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Introduction/Motivation

The existence of dark matter (DM) is widely accepted today,
consistent with many astronomical and cosmological observations.
Believed that DM particles thermally produced in early Universe
At high temperature, a typical DM particle can stay in equilibrium
with the standard model (SM) sector via

χ+ χ↔ fSM + f SM , χ+ fSM ↔ χ+ fSM .

This relic density ∼ the correct order as per “WIMP paradigm”
In this age of precision cosmology, an order of magnitude estimate no
longer acceptable
Both higher order corrections and thermal effects need to be included
First calculation of thermal corrections to above cross sections to
NLO, including thermal effects (M Beneke et al., JHEP 1410 (2014) 45;

JHEP 09 (2016) 031)

They showed the processes are IR finite to NLO
Here we provide an all-order proof of IR divergence cancellation. We
have also computed the finite remainder to NLO.
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Typical class of DM models

The relevant Lagrangian is

L =− 1

4
FµνF

µν + f
(
i /D −mf

)
f +

1

2
χ
(
i /∂ −mχ

)
χ

+ (Dµφ)† (Dµφ)−m2
φφ
†φ+

(
λχPLf

−φ+ + h.c.
)
.

Here f = (f 0, f −)T is left-handed fermion doublet; φ = (φ+, φ0)T is
an additional scalar doublet; χ is [SU(2)× U(1)] singlet Majorana
fermion.

Assume bino to be TeV-scale DM, so freeze-out occurs after
electro-weak phase transition; so only EM interactions relevant at IR.

So we have a theory of fermions and scalars interacting with photons
in a heat bath at finite temperature.
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Real time formulation of thermal field theory

The generating functional ZC (β; j) and time ordered path C from ti
to ti − iβ, where β is the inverse temperature of the heat bath,
β = 1/T .

Type-1 and type-2 thermal fields “live” on the C1 and C2 paths.

C1

C3

C4 C2

Re t

Im t

ti −ti

ti − iσ

−ti − iσ

ti − iβ

Hence periodic boundary conditions,

ϕ(t0) = ±ϕ(t0 − iβ) ,

where ±1 correspond to boson and fermion fields respectively.
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Thermal Feynman rules

The Scalar propagator

iSta,tbscalar(p,m) =

(
∆(p) 0

0 ∆∗(p)

)
+2πδ(p2 −m2)NB(|p0|)

(
1 e|p

0|/(2T )

e|p
0|/(2T ) 1

)
,

∆(p) = i/(p2 −m2 + iε); ta, tb = 1, 2.

The Photon Propagator

iDta,tb
µν (k) = −igµνDta,tb(k) = −igµν S ta,tb

scalar(k, 0) .

The Fermion propagator (zero chemical potential)

iSta,tbferm(p,m) =

(
S 0
0 S∗

)
−2πS ′δ(p2−m2)NF(|p0|)

(
1 ε(p0)e|p

0|/(2T )

−ε(p0)e|p
0|/(2T ) 1

)
,

≡ (/p + m)

(
F−1
p G−1

p

−G−1
p F ∗−1

p

)
,

where S = i/(/p −m + iε), and S ′ = (/p + m).
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Thermal Feynman rules: 2

p p′

µ

p p′

µ

p p′

µ ν

a. Fermion-Photon Vertex b. Scalar-Photon Vertex c. Seagull Vertex

(−ieγµ)(−1)tµ+1 [−ie(pµ + p′µ)](−1)tµ+1 [+2ie2gµν ](−1)tµ+1.

The fermionic number operator

NF(|p0|) ≡ 1

exp{|p0|/T}+ 1

p0→ 0−→ 1

2
,

The bosonic number operator

NB(|k0|) ≡ 1

exp{|k0|/T} − 1
k0→ 0−→ T

|k0|
.

iDab(k) =

[
i

k2 + iε
± 2πδ(k2)NB(|k0|)Dab

T

]
.

So leading IR divergence in the finite temperature part is linear rather
than logarithmic (as at T = 0). Consequently, there is a residual
logarithmic sub-divergence at finite temperature.
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IR behaviour of QED: Grammer, Yennie Phys. Rev. D8,
4332 (1973)

Consider a generic n = (r + s)th order graph. An additional virtual
photon insertion can be made on the final or initial lines or with one
vertex on each.

To separate out the IR finite and divergent parts, rearrange the
photon propagator into K and G parts:
−igµν = −i

{ [
gµν − bk(pf , pi ) k

µkν
]

+
[
bk(pf , pi )k

µkν
]}

,

≡ −i
{[

G
]

+ [K ]
}
.

p

q

p′
V

1

2

r
s 2 1

Here bk is a function of k as well
as the momenta, depending on
whether the vertices of the photon
were inserted on the p′ or p leg.

bk(pf , pi ) =
1

2

[
(2pf − k) · (2pi − k)

((pf − k)2 −m2)((pi − k)2 −m2)
+ (k ↔ −k)

]
.

