

Viability of Boosted Light Dark Matter in a Two-Component Scenario

Arindam Basu

Department of Physics, School of Engineering and Sciences, SRM University-AP

Collaborators:

- 1. Amit Chakraborty
- 2. Nilanjana Kumar
- 3. Soumya Sadhukhan

Reference:

https://arxiv.org/abs/2310.09349

- The existence of Dark Matter (DM) is proven only through indirect gravitational probes.
- Astrophysical observation predicts the amount of DM (~ 26.8 %) of the total energy of the Universe.
- A Plethora of DM direct and indirect detections for WIMP are only of minimal success.
- We for light DM (MeV-GeV scale).
- The light DM can receive sufficient energy for the nuclear recoil if it is **boosted**.
- Detection prospects get better with the **boost**.

Particle Name	$SU(2)_L$ Charges	$U(1)_Y$ Charges	Z_2 Charges
	Scalar F	ields	
Φ_1	2	1	1
Φ_2	2	1	-1
ϕ_3	1	0	-1
	Fermionic	Fields	
Ν	2	-1	-1
χ	1	0	-1

For each of the DM components, the relic density is determined by the Boltzmann equation which is driven by the corresponding DM annihilation cross-section.

 $\sigma_{\phi_3} = \sigma(s)_{\phi_3\phi_3 \to f\bar{f}} + \sigma(s)_{\phi_3\phi_3 \to N_R\nu_L} + \sigma(s)_{\phi_3\phi_3 \to H\bar{H}} + \sigma(s)_{\phi_3\phi_3 \to h\bar{h}} + \sigma(s)_{\phi_3\phi_3 \to h\bar{H}}$

1 GeV

11.7

Under abundant window 2 MeV – 200 MeV

Fermionic DM χ_1 :

$$\sigma_{\chi_1} = \sigma(s)_{\chi_1\chi_1 \to f\bar{f}} + \sigma(s)_{\chi_1\chi_1 \to N_R\nu_L} + \sigma(s)_{\chi_1\chi_1 \to hh} + \sigma(s)_{\chi_1\chi_1 \to ZZ} + \sigma(s)_{\chi_1\chi_1 \to W^+W^-}$$

$$\Omega_{\chi_1} \ h^2 = rac{2.14 imes 10^9 \ x_f}{\sqrt{g^*} M_{pl} \langle \sigma v
angle}$$

 $\Omega_{\chi_1} h^2 = \frac{m_{\chi_1} \ s_0 \ Y_{\chi_1}(\infty)}{\rho_c / h^2}$

Fermion DM		
Mass	Relic density	
$45 \mathrm{GeV}$	1.8×10^{-3}	
$65 { m GeV}$	0.59	
200 GeV	19.26	

Allowed window 40 GeV – 50 GeV.

$$\frac{dY_{\chi_1}}{dx} = -\frac{1}{2} \frac{1}{x^2} \frac{s(m_{\chi_1})}{H(m_{\chi_1})} \langle \sigma v \rangle_{\chi_1 \chi_1 \to SM} (Y_{\chi_1}^2 - Y_{\chi_1, eq}^2)$$

7

Higgs portal interaction between the two DM candidates serves as the connector between the two DM candidate

Х

$$\frac{dY_{\chi_{1}}}{dx} = -\frac{1}{2} \frac{\lambda_{\chi\phi}}{x^{2}} \left(Y_{\chi_{1}}^{2} - Y_{\phi_{3}}^{2} \frac{Y_{\chi_{1},eq}}{Y_{\phi_{3},eq}^{2}} \right) - \frac{1}{2} \frac{\lambda_{\chi}}{x^{2}} \left(Y_{\chi_{1}}^{2} - Y_{\chi_{1},eq}^{2} \right)$$

