Collider signals for a Universal Seesaw Model

Harish-Chandra Research Institute Prayagraj, India

PHOENIX-2023 IIT Hyderabad 19-12-2023

Santosh Kumar Rai RECAPP

Overview

Fermion mass hierarchy in SM leads to a huge spread in the Yukawa coupling values.

- $\mathscr{L} \sim Y_{ij} \, \bar{f}_{iL} \, \phi \, f_{jR}$

- Neutrinos were happy to be massless in SM but not experimentally.
- SM fermions, for them to get mass.

Simplest extension would be to add a right-handed singlet (ν_R) like all

• Introduces a bigger spread in Yukawa couplings $Y_{\nu} \sim 10^{-11}$ - $Y_{\star} \sim 1$

- Simply adding the singlet is not very interesting phenomenologically.
- Seesaw mechanisms of tiny neutrino mass generation spiced up matters

- Seesaw seen in many avatars with $Y_{\nu} \sim 10^{-10} \mathcal{O}(1)$
- New exotic scalars and fermions led to rich phenomenology
- Can we reverse the narration for all fermion masses? Seesaw for all fermion masses?

Universal seesaw models based on $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{R-L}$

 $\mathscr{L} \sim Y_{\nu_{ij}} \overline{\ell}_{iL} \phi \nu_{jR} + \frac{1}{2} \overline{\nu^c}_{iR} M_{ij} \nu_{jR}$

Berezhiani PLB (1983), Davidson, Wali PRL (1987, 1988) Chang, Mohapatra PRL (1987), Babu, Mohapatra PRL (1989)

gauge symmetries - add VL singlet fermions and scalar doublets

Minimal?

$$\mathcal{Q}_{L,i}\left(3,2,1,+\frac{1}{3}\right) = \begin{pmatrix} u_L \\ d_L \end{pmatrix}_i, \quad \mathcal{Q}_{R,i}\left(3,1,2,+\frac{1}{3}\right) = \begin{pmatrix} u_R \\ d_R \end{pmatrix}_i, \quad U_a\left(3,1,1,+\frac{4}{3}\right), \quad D_a\left(3,1,1,-\frac{4}{3}\right), \quad D_a\left(3,1,1,-\frac{4}{3}\right), \quad D_a\left(3,1,1,-\frac{4}{3}\right), \quad U_a\left(3,1,1,-\frac{4}{3}\right), \quad D_a\left(3,1,1,-\frac{4}{3}\right), \quad D_a\left(3,1,1,-\frac{4}{3}$$

$\chi_L(1,2,1,+1)$ Higgs sector

 $\mathscr{L}_{Y} \sim Y_{F}\overline{D}_{I}$

generic seesaw type mass relations:

Berezhiani PLB (1983), Davidson, Wali PRL (1987, 1988) Chang, Mohapatra PRL (1987), Babu, Mohapatra PRL (1989)

$$) = \begin{pmatrix} \chi_L^+ \\ \chi_L^0 \end{pmatrix}, \quad \chi_R (1, 1, 2, +1) = \begin{pmatrix} \chi_R^+ \\ \chi_R^0 \end{pmatrix}$$

$$F_F \chi F + M_F \overline{F}F$$

 $m_{q_a} \simeq \frac{Y_a^2 v_L v_R}{2M_a}.$

Inherits all the good things of left-right symmetry models:

- Seesaw mechanism is extended to the charged fermion sector
- No need for a more exotic triplet scalar sector
- Yukawa couplings range can be much smaller $Y_{\nu} \sim 10^{-3} \mathcal{O}(1)$
- We focus on a lepton specific universal seesaw model based on

Parity symmetry, no strong CP problem, naturally generates light neutrino mass

 $SU(3)_C \otimes SU(2)_L \otimes SU(2)_R \otimes U(1)_{R-L}$

A. Patra, S.K. Rai, 1711.00627

MODEL AND LAGRANGIAN

- Quarks and leptons are all doublets $Q_{L/R}$, $l_{L/R}$
- Higgs doublets under $SU(2)_L$, $SU(2)_R$:
 - for leptons $H_{l_{I}L}, H_{l_{P}R}$ and for quarks $H_{Q_{L}L}, H_{Q_{R}R}$
- No bidoublet new fermion singlets are needed to generate their masses
 - Fermion singlet leptons $E_{L/R}$, $N_{L/R}$ and singlet quarks $U_{L/R}$, $D_{L/R}$
- A discrete symmetry to prevent $H_{l_{I}L}$, $H_{l_{R}R}$ from coupling to quarks

All fermions get their masses through seesaw mechanism.

