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smeared R-ratio and applications to g − 2



the R-ratio plays a fundamental role in particle physics since
its introduction
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1 . -  The simple properties of deep inelastic electron-proton scattering has sug- 
gested models where these processes arise as interactions of vir tual  photons with an 
<~ elementary ~> component of the proton. These as yet unspecified elementary compo- 
nents of the proton have been given the name of <~ partons ~> by FEY~MA~ (1). The 
model has been studied by BJORKEN and PASCI-IOS (2) and successively by DRE];L, 
LV, VV and Tung  Mow ¥A~ (3) who gave a field-theoretical t reatment  of the parton 
model, and were able to recover some of the experimentally observed properties of this 
process. In this letter we wish to extend the method of ref. (3) to the study of the total  
cross-section of electron-positron annihilation into hadrons. 

This t reatment  leads to an asymptotic (very high cross-section c.m. energy, 2E) 
of the form 

(1) ~ - +  - -  ~;  (Q~)~ + , 
12E2 Lapin 0 

where Q~ is the charge of the i-th parton in units of e. This is simp]y the sum of the 
contributions of the single partons considered as pointlike (4). Each parton contributes 
a different kind of events to the total  cross-section. The typical high-energy event  
should consist in the production of a pair of vir tual  partons, each of which develops 
into a jet  of physical hadrons. 

( ' )  Th i s  r e sea rch  has  been  s p o n s o r e d  i n  p a r t  b y  t h e  Ai r  F o r c e  Office of Scientif ic R e s e a r c h ,  
t h r o u g h  t h e  E u r o p e a n  Office of Ae rospace  R e s e a r c h  O A R ,  U n i t e d  S ta t e s  A i r  Force ,  u n d e r  c o n t r a c t  
f 61 05267 C 0084.  

(~) R .  P .  FEYNMA17: l lnpub l i shed .  
(~) J .  D. BJORKEN a n d  E.  A.  PASCHOS: Phys. Rev., 185, 1976 (1969). 
(3) S. D. DRELL, D. J .  LEVY a n d  TUNG MOW Y~N: Phys. Rev. Lett., 22, 744 (1969);  Phys. Rev., 

187, 2159 (1969). 
(4) E q u a t i o n  (1) ex t ends  t h e  w e l l - k n o w n  r e s u l t  o b t a i n e d  b y  J .  D. BJORKEN: Phys. l~ev., i 48 ,  1467 

(1966) i n  t h e  case  of spin-½  p a r t e n s .  
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in the last few years, the importance of the R-ratio has been
mainly associated with muon g − 2 experiments

aHVP−LO
µ =

∫ +∞

0
dω faµ (ω)R(ω)

Munon g − 2, PRL 131 (2023)

statistical expectations. After unblinding, the analysis
groups determine consistent values for ωm

a and their
independently estimated systematic uncertainties. We com-
bine the six asymmetry-weighted methods equally for the
final central value and verify the result with other less
sensitive methods.
The extraction of ωm

a is the only aspect of the result with
significant statistical uncertainty. The number of positrons
above 1000 MeV entering the asymmetry-weighted analy-
ses increased from 15 × 109 in Run-1 to 71 × 109 in
Run-2=3. This reduces the statistical uncertainty from
434 ppb to 201 ppb.
The systematic uncertainty on ωm

a is also reduced by a
factor greater than 2 to 25 ppb. The largest reduction comes
from our treatment of pileup, when two positrons enter a
calorimeter close in time and are not separated by
reconstruction algorithms. The difference in phase between
two lower-energy positrons and a single higher-energy
positron, coupled with a rate change over the storage
period, can bias ωm

a . Each calorimeter comprises a 9 × 6
array of PbF2 crystals that are read out independently.
Improved clustering of crystal hits in the reconstruction
algorithms reduces the number of unresolved pileup events.
In addition, some groups adopted a method of overlaying
waveforms rather than modeling the reconstruction
response to proximate crystal hits. The pileup uncertainty
is reduced from 35 ppb in Run-1 to 7 ppb in Run-2=3.
The other significant reduction is related to transverse

beam oscillations. The repair of the damaged ESQ resistors
removes the majority of systematic effects associated with
large changes in the betatron frequencies over amuon storage
period.Additionally, thehigher statistical precision allows for
improved empirical modeling of the decoherence envelope,
enabling a wider range of possibilities to be studied. The

uncertainty drops from38ppb inRun-1 to 21ppb but remains
the dominant systematic uncertainty for Run-2=3 for ωm

a .
Smaller reductions are achieved in the systematic uncer-

tainties from a residual early-to-late effect and the calo-
rimeter gain correction (see Ref. [2]), resulting in values of
10 ppb and 5 ppb, respectively.
Beam-dynamics corrections Ci.—Five corrections must

be made to convert the measured frequency ωm
a into the

anomalous precession frequency ωa in Eq. (1).
The largest correction is due to the electric fields of the

