phonik

Light Dirac neutrino portal dark matter with gauged $U(1)_{B-L}$ symmetry

Based on : 2312.06777 Collaborator - Dr. Debasish Borah

Nayan Das

Department of Physics Indian Institute of Technology Guwahati

19/12/2023

- 1. Introduction and Motivation
- 2. The Model
- **3. FIMP type DM**
- 4. WIMP type DM
- 5. Conclusion

Introduction and Motivation

Motivation

- Search for beyond Standard model (BSM) particles is one of the main objective in particle physics.
- BSM particles can have weak coupling, difficult to detect them in terrestrial experiments.
- Precision cosmology, with various current and upcoming cosmological experiments, provide excellent opportunity to study BSM physics.
- BSM particles in early universe can leave their signatures.
- These signatures can be detected via cosmological experiments like Cosmic Microwave Background experiments.
- Dark matter (DM) can be weakly (WIMP) interacting or Feebly interacting (FIMP).
- Nature of neutrino : Dirac or Majorana.

Motivation

- If Dirac, CMB experiment can help in detection prospect due to light nature.
- Define -

$$\rho_r = \rho_\gamma + \rho_{\nu_L} + \rho_{\rm BSM} = \left(1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{eff}\right) \rho_\gamma. \tag{1}$$

- $N_{\rm eff} \implies$ effective number of relativistic species.
- Incorporate all possible light BSM particles.
- $N_{eff} = N_{eff}^{SM} + \Delta N_{eff}$.
- For the Standard Model, $N_{eff} = N_{eff}^{SM} = 3.045 [1606.06986].$
- Current CMB bound (2σ) from Planck 2018 data, $N_{eff} = 2.99^{+0.34}_{-0.33} \implies \Delta N_{eff} = 0.284$ [1807.06209].
- Future expected CMB bound (2 σ) from CMB-S4, $\Delta N_{eff} = 0.06$ [1907.04473].

The Model

- Here origin of DM is related to Dirac nature of neutrino.
- Dirac neutrino takes the role of mediating interactions with DM and SM bath.
- To realise, we consider a UV complete gauged B-L model.
- SM is extended by ϕ_1, ϕ_2, ψ and ν_R with B-L charges 1, 3, 0, -1.

The Model

Scalar part

$$\mathcal{L}_{s} = (D^{\mu}\Phi)^{\dagger} D_{\mu}\Phi + (D^{\mu}\phi_{1})^{\dagger} D_{\mu}\phi_{1} + (D^{\mu}\phi_{2})^{\dagger} D_{\mu}\phi_{2} - V(\Phi,\phi_{1},\phi_{2}),$$
(2)

$$D_{\mu}\Phi = \left(\partial_{\mu} - i\frac{g}{2}\tau_{a}W_{\mu}^{a} - i\frac{g'}{2}B_{\mu}\right)\Phi; \qquad D_{\mu}\phi_{1} = \left(\partial_{\mu} - ig_{BL}B_{\mu}^{\prime}\right)\phi_{1}; \qquad D_{\mu}\phi_{2} = \left(\partial_{\mu} - i3g_{BL}B_{\mu}^{\prime}\right)\phi_{2},$$

$$V(\Phi, \phi_1, \phi_2) = -\mu^2 (\Phi^{\dagger} \Phi) + \mu_1^2 (\phi_1^{\dagger} \phi_1) - \mu_2^2 (\phi_2^{\dagger} \phi_2)$$

$$+ \lambda (\Phi^{\dagger} \Phi)^2 + \lambda_1 (\phi_1^{\dagger} \phi_1)^2 + \lambda_2 (\phi_2^{\dagger} \phi_2)^2$$

$$+ \lambda_{H\phi_1} (\Phi^{\dagger} \Phi) (\phi_1^{\dagger} \phi_1) + \lambda_{H\phi_2} (\Phi^{\dagger} \Phi) (\phi_2^{\dagger} \phi_2) + \lambda_{\phi_1 \phi_2} (\phi_1^{\dagger} \phi_1) (\phi_2^{\dagger} \phi_2).$$
(3)

Yukawa part

$$-\mathcal{L}_{\mathsf{Y}} \supset \mathsf{Y}_{\nu} \overline{L} \tilde{\Phi} \nu_{\mathsf{R}} + \frac{\mathbf{y}_{\phi_1}}{\overline{\psi}} \phi_1 \nu_{\mathsf{R}} + m_{\psi} \overline{\psi} \psi$$

