

### Recent results on BSM searches at LHC

Arun Nayak Institute of Physics Bhubaneswar, India



### Introduction

After ten years of the discovery of a Higgs boson at LHC

- Measurements of the Higgs sector with Run1+Run2 data
  → Consistent with the SM
- But, many theoretical and experimental motivations to search for physics beyond SM

### Large number of BSM searches at LHC:

### BSM Searches in the Higgs Sector:

- Complimentary to the investigation of properties of the observed Higgs boson
- Includes
  - Searches for more complex Higgs sector
    - Prediction of additional Higgs bosons from many models beyond SM
  - Search for exotic decays not expected within the SM.

Only a few recent results are presented here

### **Other BSM Searches**

- Searches for Resonances
- Non-resonance searches
- Long Lived Particles
- ....

### Searches for Additional Higgs bosons

Many extensions of the SM adds scalar doublets, triplets etc.. to the Higgs sector

- 2HDM
- 3HDM
- 2HDM + Scalar
- Higgs Triplets
- ....

These models predict additional scalar bosons:

• h, H, A, H<sup>±</sup>, H<sup>±</sup><sup>±</sup>

Searches performed in final states with

- Di-bosons ( $\gamma\gamma$ ,  $Z\gamma$ , VV)
- Di-leptons (e $\mu$ ,  $\mu\mu$ ,  $\tau\tau$  etc..)
- Other complex final states

Resonant Di-Higgs searches:  $X \rightarrow hh$ ,  $X \rightarrow hY$ ,  $X \rightarrow YY$ 

Phoenix 2023, 18 - 20 Dec. 2023

## Low mass $h \rightarrow \gamma \gamma$

#### ATLAS-CONF-2023-035 JHEP 07 (2023) 155 CMS PAS HIG-20-002

Additional Higgs bosons decaying to a pair of photons Mass range: 70 – 110 GeV SM-like benchmark

CMS: 2.9 $\sigma$  local (1.3 $\sigma$  global) at 95.4 GeV





## Low mass $h \rightarrow \gamma \gamma$

ATLAS-CONF-2023-035 JHEP 07 (2023) 155 CMS PAS HIG-20-002



Phoenix 2023, 18 - 20 Dec. 2023

## Additional H $\rightarrow \tau \tau$

#### JHEP 07(2023)073



Additional Higgs bosons with masses below 350 GeV are excluded at 95% CL in M<sup>125</sup><sub>h</sub> and M<sup>125</sup><sub>h, EFT</sub> MSSM benchmark scenarios

Phoenix 2023, 18 - 20 Dec. 2023

## Higgs decaying to Top quarks



### Interpretations in MSSM

Interpretation in hMSSM scenario (as proposed in arxiv:1307.5205, 1502.05653)

Exclusion of MSSM parameter space via direct searches for heavy Higgs bosons



## $A \rightarrow aH, H \rightarrow \tau\tau, a \rightarrow \text{Invisible}_{\underline{HEP 09 (2023) 189}}$

m<sub>A</sub> [GeV]



- Final state:  $2\tau + MET$
- SR for low  $m_A$  and high  $m_A$





## $H^{+} \rightarrow WZ \text{ and } H^{++} \rightarrow W^{+}W^{+}$

 $H_{\varsigma}^{\pm}$ 

arXiv:2312.00420 arXiv:2207.03925

Georgi-Machacek model (Fermiophobic Higgs fiveplet)

H<sup>++</sup> produced in VBF and decays to *VV* (multi-lepton final state)

 $H^+ \rightarrow WZ$ 





 $H^{++} \rightarrow W^+ W^+$ 

 $3.2\sigma(2.5\sigma)$  local(global) at 450 GeV

#### Phoenix 2023, 18 - 20 Dec. 2023

### $H^+ \rightarrow WH, H \rightarrow \tau \tau$

### JHEP 09 (2023) 032

Benchmark: 2HDM

- $m_{H}$  = 200 GeV,  $m_{h}$  = 125 GeV
- $\ell \tau_h$ ,  $\ell \tau_h \tau_h$  final states split by lepton flavor/charge
- $m_T (\ell \tau_h \tau_h)$  or BDT  $(\ell \tau_h)$  as discriminant





