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the R-ratio plays a fundamental role in particle physics since

. . (ricevuto il 30 Maggio 1970)
its introduction

1. - The simple properties of deep inelastic electron-proton scattering has sug-
gested models where these proecsscs arise as interactions of virtual photons with an
«elementary » component of the proton. These as yet unspecified elementary compo-
nents of the proton have been given the name of « partons» by FEYNMAX (1). The
model has been studied by BJORKEN and PAscHos (%) and successively by DRELL,
Levy and TtNe Mow YA~ (%) who gave a field-theoretical treatment of the parton
model, and were able to recover some of the experimentally observed properties of this
process, In this letter we wish to extend the method of ref. (%) to the study of the total
cross-section of cloctron-positron annihilation into hadrons.

This treatment leads to an asymptotic (very high cross-section c.m. energy, 2E)
of the form

s
) > G % wg*(@,



Munon g — 2, PRL 131 (2023)

L B L L B B B

10°

N
1‘CEQ

T
;
|

o
I

in the last few years, the importance of the R-ratio has been
mainly associated with muon g — 2 experiments

<

|

Weighted €%/149.2 ns
3

E

g

S,

3 L 10

2 E

£ 0.5 | I AAAAAANS ‘ ‘ 41

+o00 2 Lo . ] 20 20 60 80 700
al}LIVPfLO — / dw fau (w) R(w) I : s Time after injection modulo 102.5 ps [us]
I o
0 i 88 B

['H [ “© b No beam dynamic terms |

L Pox = 2 B
~ 2 #= — Full fit function

o
<

M S R R R A AT R
0.0 0.5 1.0 1.5 2.0 2.5
Frequency [MHz]




the R-ratio is much more than that. ..
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theoretically, R(E) is a distribution
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(01Jém (0)8(H — E)(2m)?6° (P) T3, (0)]0) = — R(E)

theoretically, but also numerically (see later), it is convenient to define and study distributions as functionals

+oo
RE) — Rfl= [ dwfe) Rw)

and probe the energy dependence of R(E) by changing f(E)
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R[fa,] can also be seen as a low-energy probe of R(E)



aEVP*LO is natively a low-energy observable, measured directly by letting muons wrap around in a magnetic field

R(E), as any other cross-section, is an energy-dependent probe of the theory and contains an infinite amount of
information

the experiments that measure R(E) are totally different w.r.t. the ones that measure a,

the comparison of the BNL+FNAL measurements, aEVP*LO’eXP, with f0+°° dE fa, (w) R™P(w) is a consistency
check. ..

to turn it into a first-principles test of the theory we must test aEVP*LO’eXp and R°*P(E) independently

this can conveniently be done by using the unifying language

Rl - | " dw flw) R(w)



of o =02 GeV

a systematic study of R(E) at different energies can be done by considering Gaussian energy bins
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Extraction of spectral densities from lattice correlators

Martin Hansen,' Alessandro Lupo,2 and Nazario Tantalo®
'INFN Roma Tor Vergata, Via della Ricerca Scientifica 1, 1-00133 Rome, Italy
2Um'versity of Rome Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Rome, Italy
3’Um'ver.&'il)' of Rome Tor Vergata and INFN Roma Tor Vergata,
Via della Ricerca Scientifica 1, 1-00133 Rome, Italy

on the theoretical side, the required non-perturbative accuracy can be achieved by performing lattice simulations

these give direct access to Euclidean correlators at finite L and a and necessarily affected by numerical and
statistical errors

the required information can be extracted by using the method that we developed to cope with this problem (that
my friend j.bulava then called HLT)



® other methods are available on the market
a.rothkopf EPJ Web Conf. 274, 01004 (2022)

a.lupo and l.del.debbio talks

® and whenever i have a student named alessandro i devise a new one. ..
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Regular Article - Theoretical Physics
Teaching to extract spectral densities from lattice correlators to a
broad audience of learning-machines
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Probing the Energy-Smeared R Ratio Using Lattice QCD

