Illuminating the Dark: MSSM Dark Matter in the light of Direct Detection

Syed Adil Pasha

Department of Physics, Shiv Nadar IoE Deemed to be University

Phoenix 2023, IIT Hyderabad

Illuminating the Dark

Based on the works:

- 1) S. Bisal, A. Chatterjee, D. Das, and S. A. Pasha, *Radiative Corrections to Aid the Direct Detection of the Higgsino-like Neutralino Dark Matter: Spin-Independent Interactions*, arXiv:2311.09937.
- 2) S. Bisal, A. Chatterjee, D. Das, and S. A. Pasha, Confronting electroweak MSSM through one-loop renormalized neutralino-Higgs interactions for dark matter direct detection and muon (g 2), arXiv:2311.09938.

Motivation

- Galaxies rotation curves can't be explained for visible matter [Rubin (1970s)]
- Galactic velocities in Clusters are anomalous [Zwicky (1936)]
- Gravitational lensing data also suggests extra mass
- Cosmic Microwave Background (CMB) suggests 26.8% of the Energy content of the Universe is invisible Matter [Planck (2018)]
- Presence of non-luminous (Dark) Matter
- 84% of all matter is Dark Matter, in Standard Cosmology

Bullet Cluster [Chandra]

Motivation

Galaxy Rotation Curve Source: Corbelli, Salucci (2000)

CMB Map Source: Planck/ESA

Supersymmetric Dark Matter

- Cosmological observations constrain DM to be "Cold", massive and neutral
- WIMPs: ideal dark matter particle, interact only weakly and gravitationally
- No candidate in Standard Model of Particle Physics, beyond Standard Model (BSM) Physics needed
- **Supersymmetry (SUSY)**: well-motivated BSM framework (Naturalness, Higgs quadratic divergence cancellation)

Source: Kurt Riesselmann

MSSM

Names	Spin	P_R	Gauge Eigenstates	Mass Eigenstates		
Higgs bosons	0	+1	$H^0_u \ H^0_d \ H^+_u \ H^d$	$h^0 H^0 A^0 H^{\pm}$		
			$\widetilde{u}_L \widetilde{u}_R \widetilde{d}_L \widetilde{d}_R$	(same)		
squarks	0	-1	$\widetilde{s}_L \widetilde{s}_R \widetilde{c}_L \widetilde{c}_R$	(same)		
			${\widetilde t}_L {\widetilde t}_R {\widetilde b}_L {\widetilde b}_R$	$\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b}_2$		
	0	-1	$\widetilde{e}_L \widetilde{e}_R \widetilde{ u}_e$	(same)		
sleptons			$\widetilde{\mu}_L \widetilde{\mu}_R \widetilde{ u}_\mu$	(same)		
			$\widetilde{ au}_L \widetilde{ au}_R \widetilde{ u}_ au$	$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ u}_ au$		
neutralinos	1/2	-1	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}^0_u \ \widetilde{H}^0_d$	$\widetilde{N}_1 \widetilde{N}_2 \widetilde{N}_3 \widetilde{N}_4$		
charginos	1/2	-1	\widetilde{W}^{\pm} \widetilde{H}^+_u \widetilde{H}^d	\widetilde{C}_1^{\pm} \widetilde{C}_2^{\pm}		
gluino	1/2	-1	\widetilde{g}	(same)		

Source : Stephen Martin, A Supersymmetry Primer

Higgsino-like Dark Matter

- The R-parity conserving Lightest Supersymmetric Particle (LSP) is stable
- In MSSM, the lightest neutralino is LSP
- In our work, Higgsino-like neutralino is the LSP and the Dark Matter candidate
- When Higgsino fraction is large (>99.9%), the tree level couplings tend to vanish
- Radiative corrections become important
- The tree-level vertex for neutralino-Higgs interaction is shown here

$$\begin{aligned} \mathscr{L} &\supset -\frac{1}{2} h_1 \bar{\tilde{\chi}}_1^0 (\mathscr{C}_1^R P_R + \mathscr{C}_1^L P_L) \tilde{\chi}_1^0 - \frac{1}{2} h_2 \bar{\tilde{\chi}}_1^0 (\mathscr{C}_2^R P_R + \mathscr{C}_2^L P_L) \tilde{\chi}_1^0 \\ \mathscr{C}_1^R &= (S_1 \sin \alpha + S_2 \cos \alpha) \\ \mathscr{C}_2^R &= (S_2 \sin \alpha - S_1 \cos \alpha) \\ S_1 &= g_2 N_{13} (N_{12} - \tan \theta_W N_{11}) \\ S_2 &= g_2 N_{14} (N_{12} - \tan \theta_W N_{11}) \end{aligned}$$