## LFV X $\rightarrow e_{\mu}$

- LFV decays of additional Higgs bosons (X) in Type III 2HDM
- For  $m_X > 2m_W$ , the dominant decay mode is  $X \rightarrow WW$ 
  - Limit the search region to 100-160 GeV.
- Events categorized using BDT
- Fitting  $m_{e\mu}$  distribution in signal regions



Largest excess:  $3.8\sigma(2.8\sigma)$  local (global) at 146 GeV

## Resonant Di-Higgs Searches

# $X \rightarrow hh (h = h_{125})$

Benchmark models: 2HDM (e.g. MSSM), real singlet etc.. For  $m_X > 250 \text{ GeV}$  Additional hh → bbWW and multilepton channels Improved sensitivity with bbbb merged-jet



Phoenix 2023, 18 - 20 Dec. 2023

 $X \rightarrow Yh$ 

arXiv:2310.01643 JHEP 10 (2023) 009 PLB 842 (2023) 137392 PRD 108 (2023) 052009

Larger extended Higgs sectors: Such as two additional singlets (TRSM), 2HDM+S (including NMSSM)

ATLAS: bb+ generic hadronic,  $\tau\tau$ +WW/ZZ



CMS. : bbbb (merged jet), bbyy, bbrt lee g

Х

 $H/\gamma$ 



 $X \rightarrow Yh$ 

arXiv:2310.01643 JHEP 10 (2023) 009 PLB 842 (2023) 137392 PRD 108 (2023) 052009

Larger extended Higgs sectors: Such as two additional singlets (TRSM), 2HDM+S (including NMSSM)

ATLAS: bb+ generic hadronic,  $\tau\tau$ +WW/ZZ g moo  $X \rightarrow Yh \rightarrow WW/ZZ + \tau\tau$ Х g QQQ HATLAS √s=13 TeV, 140 fb<sup>-1</sup> Obs. limits (95% CL)  $m_x/25 = [20, 30, 40, 50, 60]$ Expected  $\pm 1\sigma$  $m_{s} = [200, 300, 400, 500]$ Expected  $\pm 2\sigma$ NMSSM Scan  $10^{2}$ 10  $10^{-2}$ 10 220 240 260 320 340 360 430 450 550 530  $m_s + m_x/25$  [GeV] Approaching NMSSM cross sections at the lowest masses

CMS. : bbbb (merged jet), bbyy, bbrt g Η/ Х Parametric fit in  $m_{\gamma\gamma} - m_{bb}$  plane 138 fb<sup>-1</sup> (13 TeV). CMS Limits below theoretical cross section NMSSM n limits at HY → ∽ 500 400 Observed exclusion on  $\sigma$  (pp  $\rightarrow$  X  $\rightarrow$ 300 10 200 100 10<sup>-2</sup> 1000 400 500 600 700 m<sub>x</sub> [GeV] Sensitive to NMSSM predictions

(max. allowed cross sections from <u>NMSSMTools</u> 5.5.0)

Phoenix 2023, 18 - 20 Dec. 2023

## $X \rightarrow YY \text{ and } Z^* \rightarrow HA$





- lepton-specific (or type X)
  2HDM at large tanβ
- direct A/H production strongly suppressed
- Fit  $m_T^{tot}$  distribution ( $4\tau_{vis} + p_T^{miss}$ )



Phoenix 2023, 18 - 20 Dec. 2023

Arun Nayak

## Non-standard Higgs decays

- Width of SM Higgs is small → small coupling to BSM can result in detectable branching fractions
- Constraint on Br (h → undetected), from combination of Higgs measurements, still allows for O(10%) decays into unobserved particles.
- BSM models predict exotic decays of the SM H(125):
  - o Decays to (pseudo) scalars
  - o Invisible decays (e.g. Dark Sectors)
  - Lepton Flavor Violation (LFV)
  - Decays to Long-Lived Particles (LLPs)