ESQs. The effect on ωa is minimized by the choice of
nominal muon momentum 3.1 GeV=c [10]. The electric
field correction Ce is required to account for the momentum
spread of the muon beam.
The muon momentum distribution is determined from

the frequency distribution and debunching rate of the
injected beam using calorimeter data. Additionally, the
radial distribution of stored muons over a betatron period is
obtained from tracker data. The debunching analysis takes
into account differences in momentum spread along the
injected bunch length that were not included in the Run-1
analysis. Accounting for this difference and using com-
plementary tracker information reduces the Ce uncertainty
from 52 ppb in Run-1 to 32 ppb in Run-2=3.
A pitch correction Cp accounts for the reduction of ωa

caused by vertical betatron oscillations. We use tracker data
to extract the distribution of vertical betatron amplitudes.
The analysis is largely unchanged from Run-1.
Any temporal change to the muon ensemble-average

phase φ0 in Eq. (3) will bias ωm
a . Correlations between the

muon decay position and φ0 are accounted for through the
phase acceptance correction Cpa. This correction is evalu-
ated bymeasuring the transverse beam distribution through-
out the storage period and using simulations to determine the
shifts in average phase at the calorimeters. The size ofCpa is
determined by variation in the beam spatial distribution,
which is significantly reduced by replacing the damaged
ESQ resistors, and the associated systematic uncertainty is
reduced from 75 ppb to 13 ppb.
Phase is also correlated with muon momentum owing

to the momentum-dependent phase advance in upstream
beamline components [4]. A differential decay correction
Cdd is required since the higher-momentum muons have a
longer boosted lifetime than lower-momentum muons.
Three separate contributions to the Cdd correction yield
a −15 ppb correction with 17 ppb uncertainty. This
correction was not applied to the Run-1 analysis.
Muons lost during a storage period can also lead to a

change in the muon momentum distribution. This effect has
also been greatly reduced by replacing the ESQ resistors.
The correction factor Cml is evaluated as 0! 3 ppb
compared to a correction in Run-1 of −11! 5 ppb.
Muon-weighted magnetic field fcalib · hω0

p ×Mi.—The
increased temperature stability in Run-2 and Run-3 due to
thermal magnet insulation and improved hall temperature
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FIG. 1. Fourier transform of the residuals from a fit following
Eq. (3) excluding ηN , ηA, and ηϕ (red dashed line), and from the
full fit (black line). The peaks correspond to the missing betatron
frequencies and muon losses. Data are from the Run-3a data set.
Inset: corresponding asymmetry-weighted eþ time spectrum
(black line) with the full fit function (red line) overlaid.

PHYSICAL REVIEW LETTERS 131, 161802 (2023)

161802-4



the R-ratio is much more than that. . .



KNT-19, PRD 101 (2020)
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theoretically, R(E) is a distribution

⟨0|Ji
em(0)δ(H − E)(2π)3δ3(P )Jj

em(0)|0⟩ = − δijE2

12π2
R(E)

theoretically, but also numerically (see later), it is convenient to define and study distributions as functionals

R(E) 7−→ R[f ] =

∫ +∞

0
dω f(ω)R(ω)

and probe the energy dependence of R(E) by changing f(E)



KNT-19, PRD 101 (2020)
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aHVP−LO
µ ≡ R[faµ ] can also be seen as a low-energy probe of R(E)



• aHVP−LO
µ is natively a low-energy observable, measured directly by letting muons wrap around in a magnetic field

• R(E), as any other cross-section, is an energy-dependent probe of the theory and contains an infinite amount of
information

• the experiments that measure R(E) are totally different w.r.t. the ones that measure aµ

• the comparison of the BNL+FNAL measurements, aHVP−LO,exp
µ , with

∫+∞
0 dE faµ (ω)R

exp(ω) is a consistency
check. . .