At every order, either a K or a G virtual photon can be inserted to
obtain the higher order graph.
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Virtual K photon insertions: Simple bk(p′, p) case

Consider a generic nth order graph. Photon insertions can be made on
the fermion or scalar lines or with one vertex on each.
Start with all possible photon insertions on p′ fermion line.

p′s s−1 2 1 µ

+
p′s s−1 2 µ 1

+

+ · · ·+
p′s µ s−1 2 1

+
p′

µ s s−1 2 1

A K -photon insertion at vertices (µ, ν) has a factor (bkk
µkν), where

the vertices have a factor −ieγµ and −ieγν . Hence, when the vertex
µ is inserted to the right of the vertex q, we get kµγµ = /k :

Mright of q
n+1,K ∝ ūp′ γµ1 · · · γµq−1

[
S
tq−1,tµ

p′+
∑

q−1

/k S
tµ,tq

p′+
∑

q−1 +k

]
· · · ΓV · · · ,

= (−1)tµ+1 ūp′γµ1 · · · γµq−1

[
S
tq−1,tq

p′+
∑

q−1

δtµ,tq − S
tq−1,tq

p′+
∑

q−1 +k
δtµ,tq−1

]
· · · ΓV · · · ,

≡ Mq −Mq−1 .
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T = 0 example

Mright of q
n+1,K ∝ ūp′ γµ1 · · · γµq−1

[
S
tq−1,tµ

p′+
∑

q−1

/k S
tµ,tq

p′+
∑

q−1 +k

]
· · · ΓV · · · ,

−→T=0 ūp′γµ1 · · · γµq−1

(P ′ + k)2 −m2)(P ′2 −m2)

[
(/P
′

+ m)/k(/P
′

+ /k + m)
]
· · · ΓV · · · ,

with P ′ = p′ +
∑

q−1 and[
(/P
′

+ m)/k(/P
′

+ /k + m)
]

=
[
(/P
′

+ m)
{

2P ′ · k + k2 − (/P
′ −m)/k

}]
,

=
[
(P ′ + k)2 −m2)(/P

′
+ m)− (P ′2 −m2)(/P

′
+ /k + m)

]
,

so that

Mright of q
n+1,K ∝ ūp′ γµ1 · · · γµq−1

[
S
tq−1,tµ

p′+
∑

q−1

/k S
tµ,tq

p′+
∑

q−1 +k

]
· · · ΓV · · · ,

−→T=0 ūp′γµ1 · · · γµq−1

[
S
P′
− S

P′+k

]
· · · ΓV · · · ,

In the thermal case, we have, for insertions on both fermions and scalars,

S
tq ,tµ
p′+

∑
q

/k S
tµ,tq+1

p′+
∑
q

+k
= (−1)tµ+1

[
S
tq ,tq+1

p′+
∑
q

δtµ,tq+1 − S
tq ,tq+1

p′+
∑
q

+k
δtµ,tq

]
.

D. Indumathi (IMSc, HBNI) Thermal field theory of DM, PHOENIX December 18, 2023 10 / 27



K photon insertions on p′ leg

The total matrix element obtained when the vertex is inserted in s
possible ways (excluding the first graph)

Ms terms
n+1 = (M2 −M1) + (M3 −M2) + · · ·+ (Ms+1 −Ms) ,

=−M1 + Ms+1 .

The first term/graph gives

M1
n+1 ∝ ūp′ /k S

tµ,t1

p′+k
γµ1S

t1,t2

p′+
∑

1 +k
· · · ΓV · · · ,

≡ M1 ,

where we have used u(p′)/kS
tµ,t1

p′+k
= u(p′)(−1)tµ+1δtµ,t1 , and the

on-shell condition /p′u(p′) = mu(p′).

Thus, the total contribution from ALL (s + 1) terms :

Mp′, µ
n+1 = (−1)tµ+1δtµ,tV

[
up′ γµ1 · · · γµq−1S

tq−1,tq
p′+

∑
q−1
· · · S ts ,tV

p′+
∑

s
ΓV · · ·

]
,

which is proportional to the lower order matrix element, Mn.
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Insertions on the scalar lines

Two possibilities: (i) a new insertion, just as for fermions, (ii)
insertion at an already existing vertex (4-point vertex, does not exist
for fermions)

p′s s−1 3 2 1=µ
+

p′s s−1 3 2=µ 1
+

+ · · ·+
p′

s=µ s−1 3 2 1

The diagrams can be combined to get a simplification, although not
as clean as the case of fermions.

