell_l$	$\ell_i \to \ell_j \gamma$		
<i>ℓℓX</i> Ψ (Dipole)	Tree-level	Tree-level		
ℓℓℓℓ (4-lepton)	Tree-level	1-loop level		
ℓℓqq (2-lepton-2-Higgs)	1-loop-level	1-loop level		
$\ell\ell\Psi^2 D$ or $\ell\ell\Psi^3$ (lepton-Higgs)	Tree + loop level	Tree + loop level		

- Flat directions between the pairs of LFVBD WCs are trivial
- Flat directions for other LFVs are non-trivial. These cancellations occur between $C_{\omega\ell}^{(1)}$ and $C_{\omega\ell}^{(3)}$ and is a direct consequence of the RGE effects

$$\left[C^{(1)}_{\phi\ell}(\mu) + C^{(3)}_{\phi\ell}(\mu)\right]_{12} \approx \frac{3Y_cY_t}{8\pi^2} \log(\frac{\mu}{\Lambda}) \left[C^{(1)}_{\ell q}(\Lambda) - C^{(3)}_{\ell q}(\Lambda)\right]_{1223}.$$

19-Dec-23

JOYDEEP ROY PHOENIX-2023, IIT Hyderabad