• to turn it into a first-principles test of the theory we must test aHVP−LO,exp
µ and Rexp(E) independently

• this can conveniently be done by using the unifying language

R[f ] =

∫ +∞

0

dω f (ω)R(ω)
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a systematic study of R(E) at different energies can be done by considering Gaussian energy bins

f(ω) ≡ Gσ(E − ω) =
e
− (E−ω)2

2σ2

√
2πσ

, Rσ(E) ≡ R[f ] =

∫ +∞

0
dωGσ(E − ω)R(ω)
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Hadronic spectral densities are important quantities whose nonperturbative knowledge allows for
calculating phenomenologically relevant observables, such as inclusive hadronic cross sections and
nonleptonic decay rates. The extraction of spectral densities from lattice correlators is a notoriously difficult
problem because lattice simulations are performed in Euclidean time and lattice data are unavoidably
affected by statistical and systematic uncertainties. In this paper we present a new method for extracting
hadronic spectral densities from lattice correlators. The method allows for choosing a smearing function at
the beginning of the procedure and it provides results for the spectral densities smeared with this function
together with reliable estimates of the associated uncertainties. The same smearing function can be used
in the analysis of correlators obtained on different volumes, such that the infinite-volume limit can be
studied in a consistent way. While the method is described by using the language of lattice simulations, in
reality it is completely general and can profitably be used to cope with inverse problems arising in different
fields of research.

DOI: 10.1103/PhysRevD.99.094508

I. INTRODUCTION

Hadronic spectral densities are crucial ingredients in the
calculation of physical observables associated with the
continuum spectrum of the QCD Hamiltonian. A notable
classical example is provided by the differential cross
section for the process eþe− ↦ hadrons that, at leading
order in the electromagnetic coupling, is proportional to the
QCD spectral density evaluated between hadronic electro-
magnetic currents,

dΣðEÞ
dE

∝ h0jJkemð0ÞδðH − EÞδ3ðPÞJkemð0Þj0i; ð1Þ

where E is the energy of the electron-positron pair in the
center-of-mass frame, H and P are respectively the QCD
Hamiltonian and total momentum operators and JμemðxÞ is
the hadronic electromagnetic current. Other important
examples of observables, in which spectral densities play
a crucial role, are the flavor-changing nonleptonic decay
rates of kaons and heavy flavored mesons, the deep
inelastic scattering cross section, and thermodynamic

observables arising in the study of QCD at finite temper-
ature and of the quark-gluon plasma.
It is notoriously difficult to obtain model-independent

nonperturbative theoretical predictions for hadronic spec-
tral densities. In principle this is a problem that can be
addressed from first principles within the solid framework
of lattice QCD. However, in practice, one has to face highly
nontrivial numerical and theoretical problems in order to
extract spectral densities from lattice simulations.
The origin of these problems can be traced back to the

fact that lattice results unavoidably are affected by stat-
istical and systematic errors. More precisely, the primary
observables computed in a lattice simulation are Euclidean
time-ordered correlators at discrete values of the space-time
coordinates and on a finite volume, e.g.,

CðtÞ ¼ 1

L3

X

x

Th0jOðxÞŌð0Þj0iL; ð2Þ

where L is the linear extent of the spatial volume V ¼ L3

while O and Ō are generic hadronic operators. In the
following we shall not discuss cutoff effects and, therefore,
we shall not indicate the dependence of the different
quantities upon the lattice spacing. We shall however
always assume that the correlators are known only for
discrete values of the space-time coordinates. At positive
Euclidean times t ≥ 0 the previous correlator can be
rewritten as

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.
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• on the theoretical side, the required non-perturbative accuracy can be achieved by performing lattice simulations

• these give direct access to Euclidean correlators at finite L and a and necessarily affected by numerical and
statistical errors

• the required information can be extracted by using the method that we developed to cope with this problem (that
my friend j.bulava then called HLT)



• other methods are available on the market
a.rothkopf EPJ Web Conf. 274, 01004 (2022)

a.lupo and l.del.debbio talks

• and whenever i have a student named alessandro i devise a new one. . .



