

SEARCH AT LARGE HADRON COLLIDER (LHC)

SEARCH AT LARGE HADRON COLLIDER (LHC)

MACHINE LEARNING

FOR HEP COMMUNITY

- Machine learning is not new for HEP community
- Used in low to high level experimental measurements with track finding, calorimeter hit reconstruction, particle identification, energy/momenta reco
- Multi Variate Analysis (MVA) & Boosted Decision Tree (BDT) used extensively on high level variables with primary focus as Classifier
 — Significant contribution in Higgs discovery
- I focus from the viewpoint of the emergence of modern deep learning era that greatly outperformed the previous state of arts in last one decade or so
- Driving forces -
 - Advent of graphics processor units (GPU) + Increased computing power
 - Large available data + Development of advanced ML architectures

Partha Konar, PRL

MACHINE LEARNING

AND .. GOING DEEPER

- Universal function approximation: NN with a single hidden layer can approximate any continuous function to any desired precision!
- Deep learning models with multiple hidden layers solves the need for infinitely large no of nodes in shallow NN
- Learning scalable with data larger data for better performance
- Deep learning models are now capable of extracting feature directly from low level data
 - End for physics intuitive high level variables from domain experts?

ARTIFICIAL NEURAL NETWORK (ANN)

- Search for a function $f(\vec{x}, w) : X \to h_1 \dots \to h_i \to h_{i+1} \dots \to h_n \to Y$ X : Input/obs. space; Y: Target space [low-dimensional space]Optimize loss function $\mathscr{L}[y - f_w(x)];$ w - tunable parameters
- During training, trainable weight parameters (w) are learned by the back-propagation whose aim is to minimize the loss function.

CONVOLUTIONAL NEURAL NETWORK (CNN)

- Most significant innovation in DNN Image processing
- Convolution architecture rely on local and global features with translation invariance
- Inductive biases based on locality and weight sharing
- Image pixels are convoluted with no. of kernel/filter " k_j " $x_{i+1} = \sigma(wh + b) \rightarrow h_{i,j} = \sigma(k_j \cdot h_i + b_j)$
- Sharing same weights passing through full image
 reduce tunable parameters drastically
 translational symmetry on the network
- Algorithm first learn edges and shapes
 -> more complex local features
 -> leads to global features

Partha Konar, PRL

Deep Learning Frontier.. in Particle Physics

Kernel (or filter)

Feature map

CONVOLUTIONAL NEURAL NETWORK (CNN)

- Most significant innovation in DNN Image processing
- Convolution architecture rely on local and global features with translation invariance
- Inductive biases based on locality and weight sharing
- Image pixels are convoluted with no. of kernel/filter " k_j " $x_{i+1} = \sigma(wh + b) \rightarrow h_{i,j} = \sigma(k_j \cdot h_i + b_j)$
- Sharing same weights passing through full image
 reduce tunable parameters drastically
 translational symmetry on the network
- Algorithm first learn edges and shapes
 -> more complex local features
 -> leads to global features

Partha Konar, PRL

Deep Learning Frontier.. in Particle Physics

Kernel (or filter)

Feature map

DEEP MACHINE LEARNING

CATEGORY

Strategy –	—— Representations ——	—— Targets / tagging ——	strategies
Classification	 Jet Image Event Image Sequence (Recurrent NN) Graph (Graph NN) Sets (Point cloud - Graph) 	 Quarks vs gluons Boosted H / W / Z / Top tag New particles and models Particle tagging at detector Neutrino flavour 	 Weak/ Semi/ Un- supervised Reinforcement Learning Quantum Machine Learn Feature Ranking
Regression	 Parameter estimation Pileup mitigation Parton Distribution Func Symbolic Regression Function Approximation 		Optimal Transport
Generative models		 GANs Autoencoders Phase space generation Normalizing flows 	

Anomaly detection Partha Konar, PRL

Deep Learning Frontier.. in Particle Physics

HEP ML Living Reviews 7

JET REPRESENTATION

JET DATA - IMAGES, SEQUENCES AND SETS

- OCD Jets have a rich & complex structure perfect playing field
- How related to the first principles in Quantum Chromodynamics?
- No unique way for encoding radiation pattern into a particular data structure

JET REPRESENTATION

JET DATA - IMAGES, SEQUENCES AND SETS

- QCD Jets have a rich & complex structure perfect playing field
- How related to the first principles in Quantum Chromodynamics?
- No unique way for encoding radiation pattern into a particular data structure

Deep-learning techniques for VBF Higgs searches

-a case study in the invisible decay channel

Based on: <u>2008.05434</u> [Eur.Phys.J.C 80 (2020) 11, 1055] <u>2201.01040</u> [Phys.Rev.D 105 (2022) 11, 113003]

(Akanksha Bhardwaj, Partha Konar, Aruna K Nayak, Vishal Ng)

✓ Vector Boson Fusion (VBF) was a novel proposal for Higgs search

Interesting topology for a VBF
 Two forward jets + large inv. Mass
 No central jet activity between them
 Decay products at the central region

- Qn. Can CNN learn feature for such event selection?
- Problem is even more difficult if Higgs is decaying invisibly!