 $\tilde{\chi}_1^0$

Higgsino-like Dark Matter

- In order to satisfy the thermal relic abundance of $\Omega_{\rm DM}h^2 \simeq 0.12$ [Planck collaboration (2016)], Higgsino LSP should be ~1 TeV
- May be lowered in presence of coannihilation [Chakraborti et al (2017)]
- Non-thermal production models also exist [Aparicio et al (2016)]
- Other components of Dark Matter may exist [Baer et al (2015)]
- In this case, the DD bounds are relaxed in the same proportion
- In this work we do not concern ourselves with satisfying the thermal relic density in the early Universe
- Loop corrections for a few loops has been studied in literature [Hisano et al (2010), Hisano et al (1997)]
- But a comprehensive study with **renormalization**, **counter-terms**, and **full set of loops** had not been done before, which we pursue in our work

Radiative corrections to the Direct Detection process

• Various one-loop radiative correction diagrams for Higgsino-like neutralino calculated

Ref: Bisal, Chatterjee, Das, Pasha (2023); arXiv:2311.09937

Continued

Flow Chart

Ref: Belanger, Boudjema, Pukhov, Semenov (2009)

Results Table

	$\mathscr{C}_1^{L/R}, \mathscr{C}_2^{L/R}$	$\Delta \mathscr{C}_{1}^{L/R}(\%)$	$\Delta \mathscr{C}_{2}^{L/R}(\%)$	σ_{SI} [pb]]		$\mathscr{C}_1^{L/R}, \mathscr{C}_2^{L/R}$	$\Delta \mathscr{C}_{1}^{L/R}(\%)$	$\Delta \mathscr{C}_{2}^{L/R}(\%)$	σ_{SI} [pb]
BP		Total (SQ)	Total (SQ)	$(\Delta \sigma_{SI} \%)$		BP		Total (SQ)	Total (SQ)	$(\Delta \sigma_{SI} \%)$
		(Loop, CT)	(Loop, CT)					(Loop, CT)	(Loop, CT)	
DD1.	7.96×10^{-3}	19.74(-22.35)	-13.96(-2.9)	4.13×10^{-11}	1	BD/a	8.25×10^{-3}	21.11(-24.33)	-12.36(-6.99)	4.13×10^{-11}
BPIa	$4.68 imes 10^{-3}$	(2.74, 17.0)	(-17.63, 3.67)	(41.7)		BP4a BP4b	-7.33×10^{-3}	(2.81, 18.3)	(-17.31, 4.95)	(49.75)
DD11	8.64×10^{-3}	15.50(-26.62)	-14.29(-1.02)	4.89×10^{-11}	1	DD4h	8.82×10^{-3}	19.21(-28.89)	-13.74(-6.57)	4.77×10^{-11}
BLIP	5.24×10^{-3}	(-1.52, 17.03)	(-18.0, 3.74)	(31.5)		BP4b	-7.83×10^{-3}	(0.87, 18.34)	(-18.83, 5.09)	(45)
DD2	6.12×10^{-3}	37.88(-29.52)	-19.87(-9.05)	2.29×10^{-11}	1	DD5 o	6.24×10^{-3}	38.95(-25.5)	-16.6(-2.68)	2.53×10^{-11}
BP2a	-4.36×10^{-3}	(20.89, 16.99)	(-23.53, 3.66)	(96)	BP5a	3.06×10^{-3}	(22.47, 16.48)	(-20.35, 3.75)	(89.6)	
DDAL	6.63×10^{-3}	32.7(-35.78)	-21.22(-8.18)	2.71×10^{-11}	1	DD51	6.74×10^{-3}	32.88(-31.58)	-15.77(-0.26)	2.97×10^{-11}
BP20	-4.82×10^{-3}	(15.73, 16.97)	(-25, 3.78)	(81)		BP30	3.49×10^{-3}	(16.27, 16.61)	(-19.72, 3.95)	(73.8)
DD2	1.13×10^{-2}	11.07(-18.05)	-6.98(-1.39)	8.46×10^{-11}	1	DDC	1.05×10^{-2}	17.0(-17.81)	-5.32(-0.65)	7.26×10^{-11}
врза	7.77×10^{-3}	(-7.1, 18.2)	(-11.83, 4.89)	(22.4)		вроа	6.94×10^{-3}	(-1.42, 18.42)	(-10.42, 5.10)	(35.8)
DD21	1.21×10^{-2}	9.14(-21.22)	-7.63(-0.26)	9.67×10^{-11}	1	DDCh	1.11×10^{-2}	15.41(-21.43)	-5.44(-0.74)	8.13×10^{-11}
BP30	8.37×10^{-3}	(-9.13, 18.27)	(-12.66, 5.03)	(18.25)		BP00	7.43×10^{-3}	(-3.20, 18.61)	(-10.8, 5.36)	(32.2)