Each insertion at an old vertex q, and the insertion µ at q, can be
combined to get a circled vertex. Set of such terms can be combined
to get similar results as the fermionic case.
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The circled vertex

Circled vertex:

p′
s s−1 q µ q−1 2 1

+
p′

s s−1 q=µ q−1 2 1

=
p′

s s−1 qµ q−1 2 1

Analogous identities:

S
tq,tµ

p′+
∑
q

[(2p′+2Σq+k)·k]S
tµ,tq+1

p′+
∑
q

+k
=(−1)tµ+1

[
S
tq,tq+1

p′+
∑
q

δtµ,tq+1−S
tq,tq+1

p′+
∑
q

+k
δtµ,tq

]
,

Insertion right of ‘1’: [(2p′+ k) · k]S
tµ,t1

p′+k
= (−1)tµ+1δtµ,t1 , since p′2 = m2 .

We now apply these results to calculate σ(χχ→ f f ).
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χχ→ f f

A generic process in the DM model can also be identified via a p and
p′ leg:

χ

χ

f

ϕ

f

q + q′

p′

p

q′

V
u u−1 2 1

1
2

r

X
1

s

p′ leg

p leg

Mpf ,pi
n = Cfermion p′

u ×
(
Cps+r

)
= Cfermion p′

u ×
(
Cscalar
s × Cfermion p

r

)
,

We need to consider (n + 1)th photon insertion with (i) both vertices
on p′ leg, (ii) both on p leg, and (iii) one on each.
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Both K photon vertices on p′ leg

This is the same as the fermion case. The Mn+1 matrix element with K
photon insertion in all possible ways on the p′ leg is proportional to the
Mn matrix element.
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K photon insertion with vertices on p and p′ leg

Mp′,p
n+1 ∼ C

fermion p′,µ
u+1 × Cp,νs+r+1 ,

Cp,νs+r+1 =
[
Cscalar,ν
s+1 × Cfermion p

r

]
+
[
Cscalar
s × Cfermion p,ν

r+1

]
,

≡ Cscalar,ν
s+r+1 + Cfermion,ν

s+r+1 .

This is a combination of pure fermion (p′) and fermion-scalar (p).

The Cscalar,ν
s+r+1 has pair-wise cancellation, with one term left over, from

insertion just above X .

The Cfermion,ν
s+r+1 term, which should have only one term left over after

pair-wise cancellation has two terms. One is the expected term,
proportional to the lower order matrix element. The other (arising
from insertions just below X ), cancels the first contribution.

Hence, Mn+1 matrix element with K photon insertion in all possible
ways on the p and p′ leg is proportional to the Mn matrix element.

This double cancellation is independent of the nature of vertex X .
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Both K photon vertices on p leg

This is the most complicated. There are three contributions: (i) both
vertices on scalar, (ii) both on fermion and (iii) one on each. The first
is most complicated, with many diagrams:

p V1 · · · r X 1 · · · tν · · · qµ · · · s

p V1 · · · r X 1 · · · q−1 ν qµ · · · s

p V1 · · · r X 1 · · · q−1 q=ν µ · · · s

p V1 · · · r X 1 · · · q νµ q+1 · · · s

Very complicated structure. In short, there is again a double
cancellation. Here, not only is there a cancellation across vertex X , it
is also needed to observe that vertices V and X have external
particles and thus can only be of type-1 thermal.
After many pages of calculations, the Mn+1 matrix element with K
photon insertion in all possible ways on the p leg is also proportional
to the Mn matrix element.
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Courtesy: Pritam Sen
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Total K photon matrix element Mn+1

MKγ,tot
n+1 =

ie2

2

∫
d4k

(2π)4

{
δtµ,t1 δtν ,t1 D

tµ,tν (k)
[
bk(p′, p′) + bk(p, p)

]
+ δtµ,tV δtν ,tV Dtµ,tν (k)

[
− 2bk(p′, p)

] }
Mn ,

≡ [B]Mn ,

B =
ie2

2

∫
d4k

(2π)4
D11(k)

[
bk(p′, p′)− 2bk(p′, p) + bk(p, p)

]
,

≡ ie2

2

∫
d4k

(2π)4
D11(k)

[
J2(k)

]
,

Universal nature of B; D11 contains thermal dependence.
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Remarks

Disallowed diagrams at higher order: diagrams which are disallowed
at one order may be allowed at higher order.

p

p′

p

p′

p

p′

p

p′

Contribution computes to zero.

Virtual G photon insertions are IR finite. This is a difficult calculation
since there is a linear and sub-leading log divergence and both must
be shown to cancel in G photon insertions in graphs which have
arbitrary mix of K and G insertions (and real photon insertions).
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Factorisation and resummation of K photon contributions

Summing over all orders, we get
∞∑
n=0

1

n!
Mn =

∞∑
n=0

n∑
nK=0

1

nK !