IIT Guwahati

(4)

- ϕ_2 accuires vev and give mass to B-L gauge boson.
- ϕ_1 does not get vev, remain heavier than ψ making ψ stable.
- ψ is a fermionic dark matter.
- ϕ_1, ψ and ν_{R} interact through yukawa coupling y_{ϕ_1} .
- Relevant parameters are Relevant parameters $m_{\phi_1}, m_{Z'}, m_{\psi}, \lambda_{H\phi_1}, g_{BL}, y_{\phi_1}$.
- Depending on y_{ϕ_1} , we can have both FIMP or WIMP type DM.

FIMP type DM

IIT Guwahati

FIMP type DM

- Due to small yukawa, DM and $\nu_{\rm R}$ are produced non-thermally.
- Thermal ν_R is also possible via $f\bar{f} \leftrightarrow \nu_R \bar{\nu}_R$ (resonant) via Z' gauge boson.
- $\Delta N_{\rm eff} = \Delta N_{\rm eff}^{\rm th} + \Delta N_{\rm eff}^{\rm non-th}$.

•
$$\Delta N_{\text{eff}}^{\text{th}} = \frac{7}{8} \times 2 \times 0.027 \left(\frac{106.75}{g_*(T_{\text{dec}})}\right)^{4/3}$$

FIMP type DM

- Non thermal production : ϕ_1 decays to DM, ψ and ν_R .
- Solve Boltzmann equation for $Y_{\phi_1} = \frac{n_{\phi_1}}{s}, Y_{\psi} = \frac{n_{\psi}}{s}$ and $Y_{\nu_R} = \frac{\rho_{\nu_R}}{s^{4/3}}$.
- ϕ_1 freeze-out is determined by : $\lambda_{H\phi_1}$ and g_{BL} .
- Decay width : y_{ϕ_1} .

FIMP type DM

• $250 \, \text{GeV} < m_{Z'} < 1000 \, \text{GeV},$ $10^{-4} < g_{BL} < 10^{-2},$
$$\begin{split} 10^{-5} < \lambda_{{\rm H}\phi_1} < 5\times 10^{-5}, \\ 10\,{\rm keV} < m_\psi < 1000\,{\rm keV}. \end{split}$$

FIMP type DM : Structure formation

- Ability to form structure \implies Depend on FSL of DM.
- FSL \implies Distribution function \implies Production mechanism.
- Cold Dark Matter (CDM) $\iff \lambda_{\rm FSL} < 0.01 {\rm Mpc.}$
- Warm Dark Matter (WDM) $\iff 0.01 \text{Mpc} < \lambda_{\text{FSL}} < 0.1 \text{Mpc}.$
- Hot Dark Matter (HDM) $\iff \lambda_{\rm FSL} > 0.1 {\rm Mpc.} [1112.0330]$

•
$$\lambda_{\rm fs} = \int_{T_{\rm prod}}^{T_{\rm eq}} \frac{\langle \mathbf{v}(T) \rangle}{\mathbf{a}(T)} \frac{dt}{dT} dT, \qquad \langle \mathbf{v}(T) \rangle = \frac{\int \frac{p_1}{E_1} \frac{d^3 p_1}{(2\pi)^3} f_{\psi}(\mathbf{p}_1, T)}{\int \frac{d^3 p_1}{(2\pi)^3} f_{\psi}(\mathbf{p}_1, T)}$$

	Parameters						$O_{\rm D} \cdot h^2$	ΔN_{cr}	ESI (Mpc)
	m_{ϕ_1} (GeV)	$\lambda_{H\phi_1}$	y_{ϕ_1}	<i>m_{Z'}</i> (GeV)	G BL	m_ψ (keV)	32DMII	Δ1 veff	TOE(MpC)
BP I	1000	5×10^{-5}	10^{-10}	500	0.001	126	0.12	0.251	3.09
BP II	500	5×10^{-5}	10^{-10}	500	0.001	233	0.12	0.210	1.32
BP III	1000	2×10^{-4}	10^{-9}	500	0.001	970	0.12	0.184	0.06
BP IV	500	2×10^{-4}	10^{-9}	500	0.001	938	0.12	0.184	0.05