Constantia Alexandrou,l‘2 Simone Bacchio,2 Alessandro De Santis,3 Petros Dimopoulos,4
Jacob Finkenrath,” Roberto Frezzotti,” Giuseppe Gagliardi,> Marco Garofalo,” Kyriakos Hadjiyiannakou,'?
Bartosz Kostrzewa,7 Karl Jansen,8 Vittorio Lubicz,9 Marcus Petschlies,6 Francesco Samﬁlippo,5 Silvano Simula,5
Nazario Tantalo ,3‘* Carsten Urbach,6 and Urs Wenger10

(Extended Twisted Mass Collaboration (ETMC))

® before addressing the phenomenologically relevant calculation of the smeared R-ratio on which i’'m now going to
focus. ..



j.bulava et al. JHEP 07 (2022) 034

kernel = g % e/(E-2m)=05 -—- exac:g-iaeniclil)
e/(E=2m.)=1.0 — exact (2,4,6-particle;
0.4 AT 3 eE-2m)=20 o AN e pert. theory (2-loop)
b 2 lattice calculation
03] [ %%
W ! JM
o2d [ H&%gg i ﬁ%ﬂ memm
QQQQQQQQQWPQQQQQQ? b 7’>§¢0
0.1
00+ T T T T T T T T LA S R S B L S S B B L R R R
0 10 20 30 40 10 20 30 40
E/m, E/m,

the HLT method has been stringently validated by performing the analogous calculation in the 2D non-linear O(3)

o-model where the exact answer is known



let's see how it works. ..
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1D L3xT a fm al fm m. GeV
B64 647 - 128 0.07957(13) 5.09 0.1352(2)
B96 96° - 192 0.07957(13) 7.64 0.1352(2)
C80 80% - 160 0.06821(13) 5.46 0.1349(3)
D96 96° - 192 0.05692(12) 5.46 0.1351(3)

in the case of the isoQCD R-ratio
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let's have a closer look at the stability analysis. . .
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let's look at finite volume effects. ..
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let's look at cutoff effects. . .
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once you have all this. ..



and you have already seen this. ..
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m.davier et al., arXiv:2312.02053
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m.davier et al., PRD 109 (2024), see the paper for the original lattice references
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at present, since:

® the tension is at low-energy
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This work
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® our lattice errors on R, (E) are still rather large for E > 1.5 GeV

R[fc‘g] makes the same job!



is there any chance to reduce the Gaussian bin size?
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let's go back to ay
on the lattice this is estimated by

tC
HVP-LO,standard : : : s
a ’ = lim lim lim a at) C(at
K a0 L00 te—>00 ;fa”( ) ( )

the big difference w.r.t. a Gaussian kernel is that the coefficients faM (at) do not require smoothing procedures

on the other hand, by using HLT one has a different estimator with different systematic errors
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summarizing:

RIf= | " do fw) R(w)

® from the lattice perspective the best is f(w) = e~ «?

® from the phenomenological perspective one would like to have f(w) = d(w — E)

® |et's do what we can with reasonable and, more importantly, trustable errors



before closing i'll take the chance to express my feelings concerning this spectral density business. . .



here (ALGT@CERN 2019 workshop) | presented, during an informal afternoon discussion, the HLT method that, at the
time, was seen as a speculative idea. ..



that idea, together with many other important contributions, opened the way to the calculation of inclusive hadronic

decay rates on the lattice

something that has been considered unfeasible for several years. ..

m.hansen et al. Phys.Rev.D 96 (2017)
s.hashimoto PTEP 2017 (2017)

p.gambino, s.hashimoto Phys.Rev.Lett. 125 (2020)
p.gambino et al. JHEP 07 (2022) 083

ETMC Phys.Rev.D 108 (2023)

