Status of the LHC and Standard Model physics

Kajari Mazumdar TIFR, Mumbai.

Phoenix 2023, IIT Hyderabad, 18-20 December, 2023.

Performance of the LHC machine

- Demonstrated reliable operation with upto 6.8 TeV proton beams (\sqrt{s} = 13.6 TeV)
- Reached fast the design value of instantaneous luminosity L = 10³⁴ cm⁻²s⁻¹ (at ATLAS and CMS interaction points)
 ... and delivered collisions at a much higher rate [eg., 2023: 3452 bunches, 1.6 X10¹¹ protons/bunch]
- 2 serious problems shortened the pp operation in 2023; data corr. to integrated lumi (\mathcal{L})~ 31 fb⁻¹.

Integrated luminosity in CMS so far

High Luminosity (HL) LHC ⇒

- Nominal L = $5X10^{34}$ cm⁻²s⁻¹ \Rightarrow ~130 events/crossing (pile up)
- Ultimate inst. lumi: 7.5X10³⁴ cm⁻²s⁻¹ (PU ~200)
- Expected total data vol. \mathcal{L} ~ 3000 fb⁻¹
- In preparation, experiments are being upgraded in significant way.
 - India playing significant role in the upgrade of several subsystems of CMS detector.

Heavy ion operation in 2023: L= 10²⁷ cm⁻²s⁻¹ data: *L***~ 2/nb**

Next generation colliders on the plate

Data \Rightarrow significant gap between electroweak (EW) scale and the scale of New Physics (NP) \rightarrow use precision Higgs measurements as a tool to probe NP indirectly.

1% uncertainty in Higgs properties \Rightarrow 1 TeV scale of NP causing such a deviation \Rightarrow probe 10 TeV region \rightarrow go for exploratory hadron collider: 100 TeV FCC-hh!

- European Strategy Group, Jan., 2020: strengthen R&D in high-field superconducting magnets at high temp.
 - \rightarrow strong inclination for supporting FCC; decision in 2026.
- However in not very far future: mass-produce Higgs bosons in clean collisions (e+e- collider) ⇒ need a linear collider

Note:Higgs factory is limited by lumi: can't probe rare H decays. (Branching fractions vary over many orders of magnitude unlike for Z)

- *Japan, 2023:* increased support for addressing International Linear Collider technical issues.
- US HEPAP recommendations ,8.12.23: HL-LHC + off-shore Higgs factory + ...

Timelines in Snowmass Energy Frontier summary

arXiv:2301.06581

Back to present: physics performance at the LHC

Huge amount pp collision data (~100 PB) already collected by each of the LHC experiments [ATLAS, CMS : ~ 100 paper/year] This talk: only an effort to exemplify the span of interesting physics at the LHC under the aegis of **Standard physics**

- Physics program encompasses searches, measurements, rare decays, and more.
- No direct evidence for physics beyond SM.
- Precision era of LHC reached very fast.

Strategy:

- Study processes which are suppressed / forbidden in SM. New Physics interactions potentially enhance the rate.
- Access higher mass scales in terms of virtual contribution.
- New physics, unreachable directly, ⇒ can effectively modify the couplings in various types of interactions

 \Rightarrow effective field theory (EFT) interpretation.

• Direct & indirect searches continue (including novelties)→ Talk by A.Nayak

Effective field theories

- EFT describes possible pattern of deviations introduced by new physics & also constrain the deviations.
- Does not assume the SM structure of the couplings.
- Using global fit construct a sensitive but theoretically consistent framework.
- Put constraints simultaneously as many parameters as possible.

$$\mathcal{L}_{\mathrm{Eff}} = \mathcal{L}_{\mathrm{SM}} + rac{1}{\Lambda} \mathcal{L}_5 + rac{1}{\Lambda^2} \mathcal{L}_6 + rac{1}{\Lambda^3} \mathcal{L}_7 + rac{1}{\Lambda^4} \mathcal{L}_8 + \cdots, \qquad \mathcal{L}_d = \sum_i c_i^{(d)} \mathcal{O}_i^{(d)}$$

 \mathcal{O} : operators invariant under SM c_i: real, dimensionless Wilson coefficients (parameters)

Some of the challenges at present:

- Integration of Higgs measurements in the global fit along with EW observables.
- Large no of parameters.
- Expand the range of parameter space after taking into account correlations.
- Precise predictions in SMEFT.
- Matching between different EFT models.

Collectively achieve more than anticipated!

