

Baryon Asymmetry from a Majorana Fermion Pair Coupled to Quarks

Shrihari Gopalakrishna

Institute of Mathematical Sciences (IMSc), Chennai

[Based on: SG, Rakesh Tibrewala: PRD 2023, 2211.12115; 2311.14636]

Phoenix-2023

IIT-Hyderabad, Dec 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Setup 000	Decay 000000	UV completion O	Scattering O	$n - \bar{n}$ osc	Conclusions O			
Talk	Talk Outline							

- Baryogenesis general aspects
- Majorana fermion $\mathcal X$ carrying baryon number B
 - coupled to UDD
- Baryon asymmetry in decay and scattering
 - UV completion details
- neutron-antineutron $(n \bar{n})$ oscillation

Setup ●00	Decay 000000	UV completion O	Scattering O	$n - \bar{n}$ osc	Conclusions O		
Review							
Barvogenesis basics							

- ロ ト - 4 回 ト - 4 □

• Today we only have matter in the (observable) Universe $\eta_B \equiv \frac{(n_B - n_{\tilde{B}})}{n_{\gamma}} = 6 \times 10^{-10} \frac{\Omega_b h^2}{0.0222}$

What happened to all the anti-matter?

Particle physics explanation is most compelling

- Sakharov conditions for Baryogenesis
 - B violation
 - C and CP violation
 - Departure from Thermal Equilibrium
- When did baryogenesis happen?
 - EW, Leptogenesis, GUT, ...

Our study: baryogenesis in $\mathcal{X} \rightarrow UDD$

$$\mathcal{L} \supset -M_{\chi} \bar{\chi} \chi + rac{1}{\Lambda^2} \left[\overline{D^c} \gamma_{\mu} D
ight] \left[\overline{\chi} (g_L P_L + g_R P_R) \gamma^{\mu} U
ight]$$

 $\mathcal{L}_{B \ viol} \supset - \bar{\chi^c} (\tilde{M}_L P_L + \tilde{M}_R P_R) \chi$

VV interaction: Dirac fermion χ with Q = (U, D)B(Q) = 1/3, $B(\chi) = +1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dirac mass: M_{χ}

- Sakharov conditions
 - B violation: **Majorana mass** $\tilde{M}_{L,R}$
 - C and CP violation: complex $g_{L,R}$, $\tilde{M}_{L,R}$:
 - Departure from Thermal Equilibrium: Hubble expansion
- When did Baryogenesis happen?
 - At scale M_{χ}

Majorana mass \implies Dirac χ to Majorana pair \mathcal{X}_n

Majorana mass \tilde{M} splits Dirac χ into a **pair** of Majorana fermions $\mathcal{X}_n = (\mathcal{X}_1, \mathcal{X}_2)$ with **indefinite baryon number**, mass eigenvalues M_n $\chi = (\mathcal{U}_{1n}P_L + \mathcal{U}_{2n}^*P_R)\mathcal{X}_n$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Baryon asymmetry in Decay $\mathcal{X}_n o UDD$

 $\begin{array}{ll} \text{Amplitude (tree+loop): Process } \mathcal{A} = \mathcal{A}_0 + \mathcal{A}_1; \text{ Conjugate process } \mathcal{A}^c = \mathcal{A}_0^c + \mathcal{A}_1^c \\ \text{Decay rate:} \quad \Gamma = \frac{1}{2M_n} \int d\Pi_3 \ |\mathcal{A}|^2; \ \Gamma^c = \frac{1}{2M_n} \int d\Pi_3 \ |\mathcal{A}^c|^2 \\ \end{array}$

$$\mathcal{A}_B \equiv rac{\Gamma - \Gamma^c}{\Gamma + \Gamma^c}$$

CP violation needs nonzero weak phase (ϕ) and strong phase ($\delta=\pi/2$)

Interference term
$$\hat{\cal A}_{01}\equiv\hat{\cal A}_1{\cal A}_0^*$$
 , $\hat{\cal A}_{01}^c\equiv\hat{\cal A}_1^c{\cal A}_0^{c*}$

 $\Delta \hat{\Gamma}_{01} = \frac{1}{2M_n} \int d\Pi_3 \, \operatorname{Im}(\hat{\mathcal{A}}_{01} - \hat{\mathcal{A}}_{01}^c); \quad \mathcal{A}_B \approx -\frac{\Delta \hat{\Gamma}_{01}}{\Gamma_0^n}$