ETMC Phys.Rev.Lett. 130 (2023)

a.barone et al. JHEP 07 (2023) 145

ETMC Phys.Rev.Lett. 132 (2024)

see the talks from
f.sanfilippo, p.gambino, a.barone, s.hashimoto



hic et nunc, agostino should be presenting now, hopefully
will present in a couple of days, what | really think is an
important theoretical step forward

a mathematically solid non-perturbative solution to the
theoretical problem of extracting generic scattering
amplitudes from lattice correlators

from the numerical perspective, this must still be seen as a
speculative idea. ..
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Scattering Amplitudes from Euclidean Correlators
Haag-Ruelle theory and approximation formulae

be

Agostino Patella®?, Nazario Tantalo

Institut fiir Physik & IRIS Adlershof,
12489 Berlin, Gen

“ Humboldt Universitiit 7u Bo
Zum Grossen Windkay

* Universita di Roma Tor Vergata, Dipartimento di Fisica,
Via della Ricerca Scientifica 1, 00133 Rome, Italy

one di Tor Vergata, Via della Ricerca Seientifica. 1, 00133 Rome, Italy

“DESY, Platancnallec 6, D-15738 Zeuthen, Germany

Abstract

In this work we provide a non-perturbative solution to the theoretical problem of extract-
correlators in infinite volume. We work within
g-Ruelle scattering theory and derive formu-
lae which can be used to approximate scattering amplitudes arbitrarily well in terms of
linear combinations of Euclidean correlators at discrete time separations. Our

ing scattering amplitudes from Euclides

the solid axiomatic framework of the Ha

It gen-

eralizes and extends the

nge of applicability of a result previously obtained by Barata
and Fredenhagen [1]. We provide a concrete procedure to construct such approximations,
making our formulac ready to be used in mumerical caleulations of non-perturbative QCD
scattering amplitudes. A detailed numeri tigation is needed to assess whether the
proposed strategy can lead to the caleulation of scattering amplitudes with phenomeno-
logically satisfactory precision with presently available lattice QCD data. This will be
s, the numerical accuracy and precision of lattice
simulations is systematically improvable, and we have little doubts that our approach will

1 inve

the subject of future work. Neverthel

become useful in the future.




i'm optimistic though. ..

and i'll take inspiration from what chis said at the end of his plenary talk in Villasimius where he presented the
RBC-UKQCD results on K — 7

“if | were Italian | would be jumping for joy on stage!”

c.t.sachrajda @ lattice2010



who works with me knows that i'm all but a joyful man. ..



but i'm deeply italian!



backup slides




mathematically the problem is reduced to that of an inverse Laplace-transform



mathematically the problem is reduced to that of an inverse Laplace-transform

to be performed numerically
by starting from a finite and noisy set of input data
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p(E) contains an infinite amount of information



p(E) contains an infinite amount of information

the problem, to be addressed numerically, has to be discretized
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Axiom W1: For each test function f, i.e. for a function with a compact support and continuous derivatives of any order,
there exists a set of operators O1(f), -+ ,On(f) which, together with their adjoints, are defined on a dense subset of the
Hilbert state space, containing the vacuum. The fields O are operator-valued tempered distributions. The Hilbert state
space is spanned by the field polynomials acting on the vacuum (cyclicity condition).

spectral densities must be smeared, in particular on finite volumes where

pL(E) =" wn(L)§ (En(L) — E) | p(E) > plA]
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Extraction of spectral densities from lattice correlators
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having this in mind, we developed a method (that my friend j.bulava then called HLT) that allows to extract smeared
spectral densities from lattice correlators

po(E; L) = dwAs(E,w)pr(w) , p(E) Z lim lim po(F; L)
Lo

Eo o—0
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we didn’t know it (again john) but the mathematics of the HLT method was already known
f.pijpers, m.thompson Astron.Astrophys. 262 (1992)

it is a generalization of the Backus-Gilbert method that | learnt by reading
m.t.hansen, h.b.meyer, d.robaina Phys.Rev.D 96 (2017) 9
g.backus, f.gilbert Geophys.J.Int. 16 (1968) 169

moreover, the HLT method can also be interpreted within the Bayesian language of the Gaussian Processes
a.valentine, m.sambridge, Geophys.J.Int. 220 (2020), ETMC Phys.Rev.Lett. 130 (2023)

what we call the HLT method is the procedure to estimate reliably the errors
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® supervised deep-learning
techniques are powerful tools
to address classification but
also regression problems,
particularly in the case of noisy
input data