Eur. Phys. J. C           (2024) 84:32 
https://doi.org/10.1140/epjc/s10052-024-12399-0

Regular Article - Theoretical Physics

Teaching to extract spectral densities from lattice correlators to a
broad audience of learning-machines
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Abstract We present a new supervised deep-learning
approach to the problem of the extraction of smeared spec-
tral densities from Euclidean lattice correlators. A distinctive
feature of our method is a model-independent training strat-
egy that we implement by parametrizing the training sets
over a functional space spanned by Chebyshev polynomials.
The other distinctive feature is a reliable estimate of the sys-
tematic uncertainties that we achieve by introducing several
ensembles of machines, the broad audience of the title. By
training an ensemble of machines with the same number of
neurons over training sets of fixed dimensions and complex-
ity, we manage to provide a reliable estimate of the system-
atic errors by studying numerically the asymptotic limits of
infinitely large networks and training sets. The method has
been validated on a very large set of random mock data and
also in the case of lattice QCD data. We extracted the strange-
strange connected contribution to the smeared R-ratio from
a lattice QCD correlator produced by the ETM Collabora-
tion and compared the results of the new method with the
ones previously obtained with the HLT method by finding
a remarkably good agreement between the two totally unre-
lated approaches.

1 Introduction

The problem of the extraction of hadronic spectral densities
from Euclidean correlators, computed from numerical lattice
QCD simulations, has attracted a lot of attention since many
years (see Refs. [1–30], the works on the subject of which we
are aware of, and Refs. [31,32] for recent reviews). At zero
temperature, the theoretical and phenomenological impor-
tance of hadronic spectral densities, strongly emphasized in

a e-mail: michele.buzzicotti@roma2.infn.it
b e-mail: alessandro.desantis@roma2.infn.it (corresponding author)
c e-mail: nazario.tantalo@roma2.infn.it

the context of lattice field theory in Refs. [1,11,13,14,17–
19], is associated with the fact that from their knowledge it
is possible to extract all the information needed to study the
scattering of hadrons and, more generally, their interactions.

From the mathematical perspective, the problem of the
extraction of spectral densities from lattice correlators is
equivalent to that of an inverse Laplace-transform operation,
to be performed numerically by starting from a discrete and
finite set of noisy input data. This is a notoriously ill-posed
numerical problem that, in the case of lattice field theory
correlators, gets even more complicated because lattice sim-
ulations have necessarily to be performed on finite volumes
where the spectral densities are badly-behaving distributions.

In Ref. [14], together with M. Hansen and A. Lupo, one
of the authors of the present paper proposed a method to
cope with the problem of the extraction of spectral densities
from lattice correlators that allows to take into account the
fact that distributions have to be smeared with sufficiently
well-behaved test functions. Once smeared, finite volume
spectral densities become numerically manageable and the
problem of taking their infinite volume limit is mathemat-
ically well defined. The method of Ref. [14] (HLT method
in short) has been further refined in Ref. [21] where it has
been validated by performing very stringent tests within the
two-dimensional O(3) non-linear σ -model.

In this paper we present a new method for the extraction
of smeared spectral densities from lattice correlators that is
based on a supervised deep-learning approach.

The idea of using machine-learning techniques to address
the problem of the extraction of spectral densities from lattice
correlators is certainly not original (see e.g. Refs. [15,16,
22–29]). The great potential of properly-trained deep neural
networks in addressing this problem is pretty evident from
the previous works on the subject. These findings strongly
motivated us to develop an approach that can be used to obtain

0123456789().: V,-vol 123
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Gruppo Collegato di Parma, Parco Area delle Scienze 7/a (Campus), 43124 Parma, Italy

5Istituto Nazionale di Fisica Nucleare, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy
6HISKP (Theory), Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 14-16, 53115 Bonn, Germany

7High Performance Computing and Analytics Lab, Rheinische Friedrich-Wilhelms-Universität Bonn,
Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Germany

8NIC, DESY, Platanenallee 6, D-15738 Zeuthen, Germany
9Dipartimento di Matematica e Fisica, Università Roma Tre and INFN, Sezione di Roma Tre,
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We present a first-principles lattice QCD investigation of the R ratio between the eþe− cross section into
hadrons and into muons. By using the method of Ref. [1], that allows one to extract smeared spectral
densities from Euclidean correlators, we compute the R ratio convoluted with Gaussian smearing kernels of
widths of about 600 MeV and central energies from 220 MeV up to 2.5 GeV. Our theoretical results are
compared with the corresponding quantities obtained by smearing the KNT19 compilation [2] of R-ratio
experimental measurements with the same kernels and, by centering the Gaussians in the region around the
ρ-resonance peak, a tension of about 3 standard deviations is observed. From the phenomenological
perspective, we have not included yet in our calculation QED and strong isospin-breaking corrections, and
this might affect the observed tension. From the methodological perspective, our calculation demonstrates
that it is possible to study the R ratio in Gaussian energy bins on the lattice at the level of accuracy required
in order to perform precision tests of the standard model.