## $h(125) \rightarrow aa \text{ searches}$

- h(125) → aa decay mode possible in NMSSM scenarios, where "a" stands for just a Higgs boson that could be scalar or pseudo-scalar
- Many final states analyzed for varying  $m_a$  values, up to  $m_a \le m_h/2$
- The decay products of "a" boson boosted for low m<sub>a</sub> values:
  - Challenging final states
  - Special care needed to reconstruct and identify leptons
- Results are presented in terms of upper limits on cross section times branching fractions

### Large number of searches at LHC



## h(125) → aa

#### CMS-PAS-HIG-18-026





JHEP 07 (2023) 148

 $\rightarrow$  aa  $\rightarrow$  bbµµ)

B(H

#### PRD 105 (2022) 012006



#### Limits on $B(h \rightarrow aa)$ for Type II (tan $\beta$ = 2) of 2HDM+S



Phoenix 2023, 18 - 20 Dec. 2023

Arun Nayak

50

m<sub>a1</sub> (GeV)

40

30

20

10<sup>1</sup>

60

## $h(125) \rightarrow AA (ALPs) \rightarrow 4\gamma$

### Search for ALPs in Higgs decay, with ALP $\rightarrow$ 2 $\gamma$

ATLAS: Search for wider mass range (0.1 – 62 GeV)

- Prompt (short-lived), large  $\Gamma$ : m<sub>a</sub> > 5 GeV
- Long-lived,small Γ: m<sub>a</sub> >0.1 GeV

CMS: Low mass ALPs in Higgs decay

- Merged γγ reconstructed as a single photonlike objects
- Regressor trained to predict m(A) based on low-level detector information





ATLAS-CONF-2023-040

#### Phoenix 2023, 18 - 20 Dec. 2023

 $h \rightarrow ZX/XX \rightarrow 4\ell$ 

**Expected exclusion** 

**Observed exclusion** 

 $\textbf{H} \rightarrow \textbf{Z}_{\textbf{D}} \, \textbf{Z}_{\textbf{D}} \rightarrow \textbf{4I}, \, \kappa = \textbf{0.0002}$ 

40

50

JHEP 03 (2022) 041 EPJC 82 (2022) 290

Motivated by DM models with scalar/vector portal, which include mediator Z between dark/hidden sector and SM

→ searches for

CMS

 $ee \text{ or } \mu\mu)^2$ 

↑

B(X)

 $B(H \rightarrow X X) \times L$ 

10<sup>-6</sup>

10

 $h \rightarrow XX/ZX \rightarrow 4\ell \ (\ell = e \text{ or } \mu)$ 



Limits set also in other channels

30

20

## Searches for Resonances

### Multijet Resonance Searches JHEP 07 (2023) 161 arXiv:2307.14944



Phoenix 2023, 18 - 20 Dec. 2023

## Multijet Resonance Searches arXiv:2310.14023

Search for narrow resonances decaying to three well separated jets



Phoenix 2023, 18 - 20 Dec. 2023

## Multijet Resonance Searches



## Multijet Resonance Searches

Search for a new Z' resonance decaying into a **pair of dark quarks** which hadronize into dark hadrons before promptly decaying back as Standard Model particles -> jets with high charged-particle multiplicity



## Leptoquark searches

### Search for a resonance decaying to a lepton and a jet



28/40

## Leptoquark searches

Search for a resonance decaying to a muon and a b-jet



Phoenix 2023, 18 - 20 Dec. 2023



Phoenix 2023, 18 - 20 Dec. 2023

Excludes  $M_{RAD} < 3.1 \text{ TeV}$ 

Arun Nayak

30/40

 $3.6\sigma$  (2.3 $\sigma$ ) at 2.1 TeV and 2.9 TeV local (global)

### Search for Heavy Vector bosons arXiv:2308.08521



Phoenix 2023, 18 - 20 Dec. 2023

### Searches for Long-Lived Particles

Many searches for Long Lived Particles (LLPs)

- Predicted by several BSM models
- Unconventional Signatures:
  - Emerging jets
  - Heavy charged LLPs
  - o Delayed jets
  - Displaced jets
  - Displaced lepton Jets
  - Disappearing tracks
  - Displaced muons
  - Displaced Vertices

<u>Summary of LLP searches</u> <u>CMS\_Long\_lived\_particle\_summary</u>

ATL-PHYS-PUB-2023-008

0 .....