• Benchmark points for spin-independent interaction for Higgsino-like Dark matter

Significance

Ref: LZ Collaboration (2023)

Significance

Ref: LZ Collaboration (2023)

Bino-like DM: Results Table

$ ilde{B}_{ ilde{H}}$ LSP										
BMPs	aneta	μ	M_1	M_2	M_A	M_H	$m_{ ilde{\mu}_L}$	$m_{ ilde{\mu}_R}$	$m_{\tilde{e}_L}$	$m_{ ilde{e}_R}$
Ι	30	603	100	1500	2800	2268	178	135	177	131
BMPs	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}_1^\pm}, m_{ ilde{\chi}_2^0}$	$(g-2)_{\mu}$	Ωh^2	$C_{L,R}^{\rm LO}(h)$	$C_{L,R}^{\rm NLO}(h)$	$C_{L,R}^{\rm LO}(H)$	$C_{L,R}^{\rm NLO}(H)$	$\sigma_{ m SI}^{ m LO}$	$\sigma_{ m SI}^{ m NLO}$
Ι	99	624	2.12×10^{-9}	0.118	0.00583	0.00622	0.02515	0.02625	2.760×10^{-11}	3.130×10^{-11}
$ ilde{B}_{ ilde{W} ilde{H}}$ LSP										
BMPs	aneta	μ	M_1	M_2	M_A	M_H	$m_{ ilde{\mu}_L}$	$m_{ ilde{\mu}_R}$	$m_{ ilde{e}_L}$	$m_{ ilde{e}_R}$
II	30	710	190	265	3000	2392	344	248	254	204
BMPs	$m_{ ilde{\chi}_1^0}$	$m_{ ilde{\chi}_1^\pm}, m_{ ilde{\chi}_2^0}$	$(g-2)_{\mu}$	Ωh^2	$C_{L,R}^{\rm LO}(h)$	$C_{L,R}^{\rm NLO}(h)$	$C_{L,R}^{\rm LO}(H)$	$C_{L,R}^{\rm NLO}(H)$	$\sigma_{ m SI}^{ m LO}$	$\sigma_{ m SI}^{ m NLO}$
II	189	282	3.54×10^{-9}	0.119	0.00812	0.00858	0.02433	0.02519	4.709×10^{-11}	5.241×10^{-11}

• Benchmark points for spin-independent interaction for the mixed Bino-Higgsinolike and Bino-Wino-Higgsino-like Dark matter

Ref: Bisal, Chatterjee, Das, Pasha (2023); arXiv:2311.09938

Anomalous magnetic moment of muon

• New Fermilab experiment confirms muon's anomalous magnetic moment from the Standard Model value (Run-1 and Run-2 + Run-3 values shown below)

$$\delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}} = 251 \pm 59 \times 10^{-11}$$
$$\delta a_{\mu}^{\text{New}} = (249 \pm 48) \times 10^{-11}$$

Ref: Muon g-2 Collaboration (2023); arXiv:2308.06230

Summary

- We have done a comprehensive study of the Radiative Corrections to the complete Renormalized sector of the Neutralino-Higgs interaction for pure Higgsino-like LSP as well as Bino-Higgsino-like and Bino-Wino-Higgsino-like well-tempered LSP
- The loop corrections are prominent (96%) and push the cross-section inside the 1-sigma band and close to the exclusion region, especially in the pure Higgsino case
- Anomalous muon g-2 and B physics constraints are satisfied in the same parameter space we have considered for Bino-Higgsino and Bino-Wino-Higgsino well-tempered LSP

Thank you

References

- 1) J. Küblbeck, M. Böhm and A. Denner, *Feyn arts computer-algebraic generation of feynman graphs and amplitudes, Computer Physics Communications* 60 (1990) 165–180.
- 2) T. Hahn and M. Pérez-Victoria, *Automated one-loop calculations in four and d dimensions*, *Computer Physics Communications* 118 (1999) 153–165.
- G. Belanger, F. Boudjema, A. Pukhov and A. Semenov, *Dark matter direct detection rate in a generic model with micrOMEGAs 2.2, Comput. Phys. Commun.* 180 (2009) 747–767, [0803.2360].
- 4) J. Hisano, K. Ishiwata, and N. Nagata, *A complete calculation for direct detection of Wino dark matter*, Phys. Lett. B 690, 311 (2010).