Field	<i>SU</i> (3) _C	<i>SU</i> (2) _L	$SU(2)_R$	$U(1)_{B-L}$	<i>Z</i> ₂	
$Q_{L(R)} = \begin{pmatrix} u \\ d \end{pmatrix}_{L(R)}$	3	2 (1)	1 (2)	<u>1</u> 3	+	
$I_{L(R)} = \left(\begin{array}{c} v \\ e \end{array}\right)_{L(R)}$	1	2 (1)	1 (2)	-1	+	
U_L, U_R	3	1	1	$\frac{4}{3}$	+	
D_L, D_R	3	1	1	$-\frac{2}{3}$	+	
E_L, E_R	1	1	1	-2	_	
N_L , N_R	1	1	1	0	-	
$H_{L(R)Q} = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}$	1	2 (1)	1 (2)	1	+	
$H_{L(R)} = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}$	1	2 (1)	1 (2)	1	_	$Q = T_{3L}$ -
L(R)						$\frac{x}{2}$ =

A. Patra, S.K. Rai, 1711.00627

Non-zero VEVs are given as $\left\langle H^{0}_{RQ} \right\rangle = v_{RQ}, \left\langle H^{0}_{Rl} \right\rangle = v_{Rl},$

with $v_{RO}, v_{Rl} >> v_{LO} > v_{Ll}$.

 V_{LO} , V_{Ll} breaks EW symmetry.

Charged gauge boson masses

$$M_{W_R^{\pm}}^2 = \frac{1}{2}g_R^2(v_{RQ}^2 + v_{Rl}^2), \quad M_{W^{\pm}}^2 = \frac{1}{2}g_L^2(v_{LQ}^2 + v_{Ll}^2).$$

$$\left\langle H_{LQ}^{0} \right\rangle = v_{LQ}, \left\langle H_{Ll}^{0} \right\rangle = v_{Ll}$$

- $\mathcal{V}_{RO}, \mathcal{V}_{Rl}$ responsible for $SU(2)_R \times U(1)_{B-L} \rightarrow U(1)_Y$.

$$v_{LQ}^2 + v_{Ll}^2 = v_{\rm EW}^2.$$

Neutral gauge boson masses

$$M_Z^2 \simeq \frac{1}{2} (g_L^2 + g_Y^2) (v_{LQ}^2 + v_{Ll}^2)$$

$$\begin{split} M_{Z_R}^2 \simeq \frac{1}{2} \begin{bmatrix} (g_R^2 + g_V^2)(v_{RQ}^2 + v_{Rl}^2) + \frac{g_V^4(v_{LQ}^2 + v_{Ll}^2)}{g_R^2 + g_V^2} \end{bmatrix} & \text{where} \quad g_Y = \frac{g_L g_V}{\sqrt{g_L^2 + g_V^2}} \\ \text{effective SM } U(1)_Y \text{ gauge constraints} \\ & \text{effective SM } U(1)_Y \text{ gauge constraints} \\ & \begin{bmatrix} \frac{1}{4}g_R^2(v_{RQ}^2 + v_{Rl}^2) & 0 & -\frac{1}{4}g_R g_V(v_{RQ}^2 + v_{Rl}^2) \\ 0 & \frac{1}{4}g_L^2(v_{LQ}^2 + v_{Ll}^2) & -\frac{1}{4}g_L g_V(v_{LQ}^2 + v_{Ll}^2) \\ -\frac{1}{4}g_L g_V(v_{LQ}^2 + v_{Ll}^2) & -\frac{1}{4}g_R g_V(v_{RQ}^2 + v_{Rl}^2 + v_{LQ}^2 + v_{Ll}^2) \end{bmatrix}. \end{split}$$