- Diversity of efforts, based on diversity of data taking strategies ⇒ operating the ultimate multipurpose detectors performing over the expectations.
- Enormous progress in computing capabilities combined with advances in machine learning techniques.
- Precision theoretical description of the dominant SM processes.
- Extensive understanding of the performance of the experiments.

Precision in the prediction for Higgs boson production cross section

We cannot afford to miss a discovery!

 σ_{aaF} (theory) = 48.68 ± 3.9 (scales) ± 1.9 (PDF) ± 2.6(α_{s}) pb

- higher order quantum corrections in perturbative calc.
 i) upto next-to-next-to-next-to leading order (N3LO) of QCD coupling (α_S)
 ii) Electroweak corrections
 iii) finite quark mass effects
- PDF uncertainty
- Uncertainty due to α_s

Electroweak physics

Milestones reached by 2023

- Neutral currents: 50 yrs
- W, Z turn 40
- Top: 28
- Higgs: 11

SM input parameters

- W Mass
- Top Mass
- Higgs Mass
- ..
- ⇒ LHC measurements crucial

LHC unraveling in productions of

- Multi-bosons
- Four Top quarks
- •

Note: more than 80 years back, D.M.Bose and Bibha Choudhary first used track counting in emulsion plates to analyse nature of cosmic ray interactions.

Standard Model cross sections

SM cross sections with Run 3 data, \sqrt{s} = 13.6 TeV

Observation of WW γ and search for H γ process

arXiv:2310.05164

- Direct measurement of gauge boson self-couplings \rightarrow probes the non-abelian gauge structure of SM.
- Anomalous coupling between the Higgs boson and the quarks can increase the cross section at high energies.

CMS result: first observation

- Measured fiducial cross section for WW γ process: 6.0 ± 1.2 fb
- Upper limits for H production and derived limits on Yukawa couplings of the light quarks.
- Note recent constraint on anomalous Hcc coupling $1.1|\kappa_c| < 5.5$ PRL 131 (2023) 061801

Process	σ upper limits obs. (exp.) [fb]	κ_q limits obs. (exp.) at 95% CL	$\overline{\kappa}_{q}$ limits obs. (exp.) at 95% CL
$u\overline{u} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	85 (67)	$ \kappa_{\rm u} \le 16000 \ (13000)$	$\left \overline{\kappa}_{\mathrm{u}}\right \leq 7.5 (6.1)$
$d\overline{d} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	72 (58)	$ \kappa_{\rm d} \le 17000 \ (14000)$	$ \bar{\kappa}_{\rm d} \le 16.6 \ (14.7)$
$s\overline{s} ightarrow H + \gamma ightarrow e \mu u_e u_\mu \gamma$	68 (49)	$ \kappa_{\rm s} \le 1700$ (1300)	$ \bar{\kappa}_{\rm s} \le 32.8$ (25.2)
$c\overline{c} \rightarrow H + \gamma \rightarrow e \mu \nu_e \nu_\mu \gamma$	87 (67)	$ \kappa_{\rm c} \le 200$ (110)	$ \bar{\kappa}_{\rm c} \le 45.4$ (25.0)

Four top quarks

- Heaviest final state at the LHC
- Rare process: $\sigma_{\rm SM}$ ~ 12 fb
- Expect about 2k events @13 TeV

Example of typical analysis strategy: i) categorize events to increase signal sensitivity!

ii) Define signal and control regions (SR, CR).

- Cross section sensitive to top Yukawa coupling, its CP properties.
- Many possible BSM physics predicts enhancement: eg.,Gluino pair, scalar gluon, associated production of a heavy scalar, heavy pseudo scalar in 2HDM, compositeness,
- EFT: constrain on 4-fermion interactions, oblique parameters, etc.

Measurement of W mass

- M_W important input parameter of SM \rightarrow provides sensitive test for the consistency of the model.
- Precision prediction for electroweak observables \Rightarrow unending efforts to reduce ΔM_W

$$\sum_{\gamma} \mathcal{O}_{Z} \left(\Delta r = 1 - \frac{\pi \alpha}{\sqrt{2} G_{\mu}} \frac{1}{M_{W}^{2} \left(1 - \frac{M_{W}^{2}}{M_{Z}^{2}}\right)} \right)$$

- 80376 ± 33 MeV :LEP [Phys. Rep 532 (2013) 119]
- 80370 ± 19 MeV :ATLAS [EPJC 78 (2018) 110]
- 80354 ± 32 MeV : LHCb [JHEP 01 (2022) 036]
- 80443.5 ± 9.4 MeV :CDF II [Science 378 (2022) 170]
- Average of all measurements except CDF II = 80369.2 ± 13.3 MeV
- LHC EW WG: This average and the published CDF result considered on equal footing but statistically incompatible.
- Future: ~ 3-4 MeV

Top quark mass

The most massive fundamental particle in SM.