1

n − nK !
MnG ,nK ,

=
∞∑

nK=0

∞∑
nG=0

1

nK !

1

nG !
MnG ,nK , (1)

Since the K photon contribution is proportional to the lower order matrix
element we have,

MnG ,nK = (B)nKMnG ,0 , (2)

∞∑
n=0

1

n!
Mn =

∞∑
nK=0

(B)nK

nK !

∞∑
nG=0

1

nG !
MnG ,

= eB
∞∑

nG=0

1

nG !
MnG . (3)
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Cancellation of IR divergence to all orders

As is the case with T = 0 field theories, the IR cancellation occurs
between the virtual and real photon contributions.
The real photon contributions can also be written as polarisation
sums:∑

pol

ε∗µ(k) εν(k) = −gµν ,

= −
{[

gµν − b̃k(pf , pi )kµkν
]

+
[
b̃k(pf , pi )kµkν

]}
,

≡ −
{[

G̃µν
]

+
[
K̃µν

]}
,

(4)
The phase space factor for real photons includes both emission into
and absorption from heat bath: crucial for IR divergence cancellation.

dφi =
d4ki

(2π)4
2πδ(k2

i )
[
θ(k0

i ) + NB(|k0
i |)
]
. (5)

We will see that the K̃ contribution to the cross section cancels the
IR divergent part of the virtual photon contribution.
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Real and Virtual K photon contributions

The total cross section:

dσtot =

∫
d4x e−i(p+q−p′)·xdφp′dφq′ exp

[
B + B∗

]
exp

[
B̃
]
×

∞∑
nG=0

1

nG !
×

nG∏
j=0

∫
dφje

±ikj ·x
[
−GµνM†µnGM

ν
nG

]
,

=

∫
d4x e−i(p+q−p′)·x dφp′dφq′ exp

[
B + B∗ + B̃

]
σfinite(x) .Here

(B+B∗)+B̃ = e2

∫
dφk

[
J2(k)(1 + 2N0)− J̃2(k)

{
(1 + N0) e ik·x + N0 e

−ik·x
}]

k→0−→ 0 +O(k2) , with J̃2 = J2(k2 = 0) .

Both the linear (O(k0)) and logarithmic (O(k1)) terms cancel order
by order, to all orders in the thermal field theory. Latter not easy to
see explicitly, but due to integrand being odd in k.
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Proof of IR finiteness of G photon contributions

We began with the Grammer-Yennie technique of replacing the term
gµν in the photon propagator by K and G terms:

−igµν = −i
{ [

gµν − bk(pf , pi ) k
µkν
]

+
[
bk(pf , pi )k

µkν
]}

,

≡ −i
{[

G
]

+ [K ]
}
.

We showed that the entire IR divergence was contained in the
K -photon contribution and that this could be factorised and
exponentiated.

Further, a similar process occurs in real photon emission/absorption:
χχ→ f f γ and χχγ → f f , separable into K̃ and G̃ contributions:
former contain the IR divergences.

The IR divergences cancel between the K and K̃ contributions. Both
photon emission into andabsorption from the heat bath are required
for this to occur. Both linear and logarithmic divergences cancel order
by order, to all orders in the theory.

Hence need to show that the G and G̃ contributions are IR finite.
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The proof is ...

· · · very tedious!

In summary,

Linearly divergent terms in G cancel because of structure of bk giving
terms proportional to

[gµν − bk(pf , pi )k
µkν ]× pµf p

ν
i → 0 +O(k1) , (6)

Log divergent terms in G vanish because of symmetry of both measure
and NB(|k0|) in k ↔ −k.

Hence G photon contributions are IR finite.
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The IR finite cross section at NLO

The cross section σ(χχ→ f f ) which occurs in the Boltzmann
equation for the dark matter relic density calculation is now proven to
be IR finite in the thermal field theory.

The IR finite piece and its thermal contribution can now be calculated
explicitly. While the thermal contribution may be small, it can
significantly impact the thermal evolution at early times.

Details of the calculation will be presented by Prabhat Butola in his
talk.
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Conclusions

Thermal theories of charged scalars and fermionic QED are IR safe at
all orders in perturbation theoy.

Using these results, typical theories of thermal dark matter are found
to be IR safe at all orders in perturbation theory.

The seagull and tadpole diagrams were crucial to obtain a neat
factorization leading to resummation.

Both the emission to and absorption from heat bath was crucial for
the IR divergence cancellation.

The whole procedure does not depend on the exact interaction term
in the Lagrangian, and hence can be easily applied to any theory of
charged scalars and fermions.

The IR finiteness of DM is a generic requirement, which has important
implications in cosmology. The IR finite piece has been calculated to
NLO in the thermal field theory (Beneke 2014, Butola 2023).

Thank you
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