$$v_{RQ}, v_{Rl} >> v_{LQ} > v_{Ll}$$

The Yukawa Lagrangian is given as

 $+ \qquad M_L N_L^T C N_L + M_R N_R^T C N_R$

Majorana Mars

$(\tilde{H}_{L/R} = i\tau_2 H^*_{L/R})$

$\mathscr{L}_{Y} = \left(Y_{uL}\overline{Q}_{L}\widetilde{H}_{LQ}U_{R} + Y_{uR}\overline{Q}_{R}\widetilde{H}_{RQ}U_{L} + Y_{dL}\overline{Q}_{L}H_{LQ}D_{R} + Y_{dR}\overline{Q}_{R}H_{RQ}D_{L}\right)$ $Y_{vL}\overline{I}_{L}H_{LI}N_{R} + Y_{vR}\overline{I}_{R}H_{RI}N_{L} + Y_{eL}\overline{I}_{L}H_{LI}E_{R} + Y_{eR}\overline{I}_{R}H_{RI}E_{L}$ $M_U \overline{U}_L U_R + M_D \overline{D}_L D_R + M_E \overline{E}_L E_R + M_N \overline{N}_L N_R + h.c.$

Quark and charged lepton masses arise through Type-I seesaw like matrix.

$$\mathcal{L}_{u} = \left(\overline{u} \ \overline{U}\right) \left(M_{u}P_{L} + M_{u}^{T}P_{R}\right) \left(\begin{matrix} u \\ U \end{matrix}\right)$$

These are 6X6 matrices

Quark mass :
$$M_u = \begin{pmatrix} 0 & Y_{uR} v_{RQ} \\ Y_{uL}^T v_{LQ} & M_U \end{pmatrix}$$

Charged lepton mass : $M_e = \begin{pmatrix} 0 & Y_{eR}V_{RI} \\ Y_{eI}^T V_{II} & M_F \end{pmatrix}$

Seesaw and fermion masses

bi-unitary transformation $M_{u}^{diag} = U_{uL}M_{u}U_{uR}^{\dagger}, \quad U_{L}^{CKM} = U_{uL}U_{dL}^{\dagger}.$ $V_{R}^{CKM} = V_{uR}U_{dR}^{\dagger}$ • Y_{uR} and Y_{uL} are kept diagonal, CKM are generated with off-diagonal Y_{dL} .

• $Y_{e(L/R)}$ are diagonal.

Neutrino mass matrix in the basis (v_L^*, N_R, v_R, N_L^*)

$$\begin{pmatrix}
0 & Y_{\nu L} v_{Ll} \\
Y_{\nu L}^T v_{Ll} & M_R \\
0 & 0 \\
0 & M_N
\end{pmatrix}$$

(PMNS) mixing matrix.

Depending on M_N two possible cases

- 1. Majorana case with $M_N \neq 0$: 3 light neutrinos of TeV scale.
- light neutrinos, 3 heavy neutrinos.

 $\begin{array}{ccc}
0 & 0 \\
0 & M_N^T \\
0 & Y_{\nu R}^T \nu_{Rl} \\
Y_{\nu R} \nu_{Rl} & M_L
\end{array}$

• Y_{vR} is diagonal, symmetric off-diagonal Y_{vL} generates Pontecorvo-Maka-Nakagawa-Sakata

Small mixing

satisfying mass-squared relations and PMNS mixings, 3 neutrinos in the EW breaking scale, 6 heavy neutrinos

2. Pseudo-Dirac case with $M_N = 0$: Pseudo-Dirac like 3

The scalar potential is $V(H) = \sum_{i}^{4} \mu_{ii} H_{i}^{\dagger} H_{i} + \sum_{i}^{4} \lambda_{ii} H_{i}^{\dagger} H_{i} H_{i}^{\dagger} H_{i} + \left(\alpha_{1} H_{LO}^{\dagger} H_{LI} H_{RO}^{\dagger} H_{RI}\right)$ *i*,*j*=1 $i \leq j$

where $H_1 = H_{LO}$, $H_2 = H_{LI}$, $H_3 = H_{RO}$, $H_4 = H_{RI}$.

states, and two charged Higgs bosons.