Mass/Yukawa coupling is free parameter to be measured.

Abundant production at the LHC (in Run $2 \sim 10^8$) with unique experimental signatures.

ATLAS & CMS combination using Run1 data (\sqrt{s} =7 and 8 TeV) uses top pair and single top productions:

 m_{t} = 172.52 ± 0.33 [0.14 (stat), 0.33(syst)] GeV \rightarrow precision of 0.18% !

ATLAS-CONF-023-066, CMS-PAS-TOP-022-001

Currently, the best measurement in a single channel: m₊ = 171.77 ± 0.37 GeV

EPJC 83 (2023) 963

Issue: difference of ~ 0.5 GeV between direct measurement of m_t^{MC} (parameter in event generation tool) and indirect measurement from cross section corr. to m_t^{pole} (top-mass renormalization scheme in field-theory).

Higgs boson mass

- A free parameter in SM.
- Important ingredient for predictions of SM eg., couplings \rightarrow production and decay rates of Higgs.
- Mass best measured in high resolution channels: $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ^* \rightarrow 4\ell$.

Best to-date precision of m_u: 0.09%

2 1800 E

- 1600

of Meights 1200 of Meights

800

600

400 200 ATLAS

 $H \rightarrow \gamma \gamma$

110

√s=13 TeV, 140 fb⁻¹

120

130

CMS Run 2: $H \rightarrow 4\ell$: 125.04 ± 0.12 (stat.) ± 0.05 (syst.) GeV Best single channel measurement

Combined Run 1 + Run 2 (4 ℓ + $\gamma\gamma$): 125.08 ± 0.12 GeV (stat.: ± 0.09)

arXiv 2308.07216, 2308.04775

150

- Data

······ Background

All categories

140

- Combination of Run1 + Run2 results still statistically limited.
- Future of Δm_{μ} : HL-LHC: ~ 20 MeV arXiv:1902.00134 ILC: ~ 14 MeV PRD103 (2021) 099903 Fcc-ee ~ 10 MeV

CMS PAS-HIG-21-019

Standard Model Higgs Physics

- Total no. of Higgs bosons already produced at each interaction point ~10⁷
- Higgs signal strength measured with ~ 6% precision, uncertainty still dominated by statistics.

Decay width of the Higgs boson

- $\tau_{_{\rm H}} \approx 1.6 \times 10^{-22}$ sec \Rightarrow the natural width, $\Gamma_{_{\rm H}} = 4.14 \pm 0.02$ MeV in SM.
- Indirect estimate of Γ_{μ} : compare on-shell and off-shell productions, assuming SM couplings and no new signal, other than possible enhancement of off-shell H contribution.

Direct measurement using the on-shell width or lifetime.

But experimental resolution: ~ 1 *GeV*

ΔΓ_L : ~ 20% @ HL-LHC : 1-5% at future colliders arXiv 2209.07510

Extracted value of H width consistent with SM.

Couplings of H

Yukawa couplings of fermions \rightarrow *a new interaction of Nature*

- Current precision in measurements allows for anomalous couplings.
- Describe possible deviations with the scale factors $\kappa_i^{}$ \rightarrow the cross section or the partial decay width scales with κ_i^2 when compared to the SM prediction.
- Assume event kinematics to be unaltered.
- *k* framework can accommodate any non-SM invisible or undetected component.

$$(\sigma_i \times B_f) = k_i^2 \sigma_i^{SM} \frac{k_f^2 \Gamma_f^{SM}}{k_H^2 \Gamma_H^{SM}}$$

• $\kappa_i = 1 \rightarrow \text{SM}$
• $\kappa_i \neq 1 \rightarrow \text{BSM}$

0.05

0.1

0.15

0.2

95% CL limit

9

Reduced coupling modifiers of H to bosons and fermions

H decays to 2nd generation fermions

- Br(H→μμ): ~ 0.02%
- CMS: evidence in Run 2 JHEP 01 (2021) 148
- CMS/ATLAS observation with Run 3 data expected

- Br(H→cc): ~ 2.9%
- CMS upper limit: gain from particle net methodology of identification of charm jets.
 Obsd. σ(VH) *Br(H→ cc) < 0.94 pb = 14.4 * SM
 PRL 131 (2023) 061801
- ILC, FCC: expect coupling uncertainty ~ 1%

- Br(H \rightarrow ss) < 10⁻³ \rightarrow out of reach at (HL-)LHC.
- Best expectation from CEPC: < 3 X SM

arXiv:2310.03440

Higgs boson candidate mass [GeV]

SM :

Br(H \rightarrow Z γ) = (1.54(7) ± 0.09)X 10⁻³ for m_H = 125.09 (38) GeV

BSM particles and couplings can be present in the quantum loops.