FIMP type DM : Summary plots

WIMP type DM

IIT Guwahati

WIMP type DM

- Here interaction between ϕ_1 , ψ and ν_R is large (large y_{ϕ_1}).
- Form a dark sector (DS) among themselves.
- DS interact with SM via $\phi_1 X \rightarrow \phi_1 X$, $\phi_1 Z' \rightarrow \phi_1 Z'$ and $\nu_R X \rightarrow \nu_R X$.
- $T_{\rm dec}$ can be found -

$$\frac{\Gamma_{\text{total}}}{\mathcal{H}} = \frac{1}{\mathcal{H}} \left[\boldsymbol{n}_{\boldsymbol{X}}^{\text{eq}} \left(\langle \sigma \boldsymbol{v} \rangle_{\phi_1 \boldsymbol{X} \to \phi_1 \boldsymbol{X}} + \langle \sigma \boldsymbol{v} \rangle_{\phi_1 \boldsymbol{Z}' \to \phi_1 \boldsymbol{Z}'} \right) + \boldsymbol{n}_{\nu_{\boldsymbol{R}}}^{\text{eq}} \langle \sigma \boldsymbol{v} \rangle_{\nu_{\boldsymbol{R}} \bar{\nu}_{\boldsymbol{R}} \to \boldsymbol{X} \bar{\boldsymbol{X}}} \right].$$
(5)

IIT Guwahati

• After decoupling, DS evolves and have separate temperature.

• Define $\xi = \frac{T_{\rm DS}}{T}$.

WIMP type DM

$$\frac{dY}{dx} = \frac{1}{2} \frac{\beta s}{Hx} \langle \sigma v \rangle_{\text{eff}} \left((Y^{\text{eq}})^2 - Y^2 \right)$$

$$\frac{d\xi}{dx} = \frac{1}{x} \left(-\frac{1}{2} \frac{\beta x^4 s^2}{4\alpha \xi^3 H m_{\phi_1}^4} \langle E \sigma v \rangle_{\text{eff}} \left((Y^{\text{eq}})^2 - Y^2 \right) - (\beta - 1) \xi \right).$$

$$Y = Y_{\phi_1} + Y_{\psi}.$$
(6)

WIMP type DM

- We find increase in $T_{\rm DS}$ compared to T.
- Reason : annihilation of heavier DS particles to lighter DS particles.
- Gives strong constraint from $\Delta N_{\rm eff}$.

WIMP type DM

• $50 \text{GeV} < m_{\phi_1} < 150 \text{GeV},$

 $100 \text{GeV} < m_{Z'} < 500 \text{GeV}, \quad 10 \text{GeV} < m_{\psi} < 100 \text{GeV}$ $10^{-5} < \lambda_{H\phi_1} < 10^{-2}, \qquad 10^{-5} < g_{BL} < 10^{-3}, \qquad 0.2 < y_{\phi_1} < 0.3.$

WIMP type DM : Summary plots

WIMP type DM : Direct Detection

- No tree level diagram.
- One loop Higgs mediated and Z' mediated.
- Total DM-nucleon cross-section

$$\begin{split} \sigma_{\mathrm{tot}} &= \frac{1}{\pi} \frac{m_{\mathsf{N}}^2 m_{\psi}^2}{(m_{\mathsf{N}}+m_{\psi})^2} \Big[\frac{m_{\mathsf{N}}}{v} \frac{1}{m_{\mathsf{h}}^2} g_{\psi\bar{\psi}\mathsf{h}} f_{\mathsf{N}} \\ &+ \frac{g_{\mathsf{BL}}}{3} \frac{1}{m_{\mathsf{Z}'}^2} g_{\psi\bar{\psi}\mathsf{Z}'} f_{\mathsf{Z}'} \Big]^2. \end{split}$$

• Out of reach from future DD experiment. [1606.07001]

Conclusion

Conclusion

- We study a possible UV completion of light DNPDM.
- Due to gauge B L interaction, detectable contribution to $\Delta N_{\rm eff}$.
- We study both thermal and non-thermal production of DM.
- We find that cosmological constraint (from structure formation and CMB) put stringent bound to the parameter space of the model: stronger than direct detection bound.

Thank you for your attention

Nayan Das

Department of Physics Indian Institute of Technology Guwahati

19/12/2023