 $+ \alpha_{2}H_{LO}^{\dagger}H_{LI}H_{RI}^{\dagger}H_{RO}^{\dagger} + \mu_{12}^{2}H_{LO}^{\dagger}H_{LI}^{\dagger} + \mu_{34}^{2}H_{RO}^{\dagger}H_{RI}^{\dagger} + H.C.$

- The Higgs boson spectrum consists of four CP-even states, two CP-odd
 - The terms μ_{12} and μ_{34} break the discrete Z_2 symmetry softly

	Snat	shot of
Particle	$\begin{array}{c} \text{Mass} \\ \text{(GeV)} \end{array}$	
H_1	125.5	$0.996 \text{ Re}(H_{LQ}^0) -$
H_2	2543.9	$-0.0289 \text{ Re}(H_{LQ}^0)$
H_3	4229.0	$0.001 \text{ Re}(H_{LQ}^0) -$
H_4	7127.5	$0.080 \text{ Re}(H_{LQ}^0) -$
A_1	217.0	$0.001 \ { m Im}(H_{LQ}^0) -$
A_2	7127.7	$-0.080 \ \mathrm{Im}(H_{LQ}^0)$ -
H_1^+	225.8	
H_2^+	7127.5	

 $\lambda_{24} = 0.1, \ \lambda_{33} = 0.2, \ \lambda_{34} = 0.1, \ \lambda_{44} = 0.1, \ \mu_{12}^2 = 2.5 \times 10^4, \ \mu_{34}^2 = 2.5 \times 10^4$

Eigenstate

 $0.010 \operatorname{Re}(H_{RQ}^0) + 0.080 \operatorname{Re}(H_{Ll}^0) + 0.027 \operatorname{Re}(H_{Rl}^0)$ $-0.381 \operatorname{Re}(H_{RO}^{0}) + 0.001 \operatorname{Re}(H_{Ll}^{0}) + 0.924 \operatorname{Re}(H_{Rl}^{0})$ $0.924 \operatorname{Re}(H_{RO}^0) + 0.005 \operatorname{Re}(H_{Ll}^0) - 0.381 \operatorname{Re}(H_{Rl}^0)$ $0.005 \operatorname{Re}(H_{RO}^0) - 0.997 \operatorname{Re}(H_{Ll}^0) + 0.003 \operatorname{Re}(H_{Rl}^0)$ $0.707 \operatorname{Im}(H_{RO}^0) - 0.008 \operatorname{Im}(H_{Ll}^0) + 0.707 \operatorname{Im}(H_{Rl}^0)$ $-0.006 \operatorname{Im}(H_{RO}^0) + 0.997 \operatorname{Im}(H_{Ll}^0) + 0.006 \operatorname{Im}(H_{Rl}^0)$ $0.080H_{LO}^+ - 0.997H_{Ll}^+$

 $\alpha_1 = -0.3, \ \alpha_2 = 0.1, \ \lambda_{11} = 0.172, \ \lambda_{12} = 0.8, \ \lambda_{13} = 0.05, \ \lambda_{14} = -0.1, \ \lambda_{22} = 0.5, \ \lambda_{23} = 0.1, \ \lambda_{24} = 0.1, \ \lambda_{25} = 0.1,$

Unlike SM Yukawa couplings range can be much smaller, here from 10⁻³ to 1.

Up-type Quark	Down-type Quark	Charged Lepton	Neu	trino
(TeV)	(TeV)	(TeV)	(GeV)	(TeV)
				$m_{v_7} = 5.14$,
$m_{\rm el} = 11.04$	$m_{-} = 16.0$	$m_{-} = 1.17$	m = 196.0	$m_{v_8} = 5.30,$
$m_0 = 11.94,$	$m_D = 10.0,$	$m_{E_1} - 1 \cdot 1 7,$	$m_{V_4} = 100.0,$	$m_{v_0} = 5.50$,
$m_C = 11.96,$	$m_S = 20.1,$	$m_{E_2} = 2.0,$	$m_{V_5} = 404.8,$	$m_{\rm e} = 15.05$
$m_T = 30.0$	$m_B = 30.0$	$m_{E_3} = 2.56$	$m_{V_6} = 689.7$,	$m_{v_{10}} = 10.00$,
		5	Ŭ	$m_{v_{11}} = 15.11,$
				$m_{v_{12}} = 15.19$