Dedicated triggers in Run-3

## **Displaced Lepton Jets**



## Search for Displaced muons

## Search for long-lived exotic particles decaying to a pair of muons

- Uses 2022 Run-3 data
  - Improved sensitivity due to lower trigger thresholds
- Interpretations in Hidden Abelian Higgs model (HAHM) and RPV SUSY model





### $10 \approx m_{zD} \approx 60 \text{ GeV}$



Phoenix 2023, 18 - 20 Dec. 2023

## Search for Displaced muons



Phoenix 2023, 18 - 20 Dec. 2023

Arun Nayak

S-PAS-FXO-23-

## Search for displaced vertices

Search for long-lived particles with at least one displaced vertex and missing transverse momentum

- Sensitive to long-lived particles with mean proper decay lengths between 0.1 and 1000 mm
- ML based analysis for discrimination of background displaced vertices





Phoenix 2023, 18 - 20 Dec. 2023

Arun Nayak

a

# Higgs decay to LLP

### PRD 106, (2022) 032005

- Hidden sector models predict exotic Higgs decays to LLP
  → Search for events with two displaced vertices from
  - long-lived particles (LLP) pairs
- Requires reconstructing vertices of LLPs decaying to jets in the muon spectrometer, displaced between 3m and 14m with respect to the primary vertex
  - Dedicated muon spectrometer multi-Rol trigger and track segment and vtx reconstruction in muon spectrometer
  - Background from punch-through jets suppressed with track & calo isolation



BR( $\Phi(125) \rightarrow ss$ ) = 10% excluded for  $c\tau(s)$  in range 4 cm — 7.8 m for m<sub>s</sub> = 5 GeV



Phoenix 2023, 18 - 20 Dec. 2023

# Higgs decay to LLP @ LHCb EPJC 82 (2022) 4, 373



Entries/(3 GeV/ $c^2$ )

### Summary

- Large number of BSM searches at LHC
  - Stringent limits in several models with Run1+Run2 data
  - A few small excesses observed
    - More data needed to make conclusive statement
- Analysis of Run-3 data starting to ramp up
  - With improved analysis techniques and extending to uncovered regimes

Stay Tuned

Thank You

# High mass $H \rightarrow WW$

### CMS-PAS-HIG-20-016

Dilepton Analysis:  $H \rightarrow WW \rightarrow e\mu + vv$  $H \rightarrow WW \rightarrow ee/\mu\mu + vv$ 

Events categorized by multiclass DNN:

- ggF
- VBF
- background Search in four scenarios:
- $f_{VBF} = 0 (ggF only)$
- $f_{VBF} = 1$  (VBF only)
- Floating  $f_{VBF}$  (ggF only)
- SM f<sub>VBF</sub>



| Scenario           | Mass [GeV] | ggF cross sec. [pb] | VBF cross sec. [pb] | Local signi. $[\sigma]$ | Global signi. $[\sigma]$ |
|--------------------|------------|---------------------|---------------------|-------------------------|--------------------------|
| $SM f_{VBF}$       | 800        | 0.16                | 0.057               | 3.2                     | $1.7\pm0.2$              |
| $f_{VBF} = 1$      | 650        | 0.0                 | 0.16                | 3.8                     | $2.6\pm0.2$              |
| $f_{VBF} = 0$      | 950        | 0.19                | 0.0                 | 2.6                     | $0.4 \pm 0.6$            |
| floating $f_{VBF}$ | 650        | $2.9 	imes 10^{-6}$ | 0.16                | 3.8                     | $2.4\pm0.2$              |

Phoenix 2023, 18 - 20 Dec. 2023

## High mass $H \rightarrow WW$

### CMS-PAS-HIG-20-016

Dilepton Analysis:  $H \rightarrow WW \rightarrow e\mu + vv$  $H \rightarrow WW \rightarrow ee/\mu\mu + vv$ 

Events categorized by DNN:

- ggF
- VBF
- background





Other scenarios



## High mass $H \rightarrow WW$

ATLAS: Dilepton Analysis:  $H \rightarrow WW \rightarrow e\mu + vv$ 

Cut based analysis: Categorised to VBF and ggF based on cuts



## Same-sign top pair production via H/A



Benchmark model: Generic 2HDM



 $ho_{tc}$  vs.  $m_{\scriptscriptstyle A}$ 

### $ho_{tu}$ vs. $m_{A}$



### without the A-H interference (Interpretations also with A-H interference)

Phoenix 2023, 18 - 20 Dec. 2023

 $X \rightarrow \phi \phi \rightarrow (\gamma \gamma)(\gamma \gamma)$  (merged diphotons)

Search for a massive resonance XX decaying to a pair of spin-0 bosons  $\phi \rightarrow \gamma \gamma$ 

 $m_X$  : 0.3 and 3 TeV,  $m_{\varphi}/m_X$ : 0.5% -- 2.5%



High mass  $X \rightarrow Z\gamma$ 

#### arXiv:2309.04364

### Signal benchmark: Higgs Characterisation Model (https://arxiv.org/pdf/1306.6464.pdf)



Highly boosted Z boson for high mass X XGBoost to reconstruct collinear electrons

### Charged Higgs decay to Vector bosons

### $VBF \text{ production of } H^{\pm\pm} \rightarrow W^{\pm\pm} W^{\pm\pm} / H^{\pm} \rightarrow W^{\pm} Z$

Searches for VBF production of charged Higgs boson, and decaying to pair of gauge bosons → Motivated by the Georgi–Machacek model, with SU(2) scalar triplets



- Clean signature: two isolated same-sign lepton (2 $\ell$ ss) or three isolated lepton (3 $\ell$ ), with two VBF jets
- Signal extraction using binned max. likelihood fit of 2D distribution (  $M_{\rm T}{}^{\rm VV}$  and  $m_{\rm jj}$  )



Phoenix 2023, 18 - 20 Dec. 2023

## $H^+ \rightarrow tb$

#### JHEP 06 (2021) 145

Searches for the production of tbH<sup>+</sup>, H<sup>+</sup> $\rightarrow$ tb, in the mass range 200 GeV - 2 TeV.

- Final state:  $1\ell$  + jets
  - Events categorized according to no. of jets and b-jets
  - Neural Network to discriminate signal from background
  - Background dominated by tt+jets (normalized from control regions)
- Limits on production cross section times branching fraction, and interpretations in MSSM scenarios.





### Charged Higgs decay to Vector bosons

Pair production of  $H^{\pm\pm}$ , associated production of  $H^{\pm}$  and  $H^{\pm\pm}$ .

→ Motivated by Type II seesaw model



Clean signatures: two same-sign leptons  $(2\ell ss)$ , three leptons  $(3\ell)$  and four leptons  $(4\ell)$ .



### Strong limits on $\sigma \times \text{BR}$



## $X \rightarrow S(VV)H, H \rightarrow \tau \tau$

### JHEP 10(2023)009

2HDM+S model (e.g, NMSSM)

- $X \rightarrow SH, H \rightarrow \tau\tau$  and  $S \rightarrow VV$  (1 or 2  $\ell s$ )
- *Mx*: 0.5-1.5 TeV, *Ms*: 200-500 GeV
- BDT to suppress background in each SR





## LFV Higgs decays

Search for  $H \rightarrow e\tau$  and  $\mu\tau$  decays

- Forbidden in SM, but allowed in many BSM models
- 2 tau decay modes:  $\tau_h$  or  $\tau_{\mu/e}$
- Jet based categories designed to enhance the contribution of different Higgs production mechanisms: 0-jet, 1-jet, 2-jets (ggH), and VBF
- BDT classifier to extract signal





CMS-HIG-20-009

CMS

Phoenix 2023, 18 - 20 Dec. 2023

Arun Nayak

|Y<sub>eτ</sub>|

137 fb<sup>-1</sup> (13 TeV)

## LFV Higgs decays

### Search for $H \rightarrow e\mu$ decays

- Events with b-jets and significant MET are rejected to suppress backgrounds
- Events categorized according to  $p_{T}{}^{e\mu}\!,$   $\eta^{e\mu}\!,$  and VBF





#### Phoenix 2023, 18 - 20 Dec. 2023

Arun Nayak

#### Phys. Lett. B 801 (2020) 135148