ML-Based Top Taggers: Performance, Uncertainty and Impact of Tower Tracker Data

Kirtiman Ghosh, Institute Of Physics Bhubaneswar

Collaborator Rameswar Sahu

December 19, 2023

Collaborator Rameswar Sahu

ML-based Top Tagging

December 19, 2023 1 / 24

Outline

Introduction

Dataset

Results

6 Future Directions

6 Conclusion

Boosted Object Tagging

Motivation Absence of BSM@LHC QCD Background Visible Final States

Cut-based classifiers

Based on jet shape observables like jet mass, *N*-subjettiness, etc. HEPTopTagger, Johns Hopkins Tagger, YSplitter etc.

ML-based classifiers BDT-classifiers, CNN/GNN-classifiers etc.

Objectives

- Study the <u>effect of tracking</u> <u>information</u> in determining the performance of top taggers
- Study the <u>Systematic</u> <u>uncertainty</u> arising from the MC generators.
- Impact of truth level identification criteria.
- Study the variation in performance of classifiers with transverse momentum of the fat-jets.

Collaborator Rameswar Sahu

ML-based Top Tagging

Dataset

Top Fat-Jets

Process Considered :

 $pp
ightarrow t (
ightarrow bq ar q') \ ar t (
ightarrow ar bq ar q')$

• Truth-level matching: All three top decay products (at Parton level) must lie inside the cone of the fat jet.

QCD Fat-Jets

$$pp \rightarrow j j$$

where j = u, d, c, s, g and their anti-particles

• No Truth-level matching.

Claorimeter based dataset

Contains information of the energy deposits in Ecal and Hcal

Tracker based dataset

- Includes tracking information
- Uses particle flow algorithm to match tracks with calorimeter energy deposits
- In the end we have three classes of data :
 - Charged particles
 - Photons
 - Neutral Hadrons

BDT Classifier

BDT_{calo} • Utilizes High-level features like : • The Jet Mass • The N-subjettiness $(\tau_{43}, \tau_{32}, \tau_{21})$ • b-tag

• Trained using the TMVA 4.3 toolkit in ROOT 6.24

BDT_{trck}

- Extends the previous set by including additional track-based HLFs :
 - # of tracks inside a jet.

•
$$W_{trk} = \frac{\sum_{trk \in J} p_{T, trk} \Delta R_{trk,}}{\sum_{trk \in J} p_{T, trk}}$$

•
$$W_{calo} = \frac{\sum_{i \in J} p_{T,i} \Delta R_{i,J}}{\sum_{i \in J} p_{T,i}}$$

- ...
- These extra features are defined for each sub-jet inside the fat-jet.
- We consider only the first three leading sub-jets.
- In the absence of three sub-jets, the missing variables are zero-padded.

CNN Classifier

CNN_{calo}

- Single layered 64 × 64 images.
- Contains transverse energy of the calorimeter cells as pixel intensities.

CNN_{trck}

- Two layered 64 \times 64 images.
- First layer Contains the transverse energy of the photons and neutral hadrons as pixel intensities.
- second layer Contains transverse energy of the charged particles as pixel intensities.

• 10-layered ResNet

Collaborator Rameswar Sahu

Top Images after translation and rotation

ML-based Top Tagging

7/24

GNN Classifier

- LorentzNet with 6 Lorentz Group equivariant Blocks
- Graph level classifier
- Uses the four-momentum of the jet constituents as node coordinates and the charge of the constituents as node embeddings.
- For each fat-jet, we store the four-momentum and charge of 200 constituents ordered by p_T .
- for fat-jets with less than 200 constituents, the missing entries are zero-padded.
- GNN_{calo} considers only the <u>calorimeter energy deposits</u> (from both charged and neutral particles) as jet constituents
- GNN_{trck} uses Charge particles, photons and neutral hadrons as jet constituents.
- For the charged particles, we replace the mass with zero by hand to avoid implementing any specific particle identification algorithm.

Collaborator Rameswar Sahu

ML-based Top Tagging

Composite Classifier

Models

- C_{calo} B_{calo}, C_{calo} B_{trck}
- $C_{trck}B_{calo}, C_{trck}B_{trck}$
- G_{calo}B_{calo}, G_{calo}B_{trck}
- $G_{trck}B_{calo}, G_{trck}B_{trck}$
- First trains a CNN/GNN with LLFs and Uses the output score as a new HLF in addition to other important HLFs in a BDT.
- The Classifiers from top to bottom are ordered according to their complexity.