 $M_E = \text{Diag}(0.8, 1.0, 1.0) \times 10^3$ $M_D = \text{Diag}(1.6, 2.0, 3.0) \times 10^4$ $M_U = \text{Diag}(30.0, 11.93, 6.6) \times 10^3$ $M_N = \text{Diag}(1.0, 1.0, 1.0) \times 5 \times 10^3$ $M_R = M_L = \text{Diag}(1.0, 1.0, 1.0) \times 10^4$ Off-diagonal elements $Y_{JJ}^{ij} \sim 10^{-3}$. $Y_{dR}^{22} \sim Y_{e(L,R)}^{22} \simeq 10^{-1}, \ Y_{u(L,R)}^{33} \sim Y_{dL}^{33} \sim Y_{eR}^{33} \simeq 1.0.$

$$Y_{u(L,R)}^{11} \sim Y_{d(L,R)}^{11} \sim Y_{e(L,R)}^{11} \simeq 10^{-2}, \ Y_{u(L,R)}^{22} \sim Y_{e(L,R)}^{11}$$

require $Y_{dR}^{33} \simeq 0.078$ $Y_{el}^{33} \simeq 0.146$

to keep the third generation fermion masses heavy.

CKM satisfied Y_{dL} ; U_{PMNS} and Δm_{ii}^2 satisfied Y_{vI}

CKM satisfied coniguration

• $Y_{dI}^{21} = Y_{dL}^{32} = Y_{dL}^{31} = 0.$ • $Y_{vR} = \text{Diag}(0.2, 0.3, 0.4), Y_{vI}^{ij} = Y_{vI}^{ji}$ with $6.82 \times 10^{-5} \text{ eV}^2 < \Delta m_{21}^2 < 8.04 \times 10^{-5} \text{ eV}^2$, $2.43 \times 10^{-3} \text{ eV}^2 < \Delta m_{31}^2 < 2.60 \times 10^{-3} \text{ eV}^2$ and U_{PMNS} I. Esteban et. al. 2007.14792

Majorana neutrino case

$$M_R = M_L = Diag(10^4, 10^4, 10^4), M_N = Diag(10^3, 10^3, 10^3), Y_{\nu R_{ii}} \sim 0.1, Y_{\nu L_{ij}} \sim 10^{-5}$$

Left-handed Yukawa Couplings for Majorana Case 6x10⁻⁵ (a) 5x10⁻⁵ Yukawa Couplings • 4x10⁻⁵ 3x10⁻⁵ 2x10⁻⁵ 1x10⁻⁵ 1.5 2 2.5 3 1 Y_{v₁1}x10⁻⁵ smallest.

Pseudo-Dirac neutrino case

$$M_R = M_L = Diag(200, 300, 400), M_N = 0, Y_{\nu R_{ij}} = \frac{V_{Li}}{V_{Ri}} Y_{\nu Li}$$

 $v_{RQ} = v_{Rl} = 6.0 \text{ TeV}, \quad v_{LQ} = 173.4 \text{ GeV}, \quad v_{Ll} = 14 \text{ GeV}.$

Mixing between SM and heavy states very small except top quark. (< 1%)

 $M_{\mu}^{33} \sim 400 \ GeV$

almost entirely from singlet.

The heavier top-partner which is singlet dominated can contribute to W_R decay due to it being lighter than the other exotics and the right CKM mixing structure

		-
Particle	Mass	
W_R	5.0 TeV	
Z_R	5.93 TeV	11
H_1	125.0 GeV	10
H_2	7.4 TeV	9
H ₃	8.15 TeV	
H_4	14.31 TeV	
A_1	8.15 TeV	
A_2	13.52 TeV	
H_1^+	8.15 TeV	3
H_2^+	13.52 TeV	2
		3 3.5

Input parameters: $v_{LQ}/\sqrt{2} = 173.4$ GeV, $v_{LI}/\sqrt{2} = 14$ GeV. The right handed VEVs are $v_{RQ} = 12.48$ TeV and $v_{Rl} = 8.4$ TeV.

COLLIDER SIGNALS

- The light charged Higgs is linear combination of right-handed doublets.
- leading to a very interesting final state

entirely different signature $p p \rightarrow H^+ H^-$

A. Patra, S.K. Rai, 1711.00627

 Majorana neutrinos of mass at the EW scale are part of the righthanded doublet and decay mainly into charged Higgs and leptons. They can be pair produced through the Z_R exchange DY processes