$$\frac{dY_{\phi_{3}}}{dx} = -\frac{\lambda_{\phi}}{x^{2}} \left(Y_{\phi_{3}}^{2} - Y_{\phi_{3},eq}^{2} \right) + \frac{\lambda_{\chi\phi}}{x^{2}} \left(Y_{\chi_{1}}^{2} - Y_{\phi_{3}}^{2} \frac{Y_{\chi_{1},eq}^{2}}{Y_{\phi_{3},eq}^{2}} \right)$$

$$\frac{dY_{\phi_{3}}}{dx} = -\frac{\lambda_{\phi}}{x^{2}} \left(Y_{\phi_{3}}^{2} - Y_{\phi_{3},eq}^{2} \right) + \frac{\lambda_{\chi\phi}}{x^{2}} \left(Y_{\chi_{1}}^{2} - Y_{\phi_{3}}^{2} \frac{Y_{\chi_{1},eq}^{2}}{Y_{\phi_{3},eq}^{2}} \right)$$

$$m_{\chi_{1}} = 45 \text{ GeV } m_{\phi_{1}} = 20 \text{ MeV (BE)}$$

$$m_{\chi_{1}} = 45 \text{ GeV } m_{\phi_{1}} = 20 \text{ MeV (Coupled BE)}$$

$$m_{\chi_{1}} = 1.8 * 10^{-3}$$

$$\Omega_{\chi_{1}}h^{2} = 1.8 * 10^{-3}$$

$$\Omega_{\phi_{3}}h^{2} = 8.69 * 10^{-6}$$

$$M_{\chi_{1}}h^{2} = 1.2 \times 10^{-5}$$

$$\Omega_{\phi_{3}}h^{2} = 8.69 * 10^{-6}$$

The Scalar DM ϕ_3 with 50 MeV mass, contributes >50% of total DM.

Allowed mass window for fermionic DM χ_1 increased up to 30 GeV – 69 GeV.

Boosted DM:

$$s = 4m_{\phi_3}^2 + 4m_{\phi_3}^2 v_{\phi_3}^2 \quad \text{or} \quad s = 4m_{\phi_3}^2 + 4m_{\phi_3}^2 \left(1 - \frac{1}{\gamma_{\phi_3}^2}\right)$$
No boost is obtained by putting $v_{\phi_3} = 0 \text{ or } \gamma_{\phi_3} = 1 \text{ in}$
resonance condition $s = m_H^2$
or, $m_{\phi_3} = m_H/2$
With boost case, for say, $\gamma_{\phi_3} = 10^4$

 $m_{H} = 20$ MeV is taken as a benchmark

Resonance is due to the H-dominated "s" channel annihilation.

10³ with boost case, for say $\gamma \phi_3$ The COM energy $spprox 8m_{\phi_3}^2$ Thus, the resonance condition $\ s=m_{H}^{2}$ gives, $m_{\phi_3}=m_H/(2\sqrt{2})$ 11

 $\gamma_{\phi_3} = 10^4$

Boosted DM:

Thus the COM energy expressed as,
$$s = 4m_{\phi_3}^2 + 4m_{\phi_3}^2 \left(1 - \frac{m_{\phi_3}^2}{m_{\chi_1}^2} \left(1 - v_{\chi_1}^2\right)\right)$$
 $v_{\chi_1} = 220 \text{ Km/s}$

Future direction:

- In Direct/Indirect Detection experiments the DM collides with either the electron/nucleon of the detector atom, producing a recoil energy to be detected by the detectors.
- The roadblock for sub-GeV DM is due to its small mass it can only generate very small recoil energy.
- By boosting the DM, although being light mass, it can transfer a large amount of energy to the recoil electron/nucleon; making it easy to detect.
- The challenge to detect the boosted DM is, that the flux of boosted DM is small and nearly mono-energetic, and large volume detectors are preferred.
- We aim to discuss the detection prospect of the MeV scalar dark matter in detail in an upcoming work.