Difference between $H \rightarrow Z\gamma$ and $H \rightarrow \gamma\gamma/ZZ$ decay sensitive to NP.

$H \rightarrow Z\gamma$ process observed: Signal significance: 3.4σ Signal strength: 2.2 ± 0.7 , Result within 1.9σ of SM.

ATLAS+ CMS combination:arXiv:2309.03501

kappa-0	HL-LHC	FCC-ee/eh/hh
κ_W [%]	1.7	0.14
κ_Z [%]	1.5	0.12
κ_g [%]	2.3	0.49
κη [%]	1.9	0.29
$\kappa_{Z\gamma}$ [%]	10.	0.69

Weighted events / GeV

– Bkg

Data

Limits on trilinear self-coupling and quartic couplings

Fiducial cross section in dedicated regions of phase space

Shape of $p_{\tau}^{\gamma\gamma}$ spectrum:

i) low p_{T} region sensitive to light quark Yukawa couplings.

ii) high p_{T} region sensitive to effective coupling to gluon.

No sensitivity of p_{τ} to HVV couplings in SM.

CMS (H
$$\rightarrow \gamma\gamma$$
) $\sigma_{\rm fid} = 73.4^{+5.4}_{-5.3} \,({\rm stat})^{+2.4}_{-2.2} \,({\rm syst}) \,{\rm fb} = 73.4^{+6.1}_{-5.9} \,{\rm fb}.$
SM prediction: 75.4 ± 4.1 fb

JHEP 05 (2023) 058 JHEP 03 (2023) 091

CP properties of the Higgs boson & effective field theory

- Higgs boson in SM is CP even: J ^{CP} = 0⁺⁺
- CP-odd H complements other known sources \rightarrow indication of BSM physics.
- Pure CP-odd Higgs excluded at > 99% CL by Run 1 data
- Strong theoretical motivation to search for CP-violating effects in the couplings of Higgs with fermions
- Search for CPV in the shapes of various optimal observables (rate measurement is not sensitive to CPV)
- Fermionic couplings (Hff) modelled as :

$$\mathscr{L}_{ffH} = \kappa_f' y_f \phi \bar{\psi}_f (\cos \alpha + i\gamma_5 \sin \alpha) \psi_f$$

 \rightarrow tree-level effect prominent in 3rd generation; eg., ttH production, H \rightarrow $\tau\tau$ decay processes.

Bosonic couplings (HVV): higher order operators suppressed by BSM scale Λ :
 → pure CPV effects in interference term

$$\mathcal{L}_{VVH} = \mathcal{L}_{SM} + \frac{c_i}{\Lambda^2} \phi \tilde{V}_{\mu\nu} V^{\mu\nu} + \dots$$

PRD 108 (2023) 038013

• EFT \Rightarrow look for "low energy" deviations of "high energy" BSM physics.

$$\mathcal{A}(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu},$$

 a_{i} , κ_{i} : to be determined from data a_{3} : CPV f: gauge boson field strength tensors

CP violation in HVV coupling using $H \rightarrow \pmb{\tau \tau}$

- Effectively, estimate constraints on the fractional contribution of the anomalous couplings to the Higgs boson cross sections
- Effective cross sections measured in terms of ratios, like,

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + |\kappa_1|^2 \sigma_{\Lambda 1} + |\kappa_1^{Z\gamma}|^2 \sigma_{\Lambda 1}^{Z\gamma}} \operatorname{sgn}\left(\frac{a_i}{a_1}\right)$$

Matrix element calculations \rightarrow discriminating variables

$$\mathcal{D}_{\text{BSM}} = \frac{\mathcal{P}_{\text{SM}}(\vec{\Omega})}{\mathcal{P}_{\text{SM}}(\vec{\Omega}) + \mathcal{P}_{\text{BSM}}(\vec{\Omega})}$$
$$\boldsymbol{\Omega}^{\text{assoc}} = \{\theta_1^{\text{VBF}}, \theta_2^{\text{VBF}}, \theta^{*\text{VBF}}, \Phi^{\text{VBF}}, \Phi_1^{\text{VBF}}, q_1^{2,\text{VBF}}, q_2^{2,\text{VBF}}\}$$

Combination of $H \rightarrow \tau \tau$, $H \rightarrow ZZ^* \rightarrow 4I$, $H \rightarrow \gamma \gamma \Rightarrow$ higher sensitivity towards EFT parameters.