DOI: 10.1103/PhysRevLett.130.241901

Introduction.—The R ratio between the eþe− cross
section into hadrons with that into muons plays a funda-
mental rôle in particle physics since its introduction in
Ref. [3]. In recent years, the importance of the R ratio has
been mainly associated with the fact that its knowledge, as
a function of the center-of-mass energy of the electrons,
allows one to predict the leading hadronic contribution

(HVP) to the muon anomalous magnetic moment (aμ) via a
dispersive approach. The dispersive determinations of
aHVPμ , reviewed in detail in Ref. [4], are in strong tension
(about 4 standard deviations) with the experimental deter-
mination of aμ. On the other hand, lattice determinations of
(partial) contributions to aHVPμ , obtained without any
reference to the experimental measurements of R, are in
much better agreement with the aμ experiment [5].
The focus of this Letter is R, smeared with Gaussian

kernels, and not aμ.—The experiments that measure R are
radically different from those that measure aμ, and more-
over, R is an energy-dependent probe of the theory while aμ
is natively a low-energy observable. For these reasons a

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.
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• before addressing the phenomenologically relevant calculation of the smeared R-ratio on which i’m now going to
focus. . .
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Figure 9. Left: numerical results for ρε(E) for the Gaussian kernel and the spectral density
including up to six-particle contributions (solid lines) smeared with the same kernel at different
values of ε/(E − 2m"). Right: results for ρ(E) after extrapolation ε→ 0, together with the exact
two-particle contribution (light dashed line), the two-, four-, and six-particle contributions (dark
solid line), and the 2-loop perturbative result (dark dotted line). Statistical and systematic errors
due to the finite volume, continuum limit, and ε→ 0 extrapolation are combined in quadrature as
described in the text.

6 Conclusions

The aim of the preceding sections is to verify the procedure of ref. [1] for numerically
computing smeared spectral densities (with an a priori specified smearing kernel) from
lattice field theory correlation functions. In this regard the two-dimensional O(3) model
usefully provides exact results against which the estimates can be checked. These checks,
which are presented in figures 6 and 9, are satisfied and compare both ρε(E) at finite ε

and the results from ε→ 0 extrapolations to determine ρ(E) deep into the inelastic region
where finite-volume methods have not yet been developed. The highest energy considered
here is E = 40m", at which ρ(E) is determined with a relative accuracy of 5% and differs
significantly from the exact two-particle contribution ρ(2)(E) given in eq. (2.6).

Apart from the ‘usual’ sources of systematic error due to the finite lattice spacing and
finite-volume spacetime, we must also consider the imperfect reconstruction of the smearing
kernel due to the finite number of input time slices and their associated statistical errors.
All sources of systematic error have been estimated and included in figures 6 and 9 where
the statistical and systematic errors are added in quadrature. Generally the errors due to
the finite lattice extent are the largest source of systematic uncertainty, and are typically
less than or comparable to the statistical errors.

The determination of ρε(E) becomes increasingly difficult for smaller smearing widths
ε at fixed energy E, and increasing E with fixed ε. As is evident from the right two panels
of figure 6, it is difficult to achieve precise results outside of the elastic region for ε ! m/2
with the Gaussian smearing kernel. Better is to exploit the smoothness of ρ(E) and scale
ε ∝ (E − 2m), so that an equal proportion of the smearing kernel ‘leaks’ down to the two
particle threshold at each energy. This enables the determination of ρ(E) in figure 9, which
is the main result of this work.

– 21 –

the HLT method has been stringently validated by performing the analogous calculation in the 2D non-linear O(3)
σ-model where the exact answer is known



let’s see how it works. . .