® the idea of using them to
extract spectral densities is
certainly not original

j-karpie et al. JHEP 04, 057 (2019)

l.kades et al. Phys.Rev.D 102 (2020)

m.zhou et al. Phys.Rev.D 104 (2021)

s.chen et al. arXiv:2110.13521

l.wang et al. Phys.Rev.D 106 (2022)

t.lechien et al. SciPost Phys. 13 (2022)

s.shi et al. Comput.Phys.Commun. 282 (2023)



® supervised deep-learning
techniques are powerful tools
to address classification but
also regression problems, l.kades et al. Phys.Rev.D 102 (2020)

particularly in the case of noisy
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® these are non-linear tools that

FIG. 1. Examples of mock spectral functions reconstructed via our neural network approach for the cases of one, two and three

Breit-Wigner peaks. The chosen functions mirror the desired locality of suggested reconstructions around the original function
could perform better than (red line). Additive, Gaussian noise of width 10~ is added to the discretisad analytic form of the associated propagator of
linear algorithms such as the the same original spectral function multiple times. The shaded area depicts for cach frequency w the distribution of resulting

outcomes, while the dashed green line corresponds to the mean. The results are obtained from the FC parameter network
HLT method optimised with the parameter loss. The network is trained on the largest defined parameter space which corresponds to the

volume Vol O. The uncertainty for reconstructions decreases for smaller volumes as illustrated in Figure 4. A detailed discussion
on the properties and problems of a neural network based reconstruction is given in Section IV A.
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supervised deep-learning
techniques are powerful tools
to address classification but
also regression problems,
particularly in the case of noisy
input data

the idea of using them to
extract spectral densities is
certainly not original

these are non-linear tools that
could perform better than
linear algorithms such as the
HLT method

what about the dependence of
the results upon the training
set?

l.kades et al. Phys.Rev.D 102 (2020)

Mock spectral functions are constructed using a su-
perposed collection of Breit-Wigner peaks based on a
parametrisation obtained directly from one-loop pertur-
bative quantum field theory. Each individual Breit-
Wigner is given by

4ATw
(M? +T? —w?)2 +4I%w?

W (w) = (7)

P
Here, M denotes the mass of the corresponding state,
I' its width and A amounts to a positive normalisation
constant.

Spectral functions for the training and test set are con-
structed from a combination of at most Ngw = 3 differ-
ent Breit-Wigner peaks. Depending on which type of
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in designing a new supervised deep-learning algorithm, together with m.buzzicotti and a.de santis, we wanted to address
the following two pivotal questions:

® is it possible to devise a model independent training strategy?

® if such a strategy is found, is it then possible to quantify reliably, together with the statistical errors, also the
unavoidable systematic uncertainties?



the importance of these questions can hadrdly be underestimated

® under the working assumption that a sufficiently large neural network can perform any task, limiting either the
size of the network or the information to which it is exposed during the training process means limiting its ability to
solve the problem in full generality

® addressing the second question makes the difference between providing a possibly efficient but qualitative solution to
the problem and providing a scientific numerical tool to be used in order to derive theoretical predictions for
phenomenological analyses
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we faced the challenge and devised a strategy to extract smeared spectral densities built on the following two pillars:

® the introduction of a functional-basis to parametrize the correlators and the smeared spectral densities of the
training sets in a model independent way

® the introduction of the ensemble of machines, the broad audience mentioned in the title, to estimate the
systematic errors



parametrizing the space of possible unsmeared spectral densities
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® we have chosen Chebyshev polynomials as basis
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building the training sets

® we wanted to analyze a lattice correlator already used in ETMC Phys.Rev.Lett
with the HLT method

® therefore, also in the case of mock data we measured energies in GeV and set

oo 2
_ w —tw —(T—t)w _
C(t) = /EO dw Tom2 [e +e ] p(w) , T = 64a

poB) = [~ dw Ko (Bl

1 _(E-w)?