PRD 28 (2023) 032013 JHEP 06 (2022) 012

CP invariance in $H \rightarrow ZZ^* \rightarrow 4I$

SMEFT Lagrangian:

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i}{\Lambda^2} O_i^{(6)}$$

 $O_i^{(6)}$: CP-odd dimension-6 operators

 c_i : constrain them assuming a single Higgs CP-odd BSM coupling under different assumptions.

- Couplings scale as $1/\Lambda^2$
- Some couplings relevant for production, some at decay, some for both.

Using $H \rightarrow \gamma \gamma$

PRL 131 (2023) 061802

• Optimum Observable depends on CP-odd interference term of SM and BSM amplitudes.

Operator Structure Coupling Warsaw Basis $\Phi^{\dagger}\Phi \tilde{W}^{I}_{\mu\nu}W^{\mu\nu I}$ $O_{\Phi ilde W}$ $C_{H\widetilde{W}}$ $\Phi^{\dagger} \tau^{I} \Phi \tilde{W}^{I}_{\mu\nu} B^{\mu\nu}$ $O_{\Phi \tilde{W}B}$ $C_{H\widetilde{W}B}$ $\Phi^{\dagger}\Phi\tilde{B}_{\mu\nu}B^{\mu\nu}$ $O_{\Phi\tilde{B}}$ $C_{H\widetilde{B}}$ **Higgs Basis** $hZ_{\mu\nu}\tilde{Z}^{\mu\nu}$ $O_{hZ\tilde{Z}}$ \widetilde{c}_{zz} $h Z_{\mu\nu} \tilde{A}^{\mu\nu}$ $\tilde{c}_{z\gamma}$ $O_{hZ\tilde{A}}$ $hA_{\mu\nu}\tilde{A}^{\mu\nu}$ $\widetilde{c}_{\gamma\gamma}$ $O_{hA\tilde{A}}$

Spin entanglement (observed at the highest energy so far)

• Spin correlation explored typically in low energy regime in various context.

Study two-qubit states of ttbar at production threshold (mostly singlet) with

well-specified fiducial phase-space \rightarrow correlated or entangled!

- LHC: a pair of quarks available at relativistic energies.
- Top: the only "bare" quark, decays before hadronization
 ⇒ spin information transferred to decay products.

 $\underbrace{\frac{1}{m_{\rm t}}}_{\rm production} < \underbrace{\frac{1}{\Gamma_{\rm t}}}_{\rm 10^{-25} \ \rm s} < \underbrace{\frac{1}{\Lambda_{\rm QCD}}}_{\rm hadronization} < \underbrace{\frac{m_{\rm t}}{\Lambda^2}}_{\rm 10^{-21} \ \rm s}$

ATLAS-CONF-023-069

observable dependent on the angle between the charged leptons in the rest frame of their parents.

Amplitude analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ decays at LHCb

- Last few years: several anomalies in various measurements in heavy flavour sector (quark transitions observed in B hadron decays).
- Main issue: lower rate for $b \rightarrow s \mu^+ \mu^-$ in decays of B_s , B^0 , B^+
- Interpretation not straightforward due to hadronic uncertainties in SM predictions (form-factors, decay constant etc.).
- Also non-perturbative effects. Including long-distance charm loops.

$$\mathcal{O}_{7\gamma} = \frac{c}{16\pi^2} m_b \bar{b}_R^{\alpha} \sigma^{\mu\nu} F_{\mu\nu} s_L^{\alpha}, \qquad photon$$
$$\mathcal{O}_{9V} = \frac{1}{2} \bar{b}_L^{\alpha} \gamma^{\mu} s_L^{\alpha} \bar{\ell} \gamma_{\mu} \ell, \qquad vector$$
$$\mathcal{O}_{10A} = \frac{1}{2} \bar{b}_L^{\alpha} \gamma^{\mu} s_L^{\alpha} \bar{\ell} \gamma_{\mu} \gamma_5 \ell, \qquad axial-vector$$

o

- First q²-unbinned (model-dependent fit) amplitude analysis of $B^0 \rightarrow K^{*0}\mu^+\mu^-$
- Estimation of non-local hadronic contributions (incl.charm loop) from data (with certain assumptions).
- Result consistent with anomalies observed in $b \rightarrow s \mu^+ \mu^-$ studies:

1.8 σ in C₉ and 1.4 σ global deviation in data from SM.