Conclusion:

- Relic density is an important quantity to knowing DM
- Two dark sector particles can interact through the Higgs portal
- Two-component scenario allowed >50 % boosted scalar DM as a favorable DM candidate.
- Boosting a lower mass DM to probe further lower region. Compared to the (2MeV 200 MeV) allowed mass window for single scalar relic density, the boosted scalar relic density gives a (2.5 MeV 95 MeV) mass window.
- Boost helps to detect a low-mass DM in the DD experiments.

Backup

Theoretical constraints and Benchmark Points:

- Theoretical constraints such as stability of vacuum and tree-level perturbative unitarity.
- The Higgs invisible bound. SM Higgs boson (h) (125 GeV) invisible BR is <20%.
- Z invisible bound.

Based on the theoretical constraints, and Higgs invisible BR, we scan over the parameter space

 $1 \text{ MeV} < m_H < 100 \text{ MeV}$ $-\pi/2 < \alpha < \pi/2$ 10 m_H (GeV) 10^{-4} $\tan eta$ 10^{-2} 10-5 10^{-3} 105 107 10¹ 10³ 10^{-5} 10^{-4} 10^{-2} 10^{-1} 10^{-3} tanα $cos(\beta - \alpha)$

16

 $1 \text{ MeV} < v_2 < 100 \text{ MeV},$

Scalar Dark Matter Relic Density:

Parameter for VLL DM:

$$L_{VLL} = m_N \bar{N}N + m_\chi \bar{\chi}\chi + y_N \bar{N}\tilde{\Phi_1}\chi + h.c. \qquad L_{VLL}^{mass} = m_N \bar{N}_- N_+ + (\bar{N}_0 \ \bar{\chi}) \begin{pmatrix} m_N \ \frac{y_N v_1}{\sqrt{2}} \\ \frac{y_N v_1}{\sqrt{2}} & m_\chi \end{pmatrix} \begin{pmatrix} N_0 \\ \chi \end{pmatrix}$$

$$m_{\chi_1} = m_{\chi}c_{\theta}^2 - m_N s_{\theta}^2 - \frac{y_N v_1}{\sqrt{2}} \sin 2\theta$$
$$m_{\chi_2} = m_N c_{\theta}^2 + m_{\chi} s_{\theta}^2 + \frac{y_N v_1}{\sqrt{2}} \sin 2\theta$$

$$N_0 = c_\theta \chi_2 - s_\theta \chi_1$$
$$\chi = s_\theta \chi_2 + c_\theta \chi_1$$
$$\tan 2\theta = \frac{\sqrt{2}(y_N \ v_1)}{(m_N - m_\chi)}$$

$$\Gamma(h \to \chi_1 \chi_1) = \frac{1}{16 \pi} \left(y_N \sin 2\theta \right)^2 \, m_h \, \left(1 - \frac{4m_{\chi_1}^2}{m_h^2} \right)^{3/2}$$

Conclusion: y_N can not be more than 0.42

Fermion Dark Matter Relic Density:

$$\sigma_{\phi_3} = \sigma(s)_{\phi_3\phi_3 \to f\bar{f}} + \sigma(s)_{\phi_3\phi_3 \to N_R\nu_L} + \sigma(s)_{\phi_3\phi_3 \to HH} + \sigma(s)_{\phi_3\phi_3 \to hh} + \sigma(s)_{\phi_3\phi_3 \to hH}$$

where the thermally averaged cross-section of scalar DM ϕ_3 is,

$$\langle \sigma v \rangle_{\phi_3 \phi_3 \to SM} = \frac{x}{8m_{\phi_3}^5 K_2^2(x)} \int_{4m_{\phi_3}^2}^{\infty} \sigma(s)_{\phi_3 \phi_3 \to SM} \times (s - 4m_{\phi_3}^2) \sqrt{s} K_1\left(\frac{x\sqrt{s}}{m_{\phi_3}}\right) ds$$