ParametersBP1aBP2aBP3aBP4aBP5aBP6aParametersBP1bBP2bBP3bBP4bBF μ (CaV)300300300300300300400600600600600600	b BP6b
$\mu(C_{2}V) = 200 = 200 = 200 = 200 = 200 = 200 = \mu(C_{2}V) = 600 $	600
μ (GeV) 300 -300 300 -300 300 μ (GeV) 000 -000 000 -000 00	000
M_1 (GeV) -5000 -5000 5000 5000 -4000 4000 M_1 (GeV) -5000 -5000 5000 5000 -400	0 4000
M_2 (GeV) 4000 4000 4000 4000 5000 5000 M_2 (GeV) 4000 4000 4000 4000 500) 5000
$m_{\tilde{\chi}_{1}^{0}}$ (GeV) 299.17 299.44 298.72 299.14 299.44 298.88 $m_{\tilde{\chi}_{1}^{0}}$ (GeV) 599.06 599.37 598.61 599.07 599.07	6 598.79
$m_{\tilde{\chi}_{2}^{0}}$ (GeV) -300.44 -300.66 -300.74 -301.11 -300.29 -300.66 $m_{\tilde{\chi}_{2}^{0}}$ (GeV) -600.39 -600.59 -600.7 -601.04 -600	-600.62
$m_{\tilde{\chi}_{3}^{0}}$ (GeV) 4000 4000 4000 4000 -4000 4000 $m_{\tilde{\chi}_{3}^{0}}$ (GeV) 4000 4000 4000 -4000 -400	0 4000
$m_{\tilde{\chi}_{4}^{0}}(\text{GeV})$ -5000 -5000 5000 5000 5000 5000 5000 $m_{\tilde{\chi}_{4}^{0}}(\text{GeV})$ -5000 -5000 -5000 5000 5000 500) 5000
$m_{\tilde{\chi}_{1}^{\pm}}$ (GeV) 299.56 300.2 299.56 300.2 299.67 299.67 $m_{\tilde{\chi}_{1}^{\pm}}$ (GeV) 599.43 600.08 599.43 600.08 599.43	8 599.58
$m_{\tilde{\chi}_{2}^{\pm}}$ (GeV) 4000 4000 4000 4000 5000 5000 $m_{\tilde{\chi}_{2}^{\pm}}$ (GeV) 4000 4000 4000 4000 500) 5000
m_{h_1} (GeV) 122.92 122.79 122.73 122.61 122.81 122.65 m_{h_1} (GeV) 122.94 122.68 122.75 122.51 122	122.65
m_{h_2} (GeV) 1386 1468 1407 1448 1425 1450 m_{h_2} (GeV) 1347 1506 1390 1465 14	3 1450
HF 0.9997 0.9998 0.9998 0.9998 0.9998 HF 0.9997 0.9998 0.9997 0.9997	0.9997
$N_{11}(\times 10^{-3})$ -6.291 -5.145 7.087 5.795 -7.756 -9.004 $N_{11}(\times 10^{-3})$ 5.956 -4.872 -7.575 -6.196 -7.2	2 -9.804
$N_{12}(\times 10^{-2})$ -1.679 -1.373 -1.677 -1.372 -1.322 1.321 $N_{12}(\times 10^{-2})$ 1.827 -1.495 1.827 1.494 -1.495	2 1.412
N_{13} 0.708 -0.707 0.708 -0.708 0.708 -0.708 N_{13} -0.707 -0.707 0.708 0.708 0.708 0.708	7 -0.708
N_{14} -0.706 -0.706 -0.706 -0.706 -0.706 0.706 0.706 N_{14} 0.707 -0.707 0.706 0.706 -0.706 -0.706	7 0.706

$\tilde{B}_{\tilde{H}}$ **DM**

 $50 \leq M_1 \leq 300, \ 400 \leq \mu \leq 1000, \ 100 \leq m_{\tilde{\mu}_{\mathbf{L}}, \tilde{\mu}_{\mathbf{R}}} \leq 350, \ 100 \leq m_{\tilde{\mathbf{e}}_{\mathbf{L}}, \tilde{\mathbf{e}}_{\mathbf{R}}} \leq 350$

 $\tilde{B}_{\tilde{W}\tilde{H}}$ DM

 $\mathbf{50} \leq \mathbf{M_1} \leq \mathbf{300}, \ \mathbf{150} \leq \mathbf{M_2} \leq \mathbf{600}, \ \mathbf{400} \leq \mu \leq \mathbf{1000}, \ \mathbf{100} \leq \mathbf{m_{\tilde{\mu}_{\mathbf{L}},\tilde{\mu}_{\mathbf{R}}}} \leq \mathbf{350}, \ \mathbf{100} \leq \mathbf{m_{\tilde{e}_{\mathbf{L}},\tilde{e}_{\mathbf{R}}}} \leq \mathbf{350}$

• Cross-section corrections for Bino-Higgsino (left) and Bino-Wino-Higgsino (right) like Neutralino case