 $e^- H^+ H^+ \rightarrow 2e^- + 2t + 2\bar{b}$

If charged Higgs is heavier than the heavy neutrinos we get an

COLLIDER SIGNALS

Particle

BP1	$M_{\nu_4} = 136.4 \text{ GeV}$
	$M_{\nu_5} = 258.3 \text{ GeV}$
	$M_{\nu_6} = 317.0 \text{ GeV}$
	$M_{H_1^{\pm}} = 224.7 \text{ GeV}$
BP2	$M_{\nu_4} = 317.0 \text{ GeV}$
	$M_{\nu_5} = 550.9 \text{ GeV}$
	$M_{\nu_6} = 837.6 \text{ GeV}$
	$M_{H_1^{\pm}} = 224.7 \text{ GeV}$

 $pp \rightarrow \nu_5 \nu_5 \rightarrow \mu^\pm \mu^\pm H_1^\mp H_1^\mp \rightarrow 2\mu^\pm + 2e^\mp + 4j.$

A. Patra, S.K. Rai, 1711.00627

W R	L_R
Width (GeV)	Important decay channels
7.12×10^{-9}	$\nu_4 \rightarrow e^{\pm} jj \sim 99.3\%$
4.57×10^{-4}	$\nu_5 \rightarrow \mu^{\pm} H_1^{\mp} \sim 100\%$
2.97×10^{-3}	$\nu_6 \rightarrow \tau^{\pm} H_1^{\mp} \sim 100\%$
4.6×10^{-4}	$H_1^\pm \to \nu_4 e^\pm \sim 99\%$
2.11×10^{-3}	$\nu_4 \rightarrow \epsilon^{\pm} H_1^{\mp} \sim 100\%$
3.03×10^{-2}	$\nu_5 \rightarrow \mu^{\pm} H_1^{\mp} \sim 100\%$
1.04×10^{-1}	$\nu_6 \rightarrow \tau^{\pm} H_1^{\mp} \sim 100\%$
5.78×10^{-6}	$H_1^+ \rightarrow t\bar{b} \sim 92.9\%$

	Up-type	Quark	Down-	type Quark	Charged Lep	oton	Ν	eutrino		
	(Te	V)	(TeV)	(TeV)		(GeV)		(TeV)	
								m	₇ = 5.14,	
	m., _ '	11 0/		- 16 0	$m_{-} - 11^{-1}$	7	m = 186.0	m	_{/8} = 5.30,	
	$m_U = 11.94, m_D$		- 10.0, - 20.1	$m_{E_1} - 1.1$	' ,	$m_{v_4} = 100.0$, $m_{v_4} = 404.8$	m	_{′9} = 5.50,		
	m	20.0	m	- 20.1,	$m_{E_2} = 2.0, \qquad m_{V_2}$		$m_{v_5} = 404.0$, $m_{v_5} = 680.7$	$m_{v_{10}} = 15.05$,		
	$m_T =$	30.0	'''B	_ 30.0	$m_{E_3} - 2.5$	0	$m_{V_6} = 009.1$,	m_{v_1}	₁ = 15.11,	
								m_{v_1}	$_{12} = 15.19$	
		De	сау	Br	Decay	Br	Decay	Br		
		W_R^+	$\rightarrow jj$	67%	$Z_R \rightarrow q\bar{q}$	70%	$E_4 \rightarrow v_4 j j$	70%		
		W_R^+	$ ightarrow tar{b}$	10.37%	$Z_R \rightarrow v_4 v_4$	7.2%	$E_5 \rightarrow v_6 j j$	13%		
		W_R^+ –	$\rightarrow e^+ v_4$	5.12 %	$Z_R \rightarrow v_5 v_5$	6.5%	$E_6 \rightarrow v_5 jj$	73.7%	$M_{W_{p}}$	
		W_R^+ –	$ ightarrow \mu^+ u_5$	1.6 %	$Z_R \rightarrow E_4 \bar{E}_4$	2%	$E_6 \rightarrow \mu j j$	3.45%		
		W_R^+ –	$ ightarrow au^+ u_6$	2.45 %	$Z_R \rightarrow E_5 \overline{E_5}$	1%	$v_4 \rightarrow e^{\pm} j j$	100%	$M_{-}\sim$	
		W_R^+ –	$\rightarrow E_4^+ v_4$	5.09 %			$ \nu_5 \rightarrow \mu^{\pm} j j $	94.5%	· ŹR	
_		W_R^+ –	$\rightarrow E_5^+ v_6$	4.48 %			$ v_6 ightarrow au^{\pm} jj$	87.3%		
		W_R^+ –	$\rightarrow E_6^+ v_5$	3.59 %						

C. Brust *et al.* 1410.0362

$$LSF_n = \frac{p_{TI_n}}{p_T I_n}.$$

lepton subjet fraction of each lepton is defined as the ratio of the lepton p_T to its associated subjet p_T

Backgrounds

- QCD multi-jet: Major background with huge cross section. We consider up-to 4jet final state.
- tt : Next dominant background with promt lepton in fatjet.
- W/Z+jets: tW cross section very low as compared to $t\bar{t}$.