Motivation

- To introduce HLFs effective in differentiating quark jets from gluon jets that LLF-based classifiers like CNN or GNN may or may not have learned.
- To re-introduce HLFs that are lost during the preprocessing of data in CNN/GNN.
- Provides better control over uncertainty originating from the use of showering and hadronization models, i.e., different Monte Carlo event generators.

Classifiers Performance (Simple Classifiers)

Classifiers Performance (Simple Classifiers)

Classifiers Performance (Simple Classifiers)

Classifiers Performance (Composite Classifiers CNN-based)

Classifiers Performance (Composite Classifiers CNN-based)

Classifiers Performance (Composite Classifiers GNN-based)

Systematic Uncertainty

Ctrck Bcalo : Ranking Of Variables

Enhanced performances & reduced uncertainties

- We expect GNN_{trck} with the <u>full tracking information</u> to be efficient enough to provide the best performance.
- The observed reduction in performance is because of the masking of the mass information of the charged track.

MC generator	GNN _{trck}	$G_{trck}B_{trck}$
Pythia8	1769	1736
Herwig7	1025	1666

Classifier	$1/\epsilon_B^c(\epsilon_S^c=0.7)$	$1/\epsilon_B^c(\epsilon_S^c=0.5)$
BDT _{calo}	119(105)	467(398)
CNN _{calo}	70(57)	211(178)
GNN _{calo}	139(106)	444(341)
BDT _{trck}	175(159)	579(610)
CNN _{trck}	124(90)	423(299)
GNN _{trck}	311(214)	(1322(789))
$C_{calo}B_{calo}$	176(175)	682(619)
$C_{calo}B_{trck}$	208(204)	811(737)
$C_{trck}B_{calo}$	249(218)	1023(768)
$C_{trck}B_{trck}$	257(221)	995(799)
$G_{calo}B_{calo}$	260(241)	969(842)
$G_{calo}B_{trck}$	278(256)	1141(894)
$G_{trck}B_{calo}$	489(397)	1641(1604)
G _{trck} B _{trck}	493(399)	1736(1666)

Truth-Level Tagging

Variable $ 1/\epsilon_E^c$	$\epsilon_s^c = 50\%$	$1/\epsilon_B^{tag}$ (ϵ_s^{tag}	= 50%)
R = 0.8	1298	274	
R = 1.2	711	424	·

Collaborator Rameswar Sahu

December 19, 2023 18 / 24

p_T - Dependance

With TLT : $1/\epsilon_B^c$ ($\epsilon_S^c = 50\%$)

p_T [GeV]	BDT _{calo}	BDT _{trck}	CNN_{trck}	GNN _{trck}	C _{trck} B _{calo}	G _{trck} B _{calo}
300-500	388	456	159	587	762	1413
500-700	136	276	184	765	455	1178
700-900	168	345	278	845	538	1409
900-1100	79	247	256	971	466	1175
1100-1300	56	167	214	882	318	872
1300-1500	39	\127∕ ↓	217	877	273	850

Without TLT : $1/\epsilon_B^{tag}$ ($\epsilon_S^{tag} = 50\%$)

p_T [GeV]	BDT_{calo}	BDT_{trck}	CNN _{trck}	GNN _{trck}	$C_{trck}B_{calo}$	G _{trck} B _{calo}
300-500	95	119	54	121	157	250
500-700	83	152	110	303	243	581
700-900	84	166	147	421	258	582
900-1100	57	148	168	534	279	789
1100-1300	45	124	157	540	234	651
1300-1500	34	101	167	609	217	662

Collaborator Rameswar Sahu

ML-based Top Tagging

December 19, 2023

Future Directions

Classifier development

Systematic Uncertainties, Performance in the high- p_T region, variable radius jets, etc.

Application for BSM searches

Supersymmetry, extra-dimensional models, leptoquark models, different gauge and field extensions of the SM, etc.

Conclusion

Questions?

Questions?

Collaborator Rameswar Sahu

ML-based Top Tagging

December 19, 2023 21 / 24

Backup

CNN Model

ResNet Block (left) and full ResNet model (right) :

GNN Model

Lorentz Group Equivariant Block (LGEB)

LorentzNet