ρ(E) = ⟨0|ÔF δ
(
Ĥ − E

)
(2π)3δ3

(
P̂ − p

)
ÔI |0⟩

C(t) =

∫
d3x e−ip·x⟨0|ÔF e−tĤ+iP̂ ·xÔI |0⟩ =

∫ ∞

E0

dω e−tω ρ(ω)

t = aτ , τ = 1, · · · , T
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Ĥ − E

)
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(
P̂ − p

)
ÔI |0⟩
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∫
d3x e−ip·x⟨0|ÔF e−tĤ+iP̂ ·xÔI |0⟩ =

∫ ∞

E0

dω e−tω ρ(ω)

t = aτ , τ = 1, · · · , T

Physics is associated with infinite-volume spectral densities
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f(∞) = 0 , f(ω) ∈ L2
n[E0,∞]

f(ω) =
∞∑

τ=1

gτ e−τaω ,

ρ[f ] =

∞∑
τ=1

gτ C(aτ) =

∫ ∞

E0

dω ρ(ω)

f(ω)︷ ︸︸ ︷
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τ=1

gτ e−τaω
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E0

dω wn(ω)

∣∣∣∣∣f(ω)−
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gτ e−τaω
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√
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3

ID L3 ⇥ T a fm aL fm m⇡ GeV
B64 643 · 128 0.07957(13) 5.09 0.1352(2)
B96 963 · 192 0.07957(13) 7.64 0.1352(2)
C80 803 · 160 0.06821(13) 5.46 0.1349(3)
D96 963 · 192 0.05692(12) 5.46 0.1351(3)

TABLE I. ETMC gauge ensembles used in this work. The
quoted pion masses have been obtained by a direct compu-
tation of the small light-quark mass correction that is nec-
essary to match m⇡ = 135.0 MeV starting from simula-
tions with slightly heavier pions (m⇡ = 0.1402(2) GeV on
the B64 ensemble, m⇡ = 0.1401(1) GeV on the B96 en-
semble, m⇡ = 0.1367(2) GeV on the C80 ensemble and
m⇡ = 0.1408(2) GeV on the D96 ensemble, see Ref. [7] for
more details).

this point and to the supplementary material for the de-
tails of the numerical implementation performed in this
work.

Materials. The lattice gauge ensembles used in this
work, generated by the ETMC, are listed in TABLE I
and described in full details in Ref. [7] together with
the lattice correlators V (t), used there to compute the
short and intermediate window contributions to aHVP

µ

and here to compute R�(E). In particular, in order to
better estimate the systematics associated with contin-
uum extrapolations, we use the same mixed-action setup
described in Ref. [7, 22] and analyze both the so-called
Twisted Mass (TM) and Osterwalder-Seiler (OS) lattice
regularized correlators V (t). The results for R�(E) ob-
tained in the two regularizations di↵er by O(a2) cuto↵
e↵ects [23, 24] and must coincide within errors in the
continuum limit.

In order to compare our theoretical results with experi-
ments, we rely on the KNT19 compilation [2] of Rexp(E),
providing data in the range E 2 [0.216, 11.1985] GeV to-
gether with the full covariance matrix that takes into ac-
count the correlation between the di↵erent experiments,
see FIG. 1. The central values and errors of Rexp

� (E)
quoted below have been obtained by generating boot-
strap samples of R(E), each of which simulating an inde-
pendent measurement, from a multivariate Gaussian dis-
tribution using the Rexp(!) central values and covariance
matrix. Each sample is then integrated with G�(E �!),
see the supplementary material for more details.

RESULTS

In our lattice calculation we considered three values for
the smearing parameter, � = {0.44, 0.53, 0.63} GeV, and
central energies in the range E 2 [0.21, 2.54] GeV. A de-
tailed discussion of the analysis procedure, including the
break-down of R�(E) into the contributions coming from
the di↵erent flavours and from connected and discon-
nected fermionic Wick contractions, together with a care-
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FIG. 1. The grey band shows Rexp(E) from the KNT19
compilation [2]. The red points are the results of the smear-
ing of Rexp(E) with a Gaussian of � = 0.44 GeV according
to Eq. (1). The smearing Gaussian corresponding to center
energy E = 1.5 GeV is shown in blue.
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FIG. 2. Continuum extrapolations of the di↵erent contribu-
tions to R�(E) at E = 0.79 GeV and � = 0.63 GeV. From
top to bottom, the plots correspond to the connected light-
light (R``,C