✓ Vector Boson Fusion (VBF) was a novel proposal for Higgs search

Interesting topology for a VBF
 Two forward jets + large inv. Mass
 No central jet activity between them
 Decay products at the central region

• Qn. Can CNN learn feature for such event selection?

Problem is even more difficult if Higgs is decaying invisibly!

Br(h->inv) : VBF is most sensitive channel to give max bound on invisible BR

Partha Konar, PRL

✓ Vector Boson Fusion (VBF) was a novel proposal for Higgs search

Interesting topology for a VBF
 Two forward jets + large inv. Mass
 No central jet activity between them
 Decay products at the central region

• Qn. Can CNN learn feature for such event selection?

Problem is even more difficult if Higgs is decaying invisibly!

Br(h->inv) : VBF is most sensitive channel to give max bound on invisible BR

Collider bounds on Br(h->inv) [23%(36fb), 10% (140fb)]>> SM prediction (<.01%)!!

Partha Konar, PRL

✓ Vector Boson Fusion (VBF) was a novel proposal for Higgs search

Interesting topology for a VBF
 Two forward jets + large inv. Mass
 No central jet activity between them
 Decay products at the central region

• Qn. Can CNN learn feature for such event selection?

Problem is even more difficult if Higgs is decaying invisibly!

Br(h->inv) : VBF is most sensitive channel to give max bound on invisible BR

Collider bounds on Br(h->inv) [23%(36fb), 10% (140fb)]>> SM prediction (<.01%)!!

Lots of Dark Matter models (higgs portal) still exist because of this large limitPartha Konar, PRLDeep Learning Frontier.. in Particle Physics

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION 3 SET OF ANALYSIS

Partha Konar, PRL

3 SET OF ANALYSIS

A. CMS analysis with 36 fb^-1 data [Based on expert level VBF feature] Simulated Signal and BG => Reproducing CMS "BR upper limit" result

3 SET OF ANALYSIS

- A. CMS analysis with 36 fb^-1 data [Based on expert level VBF feature] Simulated Signal and BG => Reproducing CMS "BR upper limit" result
- B. DML with sets of three different high level data [ANN]
 1. Kinematic data : Event-kinematics from reconstructed objects

$$\mathcal{K} \equiv \left(\left| \Delta \eta_{jj} \right|, \left| \Delta \phi_{jj} \right|, m_{jj}, MET, \phi_{MET}, \Delta \phi_{MET}^{j_1}, \Delta \phi_{MET}^{j_2}, \Delta \phi_{MET}^{j_1+j_2} \right)$$

2. Radiative: Contains information about the QCD radiation pattern

$$\mathcal{R} \equiv (\mathcal{H}_T^{\eta_C} | \eta_C \in \mathcal{E}) \quad , \quad \mathcal{H}_T^{\eta_C} = \sum_{\eta < |\eta_C|} \mathcal{E}_T$$

3. Combination of above two

 \mathcal{H}

3 SET OF ANALYSIS

- A. CMS analysis with 36 fb^-1 data [Based on expert level VBF feature] Simulated Signal and BG => Reproducing CMS "BR upper limit" result
- B. DML with sets of three different high level data [ANN]
 1. Kinematic data : Event-kinematics from reconstructed objects

$$\mathcal{K} \equiv \left(\left| \Delta \eta_{jj} \right|, \left| \Delta \phi_{jj} \right|, m_{jj}, MET, \phi_{MET}, \Delta \phi_{MET}^{j_1}, \Delta \phi_{MET}^{j_2}, \Delta \phi_{MET}^{j_1+j_2} \right)$$

2. Radiative: Contains information about the QCD radiation pattern

 $\mathcal{R} \equiv (H_T^{\eta_C} | \eta_C \in \mathcal{E}) \quad , \quad H_T^{\eta_C} = \sum_{\eta < |\eta_C|} E_T$

3. Combination of above two

C. DML with low level calorimeter input data [CNN]

- Hi & Low resolution Calorimetry

Partha Konar, PRL

 \mathcal{H}

Partha Konar, PRL

12

ROLE OF PARTON SHOWER

★In this simple setup with just two jets : NN minutely learned the kinematic relation & radiation pattern from the data

★Extra QCD radiation between two tag jets extremely significant!!

★Central-jet Veto:

Efficiently rejects large QCD backgrounds by vetoing events with additional central jet

★Qn. How faithful the distribution function which NN learn?

 Perturbative Accuracy of Matrix Element Simulation : LO vs NLO => Important for any process

Parton Shower recoil Scheme [Dipole parton shower]
 => Wrong global scheme (for spacelike shower) used in most analysis

★True potential unfolds if theoretical predictions are accurate enough.