— e 202 | o = {0.44,0.63} GeV
V2o t I

. 130 (2023) to extract the R-ratio



the ensemble of machines

® the answer of a machine with finite NV, neurons, trained over a
finite set 75 (Np, N,) cannot be exact

® to quantify the network error we therefore introduced N, replica
machines at fixed N = (N, Ny, N,)




training the ensemble of machines
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let's now consider a new p, again extracted on the Chebyshev basis but never seen during the trainings and this time with

Np = 2 x N = 1024



let's now repeat the previous experiment 2000 times,

random Ny
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let's now look at true lattice data, the connected
strange-strange contribution to the R-ratio, and at
the comparison with the HLT method
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it is now possible to extract smeared spectral densities from lattice correlators

these can be used to compute (smeared) inclusive hadronic decay rates from
first-principles

getting unsmeared spectral densities, with a precision relevant for phenomenology, is
much more challenging, but not impossible

the next step are exclusive hadronic decays. ..
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so, why another method?



so, why another method?

well, why not. ..
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® supervised deep-learning
techniques are powerful tools
to address classification but
also regression problems, l.kades et al. Phys.Rev.D 102 (2020)

particularly in the case of noisy
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® these are non-linear tools that

FIG. 1. Examples of mock spectral functions reconstructed via our neural network approach for the cases of one, two and three

Breit-Wigner peaks. The chosen functions mirror the desired locality of suggested reconstructions around the original function
could perform better than (red line). Additive, Gaussian noise of width 10~ is added to the discretisad analytic form of the associated propagator of
linear algorithms such as the the same original spectral function multiple times. The shaded area depicts for cach frequency w the distribution of resulting

outcomes, while the dashed green line corresponds to the mean. The results are obtained from the FC parameter network
HLT method optimised with the parameter loss. The network is trained on the largest defined parameter space which corresponds to the

volume Vol O. The uncertainty for reconstructions decreases for smaller volumes as illustrated in Figure 4. A detailed discussion
on the properties and problems of a neural network based reconstruction is given in Section IV A.
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supervised deep-learning
techniques are powerful tools
to address classification but
also regression problems,
particularly in the case of noisy
input data

the idea of using them to
extract spectral densities is
certainly not original

these are non-linear tools that
could perform better than
linear algorithms such as the
HLT method

what about the dependence of
the results upon the training
set?

l.kades et al. Phys.Rev.D 102 (2020)

Mock spectral functions are constructed using a su-
perposed collection of Breit-Wigner peaks based on a
parametrisation obtained directly from one-loop pertur-
bative quantum field theory. Each individual Breit-
Wigner is given by

4ATw
(M? +T? —w?)2 +4I%w?

W (w) = (7)

P
Here, M denotes the mass of the corresponding state,
I' its width and A amounts to a positive normalisation
constant.

Spectral functions for the training and test set are con-
structed from a combination of at most Ngw = 3 differ-
ent Breit-Wigner peaks. Depending on which type of
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in designing a new supervised deep-learning algorithm, together with m.buzzicotti and a.de santis, we wanted to address
the following two pivotal questions:

® is it possible to devise a model independent training strategy?

® if such a strategy is found, is it then possible to quantify reliably, together with the statistical errors, also the
unavoidable systematic uncertainties?



the importance of these questions can hadrdly be underestimated

® under the working assumption that a sufficiently large neural network can perform any task, limiting either the
size of the network or the information to which it is exposed during the training process means limiting its ability to
solve the problem in full generality

® addressing the second question makes the difference between providing a possibly efficient but qualitative solution to
the problem and providing a scientific numerical tool to be used in order to derive theoretical predictions for
phenomenological analyses
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we faced the challenge and devised a strategy to extract smeared spectral densities built on the following two pillars:

® the introduction of a functional-basis to parametrize the correlators and the smeared spectral densities of the
training sets in a model independent way

® the introduction of the ensemble of machines, the broad audience mentioned in the title, to estimate the
systematic errors



parametrizing the space of possible unsmeared spectral densities

Ny =4 Np =6 Ny = oo
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® we have chosen Chebyshev polynomials as basis functions

Ny

p(E; Ny) = 0(E — Fo) > ca [Tn (2(E)) — Ty (2(E0))] ,  x(E)=1-2¢""F
n=0

Co =70} n = —" n>0, rn € [—1,1], Ey € [0.2,1.3] GeV
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building the training sets

® we wanted to analyze a lattice correlator already used in ETMC Phys.Rev.Lett
with the HLT method

® therefore, also in the case of mock data we measured energies in GeV and set

oo 2
_ w —tw —(T—t)w _
C(t) = /EO dw Tom2 [e +e ] p(w) , T = 64a

poB) = [~ dw Ko (Bl

1 _(E-w)?