� (E)), the connected strange-strange (Rss,C
� (E)),

the connected charm-charm (Rcc,C
� (E)) and the disconnected

(RD
� (E)) contributions. The blue and green points correspond

respectively to the OS and TM lattice regularizations. In
the case of the connected contributions we performed both
correlated-constrained (red) and uncorrelated-unconstrained
linear extrapolations in a2 and found them to be compatible
within errors in all cases. The disconnected contribution has
been computed in the OS regularization only and extrapo-
lated linearly in a2. In the case of R``,C

� (E) and Rss,C
� (E)

there are two points for each regularization at the coarsest
lattice spacing (slightly displaced on the x-axis to help the
eye) corresponding to the ensembles B64 and B96 and, there-
fore, to di↵erent volumes. No significant finite-volume e↵ects
have been observed for all considered values of E and �.

ful study of the systematic uncertainties a↵ecting each
contribution, can be found in the supplementary mate-
rial. Here, in FIG. 2, we show an example (E = 0.79 GeV
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in the case of the isoQCD R-ratio

C(t) = −1

3

3∑
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1

12π2

∫ ∞

2mπ

dω ω2R(ω) e−ωt= R

[
ω2 e−ωt

12π2

]



∆(ω) =
12π2Gσ(E − ω)

ω2

wα(ω) = eαaω , wc(ω) =
(
ea(ω−2mπ) − 1

)− 1
2

An[g] =

∫ ∞

2mπ

dω wn(ω)
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T∑
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gτ e−τaω
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2
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Wn[g] = An[g] + λB[g]
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FIG. 7. Top-panel : Example of the stability analysis proce-
dure in the case of the light-light connected contribution to
R�(E). The n = 2� data (blue points), that are remarkably
stable in all cases analyzed in this work, have been used to
estimate the central values of R�(E) and the systematic er-
rors �rec

� (E). Other panels: the plots on the left show P�(E)
while those on the right show �rec

� (E) on the di↵erent ensem-
bles at aL ⇠ 5 fm for �1 (second panel), �2 (third panel) and
�3 (bottom panel). Most of the points are in the statistically
dominated regime (|P�(E)| < 1) and none in the systematics
dominated regime (|P�(E)| > 2).
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FIG. 8. Reconstructed kernels at d(g?) on the C80 ensemble
at �3 and E = 0.74 GeV. In both plots the results are shown
for ! > E0 and the vertical lines mark the location of the
peak of the target Gaussian.
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FIG. 9. Top-panel : Example of the comparison of R``,C
� (E)

on the B64 and B96 ensembles corresponding to volumes aL ⇠
5 fm and 3aL/2 ⇠ 7.5 fm. Other panels: on the left we show
P L
� (E) for �1 (second panel), �2 (third panel) and �3 (bottom

panel). On the right we show �L,``,C
� (E), our estimate of the

finite-volume systematic errors.

values and errors for R�(E) from the n = 2� datasets.
In our experience there is no particular advantage in us-
ing the weighting function corresponding to Chebyshev
polynomials.

Volume dependence. In the top-panel of FIG. 9 we
show an example of the comparison of R``,C

� (E) on the
two ensembles B64 and B96 di↵ering only for the spatial
volume and time extension of the lattice. The data corre-
spond to �1, E = 0.79 GeV and to the OS regularization.
The blue and orange bands are the results of the stability
analysis performed independently on the two ensembles.
The other three panels of FIG. 9 show a quantitative
summary of the comparison of R``,C

� (E) on the two vol-
umes for all values of � and all energies. In these panels
the plots on the left show, for both regularizations, the
quantity

PL
� (E) =

R�

�
E; 3L

2

�
� R�(E; L)q⇥

�̄�

�
E; 3L

2

�⇤2
+
⇥
�̄�(E; L)

⇤2 , (41)
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FIG. 7. Top-panel : Example of the stability analysis proce-
dure in the case of the light-light connected contribution to
R�(E). The n = 2� data (blue points), that are remarkably
stable in all cases analyzed in this work, have been used to
estimate the central values of R�(E) and the systematic er-
rors �rec

� (E). Other panels: the plots on the left show P�(E)
while those on the right show �rec

� (E) on the di↵erent ensem-
bles at aL ⇠ 5 fm for �1 (second panel), �2 (third panel) and
�3 (bottom panel). Most of the points are in the statistically
dominated regime (|P�(E)| < 1) and none in the systematics
dominated regime (|P�(E)| > 2).
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at �3 and E = 0.74 GeV. In both plots the results are shown
for ! > E0 and the vertical lines mark the location of the
peak of the target Gaussian.
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on the B64 and B96 ensembles corresponding to volumes aL ⇠
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� (E) for �1 (second panel), �2 (third panel) and �3 (bottom

panel). On the right we show �L,``,C
� (E), our estimate of the

finite-volume systematic errors.

values and errors for R�(E) from the n = 2� datasets.
In our experience there is no particular advantage in us-
ing the weighting function corresponding to Chebyshev
polynomials.

