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๏ Machine learning is not new for HEP community 

๏ Used in low to high level experimental measurements with track finding, 
calorimeter hit reconstruction, particle identification, energy/momenta 
reco  

๏ Multi Variate Analysis (MVA) & Boosted Decision Tree (BDT) used 
extensively on high level variables with primary focus as Classifier 
— Significant contribution in Higgs discovery 

๏ I focus from the viewpoint of the emergence of modern deep learning 
era that greatly outperformed the previous state of arts in last one decade 
or so 

๏ Driving forces -  
— Advent of graphics processor units (GPU) + Increased computing power  
— Large available data + Development of advanced ML architectures
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MACHINE LEARNING
FOR HEP COMMUNITY



AND .. GOING DEEPER

MACHINE LEARNING

๏ Universal function approximation: NN with a single hidden layer 
can approximate any continuous function to any desired precision! 

๏ Deep learning models with multiple hidden layers solves the 
need for infinitely large no of nodes in shallow NN 

๏ Learning scalable with data - larger data for better performance 

๏ Deep learning models are now capable of extracting feature 
directly from low level data  
— End for physics intuitive high level variables from domain experts?
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(ANN)

ARTIFICIAL NEURAL NETWORK

๏ Search for a function   
 : Input/obs. space;   : Target space [low- dimensional space] 

Optimize loss function ;       w - tunable parameters  

๏ During training, trainable weight parameters (w) are learned by 
the back-propagation whose aim is to minimize the loss function. 
 

f( ⃗x, w) : X → h1⋯ → hi → hi+1⋯ → hn → Y
X Y

ℒ[y − fw(x)]
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CONVOLUTIONAL NEURAL NETWORK (CNN)
๏ Most significant innovation in DNN - Image processing 

๏ Convolution architecture rely on local and global features with 
translation invariance  

๏ Inductive biases based on locality and weight sharing 

๏ Image pixels are convoluted with no. of kernel/filter “ ” 
             

๏ Sharing same weights passing through full image 
=> reduce tunable parameters drastically 
=> translational symmetry on the network  

๏ Algorithm first learn edges and shapes 
-> more complex local features  
-> leads to global features

kj
xi+1 = σ(wh + b) → hi,j = σ(kj . hi + bj)
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CATEGORY

DEEP MACHINE LEARNING
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Classification

➡ Jet Image
➡ Event Image
➡ Sequence (Recurrent NN)
➡ Graph (Graph NN)
➡ Sets (Point cloud - Graph)

Strategy    ———  Representations   —————   Targets / tagging   ———-——  strategies

➡ Quarks vs gluons
➡ Boosted H / W/ Z/ Top tag
➡ New particles and models
➡ Particle tagging at detector
➡ Neutrino flavour 

➡ Weak/ Semi/ Un-
supervised

➡ Reinforcement Learning
➡ Quantum Machine Learn 
➡ Feature Ranking 
➡ Optimal Transport

Regression

➡ Parameter estimation
➡ Pileup mitigation 
➡ Parton Distribution Func
➡ Symbolic Regression 
➡ Function Approximation

Anomaly detection

Generative models

➡ GANs
➡ Autoencoders 
➡ Phase space generation 
➡ Normalizing flows 

HEP ML Living Reviews

https://iml-wg.github.io/HEPML-LivingReview/


JET REPRESENTATION
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JET DATA - IMAGES, SEQUENCES AND SETS  

๏ QCD Jets have a rich & complex structure - perfect playing field  

๏ How related to the first principles in Quantum Chromodynamics? 

๏ No unique way for encoding radiation pattern into a particular data structure 
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JET DATA - IMAGES, SEQUENCES AND SETS  

๏ QCD Jets have a rich & complex structure - perfect playing field  

๏ How related to the first principles in Quantum Chromodynamics? 