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Setup 000	Decay o●0000	UV completion O	Scattering O	$n - \bar{n}$ osc	Conclusions O

\mathcal{X}_n Decay at tree-level

Tree-level decay width as a loop:

Cutkosky rule: $1/(k^2-m^2+i\epsilon)
ightarrow -2\pi i \delta(k^2-m^2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Setup	Decay	UV completion	Scattering	$n - \bar{n}$ osc	Conclusions
000	00●000	O	O		O

\mathcal{X}_n Decay at loop level

Arrow clash \leftrightarrow Majorana mass \leftrightarrow B violation

・ロト ・四ト ・ヨト ・ヨト

- 2

\mathcal{X}_n Decay tree-loop interference term

Eg. Diagram A tree-loop interference term

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Compute \hat{A}_{01} :

- Dirac traces and the matrix element
- Loop integral
- Fold in phase-space (as loop integral) and integrate

Baryon asymmetry from decay

Benchmark point: **BP-A** (all masses scaled with M_{χ}): $M_D = 0.25, \ M_U = 0.375, \ M_{\chi} = 1, \ \tilde{M}_L = 0.1, \ |\tilde{M}_R| = 0.11, \ \phi'_R = -\pi/3$

Compute the integrals numerically, compute B Asym. (FeynCalc, Mathematica)

Scaling factors $(M_{\chi}^5/\Lambda^4, M_{\chi}^9/\Lambda^8, M_{\chi}^4/\Lambda^4)$

 \mathcal{A}_B is phenomenologically interesting

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Multiple operator contributions

Add
$$\mathcal{L} \supset -rac{1}{\Lambda^2} \left[ar{U}_c ar{G}^n_{V\mu} \mathcal{X}_n
ight] \left[\overline{\mathcal{X}}_m G^{m\mu}_V U_c
ight]$$

Scaling factors $(M_{\chi}^5/\Lambda^4, M_{\chi}^7/\Lambda^6, M_{\chi}^2/\Lambda^2)$

Setup	Decay	UV completion	Scattering	$n - \bar{n}$ osc	Conclusions
000	000000	●	O		0
UV cor	mpletion	example			

In loops or phase-space, if $p \gtrsim \Lambda$, UV completion relevant. Example: introduce color triplet, vector ξ^a_μ with $Q(\xi) = -2/3$:

 $\mathcal{L}_{UV}^{(A)} \supset -\frac{1}{2} \, \epsilon^{abc} [\overline{D_b^c} \, \tilde{g} \gamma^{\mu} D_a] \, \xi_{\mu}^{c\,*} - [\bar{\chi} \, \gamma^{\mu} (g_L P_L + g_R P_R) U_c] \, \xi_{\mu}^c + \text{h.c.}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Scattering B Asym $({\cal X}ar Q o QQ$ vs. ${\cal X}Q oar Qar Q$)

Scattering

Conclusions

UV completion

Scaling factors $(M_{\chi}^2/\Lambda^4, M_{\chi}^6/\Lambda^8, M_{\chi}^4/\Lambda^4)$ (x = M/T)

neutron-antineutron $(n - \bar{n})$ oscillation

 $au_{n-ar{n}} \geq 4.7 imes 10^8$ s at 90 % C.L. [SuperK, 2021]

 $\implies (\Delta m_{n-\bar{n}})_{\mathrm{expt}} \leq 10^{-34} \ \mathrm{GeV}$

 $\tilde{g}^2 G_V G_\Lambda s_{\rm eff}^2 \frac{\Lambda_{\rm QCD}^6 \langle \hat{Q}_i \rangle}{\Lambda^4 M_\chi} \lesssim 10^{-34} ~{\rm GeV} \implies \Lambda \gtrsim s_{\rm eff}^{2/5} 10^3 ~{\rm TeV} ~({\rm for}~ G_V \sim \mathcal{O}(1))$

[Refinement in future work]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Setup 000	Decay 000000	UV completion O	Scattering O	$n-ar{n}$ osc	Conclusions ●
Concl	usions				

- Majorana pair \mathcal{X}_n with dim-6 VV interaction to UDD studied
- $\mathcal{X} \to \textit{UDD}$ decay B asym computed
- $\mathcal{X}\bar{Q} \rightarrow QQ$ scattering B asym computed
- These will be inputs (collision terms) to the Boltzmann equation for computing BAU (ongoing work)

- ロ ト - 4 回 ト - 4 □

• $n - \bar{n}$ oscillation rate estimated