The BE is expressed for the fermionic DM $\chi 1,\,$

$$\frac{dn_{\chi_1}}{dt} + 3Hn_{\chi_1} = -\frac{1}{2} \langle \sigma_{\chi_1} v \rangle (n_{\chi_1}^2 - n_{\chi_1, \text{eq}}^2)$$

with Y=n/s, and x=m/T scaling factor,

where the thermally averaged cross-section of fermionic DM $\chi 1$ is,

But due to x= $m_{\chi 1}/T >>1$, it is greatly simplified with,

$$\frac{dY_{\chi_1}}{dx} = -\frac{1}{2} \frac{1}{x^2} \frac{s(m_{\chi_1})}{H(m_{\chi_1})} \langle \sigma v \rangle_{\chi_1 \chi_1 \to SM} (Y_{\chi_1}^2 - Y_{\chi_1, eq}^2)$$

$$\langle \sigma v \rangle_{\chi_1 \chi_1 \to SM} = \frac{x}{8m_{\phi_3}^5 K_2^2(x)} \int_{4m_{\chi_1}^2}^{\infty} \sigma(s)_{\chi_1 \chi_1 \to SM} \times (s - 4m_{\chi_1}^2) \sqrt{s} K_1\left(\frac{x\sqrt{s}}{m_{\chi_1}}\right) ds$$

$$\langle \sigma v
angle_{\chi_1 \chi_1 o SM} \simeq \sigma_{\chi_1}(s) imes v = \sigma_{\chi_1}(s) imes rac{\sqrt{s-4m_{\chi_1}^2}}{m_{\chi_1}} = \langle \sigma v
angle$$

$$\frac{dn_{\chi_1}}{dt} + 3Hn_{\chi_1} = -\frac{1}{2} \langle \sigma_{\chi_1\chi_1 \to \phi_3\phi_3} v \rangle (n_{\chi_1}^2 - n_{\phi_3}^2 \frac{n_{\chi_1, eq}^2}{n_{\phi_3, eq}^2}) - \frac{1}{2} \langle \sigma_{\chi_1} v \rangle (n_{\chi_1}^2 - n_{\chi_1, eq}^2) \\ \frac{dn_{\phi_3}}{dt} + 3Hn_{\phi_3} = -\langle \sigma_{\phi_3} v \rangle (n_{\phi_3}^2 - n_{\phi_3, eq}^2) - \langle \sigma_{\phi_3\phi_3 \to \chi_1\chi_1} v \rangle (n_{\phi_3}^2 - n_{\chi_1}^2 \frac{n_{\phi_3, eq}^2}{n_{\chi_1, eq}^2})$$

Scaling with comoving density $Y_i=n_i/s$, and $x=m_{\phi 3}/T$,

$$\frac{dY_{\chi_1}}{dx} = -\frac{1}{2} \frac{\lambda_{\chi\phi}}{x^2} \left(Y_{\chi_1}^2 - Y_{\phi_3}^2 \frac{Y_{\chi_1,eq}^2}{Y_{\phi_3,eq}^2} \right) - \frac{1}{2} \frac{\lambda_{\chi}}{x^2} \left(Y_{\chi_1}^2 - Y_{\chi_1,eq}^2 \right)$$
$$\frac{dY_{\phi_3}}{dx} = -\frac{\lambda_{\phi}}{x^2} \left(Y_{\phi_3}^2 - Y_{\phi_3,eq}^2 \right) + \frac{\lambda_{\chi\phi}}{x^2} \left(Y_{\chi_1}^2 - Y_{\phi_3}^2 \frac{Y_{\chi_1,eq}^2}{Y_{\phi_3,eq}^2} \right)$$

 $\Omega_{\chi_1} h^2 = 19.26$ $\Omega_{\phi_3} h^2 = 1.05 * 10^{-3}$

 $egin{aligned} \Omega_{\chi_1}h^2 &= & {\sf 3.98} \ \Omega_{\phi_3}h^2 &= & {\sf 0.028} \ \Omega h^2 &= & \Omega_{\chi_1}h^2 + \Omega_{\phi_3}h^2 = & {\sf 4.00} \end{aligned}$