 $LMD_n = \frac{m_{sj-l_n}^2}{m_{sj}^2}$. m_{sj} : invariant mass of the subjet including the lepton m_{sj-l_n} : mass of the hadronic component only

• tW: W/Z+jets with moderate cross section, probability of getting two high p_T leptons in two fatjets is very small compared to $t\bar{t}$.

Lepton subjet fraction Signal 0.8QCD 4-jet event $t\bar{t}$ (Hadronic) 0.6 $t\bar{t}$ (Semi-leptonic) $t\bar{t}$ (Leptonic) Normalized 0.40.20.00.750.000.250.50 LSF_1

A. Dey, R. Rahaman. SKR (2207.06857)

• 3σ sensitivity with 600 fb^{-1} data in the 2 & 3 fatjet signal.

- Significant improvement over same-sign (isolated) charged lepton searches in left-right symmetry model.
- **Resonant production is crucial for the signal rates and therefore** signal is sensitive to the scale of right-handed current mediator.
- Role of scalar mediators in the cascades can give more interesting final states.

- umbrella
- The simplest extension that works well is based on a left-right symmetric framework
- vector-like fermions in the spectrum beyond SM
- Interesting signals present at colliders if the new states are kinematically accessible.

Universal seesaw models put all fermion masses under a common

Minimal extension includes addition of scalar doublets and singlet

- The neutrino mass is still generated via seesaw

$$\mathscr{O}_{WO}^{(5)} = \frac{\eta_{WO}}{\Lambda} \bar{L}_R^c \tilde{H}_R^\dagger \tilde{H}_R L_R,$$
[S. Weinberg,

- We probe a lepto-phobic doubly charged Higgs in multi-lepton final state.
- This model provide exotic signature of SS4I with no background and six-lepton with very low background.

T. Ghosh, R. Rahaman. SKR (2308.10314) What if we had a more exotic triplet scalar sector but it turned out to be fermiophobic?

$$M_{\nu_R} \approx \eta_{WO} \frac{v_R^2}{\Lambda}$$

rg, Phys. Rev. Lett. 43 (1979) 1566–1570

- Four-lepton, *(a)*
- Six-lepton,
- Eight-lepton, and
- Same-sign four-lepton (SS4L).

• Four-body decay:

$$\begin{split} \ell^{\pm}\nu_{R}2j : \quad h_{R}^{++/--} &\to W_{R\,1}^{\pm}W_{R\,2}^{\pm*}; \quad W_{R\,1}^{\pm*} \to \ell^{\pm}\nu_{R}, \quad W_{R\,2}^{\pm*} \to jj, \\ 2\ell^{\pm}2\nu_{R}: \quad h_{R}^{++/--} &\to W_{R\,1}^{\pm*}W_{R\,2}^{\pm*}, \quad W_{R\,1,2}^{\pm*} \to \ell^{\pm}\nu_{R}, \text{ and} \\ 4j: \quad h_{R}^{++/--} \to W_{R\,1}^{\pm*}W_{R\,2}^{\pm*}, \quad W_{R\,1,2}^{\pm*} \to jj. \end{split}$$

PROSPECT AT FUTURE LEPTON COLLIDERS

- The e+e-C and μC will have a significantly improved performance compared to the LHC.
- a mass of about 450 GeV.
- The e+e-C and μC on the other hand will be able to observe the h++ for much heavier mass, limited only by the energy reach.
- times larger than the LHC.
- be even more than the LHC case with similar integrated luminosity.

For the higher masses the LHC sensitivity begins to drop — difficult to observe the 4 ℓ and 6 ℓ final state at LHC beyond

For example, the e+e-C cross-section is 18.7 times larger than the LHC for mh++ = 500 GeV, and for the μ C, it is 10

- With a cleaner environment in a lepton collider (e+e-C and μC), the number of events in the 4 ℓ and 6 ℓ final states will