Conclusion

- In the first 12 years since the start up, the LHC machine has operated beyond expectation.
- Though it has delivered only a few percent of the total data volume expected in the next 2 decades, a plethora of interesting physics results, beyond expectation has been derived already.
- The measurements, within uncertainties, indicate that the standard model is doing well in the TeV energy scale.
- There is no significant indication in data about physics of higher energy scale.
- Presented only a small (and with personal bias) sample of recent experimental results to showcase the vast expanse of extremely interesting *standard physics at the LHC*.

Stay tuned with LHC physics!

Backup

Vector boson fusion process: novel tool for BSM search

PRL 131 (2023) 011803

 Same sign dilepton in central region of detector in VBF-like event topology
 => lepton number violation

i) Heavy, Majorana neutrino (N) production

ii) Process mediated by Weinberg operator (dim-5) with flavour-dependent coefficients

- Best limit on mixing element $|V_{mN}|^2$ so far: $m_N > 650 \text{ GeV}$
- Effective Majorana mass associated with W-operator excluded : 10.8 GeV

Electroweak production of di/tribosons W_{γ} , $W_{\gamma\gamma}$

- First observation of W_{γ} at 13 TeV
- Anomalous aTGC, aQGC couplings →access to dim-8 operators

PRD 108 (2023) 032017

- $W_{\gamma\gamma}$ process: 5.6 σ observation
- Muon channel rate: ~ 12.2 ± 2 fb

All measurements match SM

ATLAS-CONF-2023-005

Projected data volume in future colliders

	To	+5			+10			+15	<u> </u>		+20			+26
ILC	0.5/ab 250 GeV		1.5/ab 250 GeV				1.0/ 500 ('ab GeV	0.2/ab 2m _{top} 50		3/ab 00 GeV			
CEPC	5.6/ab 16 240 GeV			16/ab Mz	2.6 /ab 2M _W				SppC =>					
CLIC	1.0/ab 380 GeV					2.5/ab 1.5 <u>TeV</u>			5.0/ab => until +28 3.0 <u>TeV</u>					
FCC	150/ab ee, M _z	10/ab ee, 2M _W	5/a ee, 24	ab 0 GeV	GeV		1.7/ab ee, 2m _{top}						h	<u>h,eh</u> =>
LHeC	0.06/ab 0.2/ab						0.72/ab							
HE- LHC	10/ab per experiment in 20y													
FCC eh/ <u>hh</u>	20/ab per experiment in 25y													

WZgamma observation

Triple, quartic gauge boson vertices

Fiducial cross section measured with 6 sd significance: 2 fb (SM expected ~ 1.5 fb, 5 sd)

Simplified template cross section: STXS

- Cross sections for each production mode with specific final states, in bins of kinematic variables (eg. p_T^H, N_{jets}, m_{jj}) in exclusive regions of phase space. Specific bins have increased sensitivity to BSM.
- Granular measurement of the cross section for each production mode \rightarrow allows kinematics-dependent interpretations.
- Provide a common set of definitions for the combination of the measurements \rightarrow inclusive over the Higgs decays

Statistical treatment

The combined results are obtained from a likelihood function defined as the product of the likelihoods of each input measurement.

The observed yield in each category of reconstructed events follows a Poisson distribution the parameter of which is the sum of the expected signal and background contributions.

The number of signal events in any category *k* is split into the different production and decay modes:

$$n_k^{ ext{signal}} = \mathcal{L}_k \sum_i \sum_f (\sigma_i B_f) (A \epsilon)_{if}^k$$

the sum indexed by *i* runs either over the production processes (ggF, VBF, WH, ZH, ttH, tH) or over the set of the measured production kinematic regions, and the sum indexed by *f* runs over the decay final states (ZZ, WW, $\gamma\gamma$, $Z\gamma$, bb, cc, $\tau^+\tau^-$, $\mu^+\mu^-$). \mathcal{L}_k : integrated luminosity of the dataset used in category *k*.

 $(A\epsilon)_{i}^{k}$: acceptance times selection efficiency factor for production process *i* and decay mode *f* in category *k*.