— e 202 | o = {0.44,0.63} GeV
V2o t I

. 130 (2023) to extract the R-ratio



building the training sets

® we taught to the networks to distinguish the physical information from the noise by injecting the noise of the lattice
correlator in our training sets as follows

P'(E;Ny)  —  (C,po)

T
— Cnoisy

(Cnoisyaﬁcr)i S ’Ta(NbaNp) ) 1= 17"' :Np



® we considered 3 architectures with sizes in the

proportion

Nsrcs

arcM
Nn

Nl —1.92:3

Type Maps Size Kernel size Stride Activation

Input 64
ConvlD 2 32x2 3 2 LeakyReLu
ConvlD 4 16x4 3 2 LeakyReLu
ConvlD 8 8x8 3 2 LeakyReLu
Flatten 384
Fully conn. 256 LeakyReLu
Fully conn. 256 LeakyReLu
Output 47

Parameters 94651

TABLE II. arcS: the smallest neural network architecture
used in this work. The architecture is of the type feedforward
and the structure can be read from top to bottom of the table.
It consist of three 1D convolutional layers with an increasing
number of maps followed by two fully connected layers. The
two blocks are intermediated by one flatten layer. The column
denoted by “Size” reports the shape of the signal produced
by the corresponding layer. The stride of the filters is set to
2 in such a way that the dimension of the signal is halved at
1D convolutional layer thus favouring the neural network to
learn a more abstract representation of the input data. As ac-
tivation functions we use the LeakyReLu with negative slope
coefficient set to —0.2. The neurons with activation functions
are also provided with biases. The output is devoid of acti-
vation function in order not to limit the output range. The
bottom line reports the total number of trainable parameters.



the ensemble of machines

® the answer of a machine with finite NV, neurons, trained over a
finite set 75 (Np, N,) cannot be exact

® to quantify the network error we therefore introduced N, replica
machines at fixed N = (N, Ny, N,)




training the ensemble of machines

%(Nb’Np)

SUPERVISED TRAINING
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let's now consider a new p, again extracted on the Chebyshev basis but never seen during the trainings and this time with

Np = 2 x NJ'®* = 1024
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let's now consider a new p, again extracted on the Chebyshev basis but never seen during the trainings and this time with

Ny = 2 x N2 = 1024
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let's now consider a new p, again extracted on the Chebyshev basis but never seen during the trainings and this time with

Np = 2 x N = 1024



let's now repeat the previous experiment 2000 times,

random Ny

po(E) =
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let's now consider mock data
inspired by physics models
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D L*xT a fm al fm mx GeV

B64 64° . 128 0.07957(13) 5.09 0.1352(2)

let's now look at true lattice data, the connected
strange-strange contribution to the R-ratio, and at
the comparison with the HLT method
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what we have learned?



® supervised deep learning techniques can be used to
extract smeared hadronic spectral densities from lattice
correlators in a model-independent way
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® supervised deep learning techniques can be used to
extract smeared hadronic spectral densities from lattice
correlators in a model-independent way

® the systematic errors can be reliably quantified and the
predictions can be used in phenomenological analyses
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® supervised deep learning techniques can be used to
extract smeared hadronic spectral densities from lattice
correlators in a model-independent way 1
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supervised deep learning techniques can be used to
extract smeared hadronic spectral densities from lattice
correlators in a model-independent way

the systematic errors can be reliably quantified and the
predictions can be used in phenomenological analyses

admittedly, the procedure that we propose to do that
might end up to be numerically demanding and can
possibly be simplified, but there is no free-lunch in
physics!

here we taught a lesson to a broad audience of learning
machines

the subject of the lesson is just a particular topic. ..

the idea of teaching systematically to a broad audience
of machines is much more general and can be used to
estimate reliably the systematic errors in many other
applications




a major impact in the machine-learning performance is
played by the way the data are presented to the neural
network

we standardized input data at fixed training set 75 (Np, Np)
as follows
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