๏ No unique way for encoding radiation pattern into a particular data structure 

Low level image of jet and QCD radiation
            Using CNN network

Hadronic jet and QCD radiation
            Using GNN network

Theoretically motivated Qn
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Deep-learning techniques for VBF Higgs searches  

   – a case study in the invisible decay channel 

Based on: 2008.05434 [Eur.Phys.J.C 80 (2020) 11, 1055]  
          2201.01040 [Phys.Rev.D 105 (2022) 11, 113003] 

(Akanksha Bhardwaj, Partha Konar, Aruna K Nayak, Vishal Ng) 

https://arxiv.org/abs/2008.05434
https://arxiv.org/abs/2201.01040


CONVOLUTIONAL NEURAL NETWORK

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION

✓ Vector Boson Fusion (VBF) was a novel proposal for Higgs search 

✓     Interesting topology for a VBF 
Two forward jets + large inv. Mass 
No central jet activity between them 
Decay products at the central region 

๏ Qn. Can CNN learn feature for such event selection? 

๏ Problem is even more difficult if Higgs is decaying invisibly!
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Br(h->inv) : VBF is most sensitive channel to give max bound on invisible BR
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Collider bounds on Br(h->inv) [23%(36fb), 10% (140fb)]>> SM prediction (<.01%)!!

Br(h->inv) : VBF is most sensitive channel to give max bound on invisible BR

Lots of Dark Matter models (higgs portal) still exist because of this large limit



3 SET OF ANALYSIS

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION
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3 SET OF ANALYSIS

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION

A.  CMS analysis with 36 fb^-1 data [Based on expert level VBF feature] 
 Simulated Signal and BG => Reproducing CMS “BR upper limit” result 
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A.  CMS analysis with 36 fb^-1 data [Based on expert level VBF feature] 
 Simulated Signal and BG => Reproducing CMS “BR upper limit” result 

B.  DML with sets of three different high level data [ANN] 
1. Kinematic data : Event-kinematics from reconstructed objects 
 
 
2. Radiative: Contains information about the QCD radiation pattern 
 
 
3. Combination of above two 
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C. DML with low level calorimeter input data [CNN] 
- Hi & Low resolution Calorimetry
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Reproduced  
CMS analysis 

result

Three 
High level data 

analysis
Directly 

from Calorimeter 
pixel data

-Based on HL variables constructed by experts- —-Based on LL & HL input data——-
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Reproduced  
CMS analysis 

result

Three 
High level data 

analysis
Directly 

from Calorimeter 
pixel data

-Based on HL variables constructed by experts- —-Based on LL & HL input data——-

Factor of  three improvement using the same data! 
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★In this simple setup with just two jets : NN minutely learned the kinematic 
relation & radiation pattern from the data  

★Extra QCD radiation between two  
tag jets extremely significant!! 

★Central-jet Veto:  
Efficiently rejects large QCD backgrounds by vetoing events with additional 
central jet  

★Qn. How faithful the distribution function which NN learn? 

๏Perturbative Accuracy of Matrix Element Simulation :  
LO vs NLO => Important for any process  

๏Parton Shower recoil Scheme [Dipole parton shower] 
=> Wrong global scheme (for spacelike shower) used in most analysis  

★True potential unfolds if theoretical predictions are accurate enough.

ROLE OF PARTON SHOWER

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION
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ROLE OF PARTON SHOWER

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION

# Vishal Ng, PK  (2021)

Receiver 
Operator Characteristics (ROC) 

Curve AUC

✓ LO + Global parton shower scheme shows lowest performance 

✓ NLO + Dipole parton shower scheme shows best performance 

✓ Rest two (LO+ Dipole & NLO+ Global) shows intermediate performance
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ROLE OF PARTON SHOWER

INVISIBLE HIGGS DECAY @ VECTOR-BOSON FUSION

# Vishal Ng, PK  (2021)

Receiver 
Operator Characteristics (ROC) 

Curve AUC
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GRAPH NEURAL NETWORK