Partha Konar, PRL

✓ LO + Global parton shower scheme shows lowest performance
 ✓ NLO + Dipole parton shower scheme shows best performance
 ✓ Rest two (LO+ Dipole & NLO+ Global) shows intermediate performance

Partha Konar, PRL

Economoratin analysistarning Frontier. in Particle Physics

Images

BEYOND CNN GRAPH NEURAL NETWORK

- Detectors calorimeter hits are typically very sparse and unstructured
- Varying number of reconstructed constituents
- Large number of tunable parameters
- Euclidean image (CNN) => general non-Euclidean domain (GNN) : Geometric deep learning
- Graph: Event as point cloud with each entry containing a vector composed of observables
- Graph == Nodes (data point) + Edges (connections are as important as the data itself)
- Message passing operation: nodes features and edge features are exchanged and provide a sophisticated feature extraction
- GNN is very powerful recent concept mostly unexplored!!

Text

BEYOND CNN

- sparon Enclidean sparon Enclidean cers inherenty non-Enclidean ining able length & Inherenty representation sed of data with variable a flexible accontent representation the progeneous data with variable a flexible accontent representation the progeneous data with variable a flexible accontent of the provide accontent o raph equit as with variable length & Inherently non-futurent accured raph equit as with variable length & Inherently non-futurent accured with variable length & Inherently non-futurent accured accured of the second accured and a second accured accured raph equits the second accured and a second accured ac ata point) + Edges (connections are as important as
 - ged and provide a sophisticated feature extraction
 - NN is very powerful recent concept mostly unexplored!!

Energy-weighted Message-passing Networks — An IRC safe feature extraction using GNNs.

Based on: arxiv: 2109.14636 [JHEP 02 (2022) 060] # Cited in newly introduced AI chapter - PDG'22 arxiv: 2309.17351 [JHEP xx (2023) xxx] (Partha Konar, Vishal Ng, Michael Spannowsky) Partha Konar, PRL Deep Learning Frontier.. in Particle Physics

INFRA-RED AND COLLINEAR (IRC)

Any QCD jet observable should be

- sensitive to the physics you want to probe
- calculable from first principles in Quantum Chromodynamics (QCD)

- Kinoshita-Lee-Nauenberg (KLM) theorem: Divergences exactly cancel between the real and virtual contributions to the observable at each perturbative order when the soft and collinear regions of phase space are inclusively summed over.
- IRC safety ensures that the phase space restrictions that the measured value of an observable imposes do not disrupt this cancellation [Sterman and Weinberg]
- IRC safe Jet mass & thrust observable [early beginning of jet sub-structure]
- Catani etal (CTTW) large log resummed jet substructure observable

INFRA-RED AND COLLINEAR (IRC)

- * High-energy partons lead to collimated bunches of hadrons
- * jet definition: project from large no of hadrons => few parton-like objects
- Provide link between experimental observables and the theoretical construction
- Def of jet must be invariant with respect to certain modifications of the event
 -> collinear splitting -> infrared emission

Effort went into constructing IRC safe jet : Sequential recombination in KT, Anti-KT

How can we make neural networks aware of this physics input? So that, it treats all hadronic/jet analysis in a IRC safe way.

Partha Konar, PRL

POINT CLOUD

Set of points sampled from an underlying space (not necessarily Euclidean)

Each data sample is a set with variable cardinality:

$$\mathcal{S}_lpha = \{p_1, p_2, \dots, p_{n_lpha}\}$$

Can also be a collection of sets:

$$\mathcal{S}^{all}_{lpha} = \{\mathcal{S}^{jets}_{lpha}, \mathcal{S}^{leptons}_{lpha}, \mathcal{S}^{photon}_{lpha}, \dots\}$$

 α = Event index

CONSTRUCTION OF GRAPH LEARNING HOW DIFFERENT POINTS RELATE

Partha Konar, PRL

ENERGY-WEIGHTED MESSAGE-PASSING

21

NETWORK PERFORMANCE

EMPN - IRC SAFE WAY

PK, Vishal Ng, Michael Spannowsky; 2022

Partha Konar, PRL

TOWARDS IRC SAFE H-EMPN HYPER - GRAPH NEURAL NETWORK

- Extracting features from any N-point correlation
- Construct IRC safe higher-point correlations
- Hypergraph Energy-weighted Message Passing Networks (H-EMPNs) designed to capture any N -point correlation among particles
- Order-three hyperedges simultaneously link properties of three jet constituents at a time
- Access higher-order correlations amongst jet constituents

Partha Konar, PRL

Deep Learning Frontier.. in Particle Physics

PK, Vishal Ng, Michael Spannowsky; 2023

MACHINE LEARNING

CHALLENGES

Interpretability: Relevant physics knowledge learned by the model

- : Physics intuitive high-level features capture real insights, but clearly sacrifice some useful information
- Prejudice: Decades-old research by human mind must be supreme (After all, NN tried to mimic the neurones??)
- Status quo: are "we" and "journals" evolving slowly to catch up!
- In research: Dealing with different kinds of abstract data
- Overreach: Is not effective in all kinds of problems!

Involved cost:

- Data science skill development + domain knowledge expertise
- Order of magnitude higher computation power requirement
- Opaque transition between knowledge & learning

Partha Konar, PRL