BEYOND CNN

➡ Detectors calorimeter hits are typically very sparse and unstructured 
➡ Varying number of reconstructed constituents 
➡ Large number of tunable parameters 

✓ Euclidean image (CNN) => general non-Euclidean domain (GNN) : 
Geometric deep learning 

๏ Graph: Event as point cloud with each entry containing a vector 
composed of observables 

๏ Graph == Nodes (data point) + Edges (connections are as important as 
the data itself) 

๏ Message passing operation: nodes features and edge features are 
exchanged and provide a sophisticated feature extraction 

๏ GNN is very powerful recent concept - mostly unexplored!!
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Energy-weighted Message-passing Networks  

— An IRC safe feature extraction using GNNs  

Based on: arxiv: 2109.14636 [JHEP 02 (2022) 060] 
# Cited in newly introduced AI chapter - PDG’22 
          arxiv: 2309.17351 [JHEP xx (2023) xxx] 
(Partha Konar, Vishal Ng, Michael Spannowsky) 
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INFRA-RED AND COLLINEAR (IRC)

Any QCD jet observable should be   
           — sensi;ve to the physics you want to probe 
           — calculable from first principles in Quantum Chromodynamics (QCD) 

➡ Kinoshita-Lee-Nauenberg (KLM) theorem: Divergences exactly cancel between the 
real and virtual contributions to the observable at each perturbative order when 
the soft and collinear regions of phase space are inclusively summed over. 

➡ IRC safety ensures that the phase space restrictions that the measured value of an 
observable imposes do not disrupt this cancellation [Sterman and Weinberg] 

➡ IRC safe Jet mass & thrust observable [early beginning of jet sub-structure] 
➡ Catani etal (CTTW) large log resummed jet substructure observable 
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High-energy partons lead to collimated bunches of hadrons

jet definition: project from large no of hadrons => few parton-like objects 

Provide link between experimental observables and the theoretical construction 

Def of jet must be invariant with respect to certain modifications of the event                          

-> collinear splitting      ->  infrared emission 

Effort went into constructing IRC safe jet : Sequential recombination in KT, Anti-KT

INFRA-RED AND COLLINEAR (IRC)

How can we make neural networks aware of this physics input?
So that, it treats all hadronic/jet analysis in a IRC safe way.



POINT CLOUD
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CONSTRUCTION OF GRAPH
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LEARNING HOW DIFFERENT POINTS RELATE

Node
Edge



ENERGY-WEIGHTED MESSAGE-PASSING
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IRC SAFE WAY



NETWORK PERFORMANCE
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EMPN - IRC SAFE WAY

PK, Vishal Ng, Michael Spannowsky; 2022



HYPER - GRAPH NEURAL NETWORK

TOWARDS IRC SAFE H-EMPN

➡ Extracting features from any N-point correlation  
➡ Construct IRC safe higher-point correlations  
➡ Hypergraph Energy-weighted Message Passing Networks (H-EMPNs) - 

designed to capture any N -point correlation among particles  
➡ Order-three hyperedges simultaneously link properties of three jet 

constituents at a time  
➡ Access higher-order correlations amongst jet constituents  

➡
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PK, Vishal Ng, Michael Spannowsky; 2023



CHALLENGES
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๏ Interpretability: Relevant physics knowledge learned by the model 
: Physics intuitive high-level features capture real insights,  
                                  but clearly sacrifice some useful information  

๏ Prejudice: Decades-old research by human mind must be supreme  
                (After all, NN tried to mimic the neurones??) 

๏ Status quo: are “we” and “journals” evolving slowly to catch up! 

๏ In research: Dealing with different kinds of abstract data 
๏ Overreach: Is not effective in all kinds of problems! 

๏ Involved cost:   
— Data science skill development + domain knowledge expertise 
— Order of magnitude higher computation power requirement 
— Opaque transition between knowledge & learning 

MACHINE LEARNING