Volume dependence. In the top-panel of FIG. 9 we
show an example of the comparison of R``,C

� (E) on the
two ensembles B64 and B96 di↵ering only for the spatial
volume and time extension of the lattice. The data corre-
spond to �1, E = 0.79 GeV and to the OS regularization.
The blue and orange bands are the results of the stability
analysis performed independently on the two ensembles.
The other three panels of FIG. 9 show a quantitative
summary of the comparison of R``,C

� (E) on the two vol-
umes for all values of � and all energies. In these panels
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let’s have a closer look at the stability analysis. . .



13

0.000050 0.000075 0.000100 0.000125 0.000150 0.000175 0.000200 0.000225
d(gp)

1.525

1.550

1.575

1.600

1.625

R
��

,C
,T

M
�

(E
;g

p
)

d(g�)d(g��)

C80, E = 0.74 GeV, � = 0.63 GeV

n = 2� n = 0 n = 0.5 n = c

0.5 1.0 1.5 2.0 2.5
E [GeV]

�3

�2

�1

0

1

2

3

P
�
(E

)

��, TM, n = 2�, � = 0.44 GeV

B64 C80 D96

0.5 1.0 1.5 2.0 2.5
E [GeV]

0.0

0.2

0.4

0.6

�
re

c
�

(E
)

0.5 1.0 1.5 2.0 2.5
E [GeV]

�3

�2

�1

0

1

2

3

P
�
(E

)

��, TM, n = 2�, � = 0.53 GeV

B64 C80 D96

0.5 1.0 1.5 2.0 2.5
E [GeV]

0.0

0.1

0.2

�
re

c
�

(E
)

0.5 1.0 1.5 2.0 2.5
E [GeV]

�3

�2

�1

0

1

2

3

P
�
(E

)

��, TM, n = 2�, � = 0.63 GeV

B64 C80 D96

0.5 1.0 1.5 2.0 2.5
E [GeV]

0.00

0.02

0.04

0.06

�
re

c
�

(E
)

FIG. 7. Top-panel : Example of the stability analysis proce-
dure in the case of the light-light connected contribution to
R�(E). The n = 2� data (blue points), that are remarkably
stable in all cases analyzed in this work, have been used to
estimate the central values of R�(E) and the systematic er-
rors �rec

� (E). Other panels: the plots on the left show P�(E)
while those on the right show �rec

� (E) on the di↵erent ensem-
bles at aL ⇠ 5 fm for �1 (second panel), �2 (third panel) and
�3 (bottom panel). Most of the points are in the statistically
dominated regime (|P�(E)| < 1) and none in the systematics
dominated regime (|P�(E)| > 2).
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FIG. 8. Reconstructed kernels at d(g?) on the C80 ensemble
at �3 and E = 0.74 GeV. In both plots the results are shown
for ! > E0 and the vertical lines mark the location of the
peak of the target Gaussian.
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FIG. 9. Top-panel : Example of the comparison of R``,C
� (E)

on the B64 and B96 ensembles corresponding to volumes aL ⇠
5 fm and 3aL/2 ⇠ 7.5 fm. Other panels: on the left we show
P L
� (E) for �1 (second panel), �2 (third panel) and �3 (bottom

panel). On the right we show �L,``,C
� (E), our estimate of the

finite-volume systematic errors.

values and errors for R�(E) from the n = 2� datasets.
In our experience there is no particular advantage in us-
ing the weighting function corresponding to Chebyshev
polynomials.

Volume dependence. In the top-panel of FIG. 9 we
show an example of the comparison of R``,C

� (E) on the
two ensembles B64 and B96 di↵ering only for the spatial
volume and time extension of the lattice. The data corre-
spond to �1, E = 0.79 GeV and to the OS regularization.
The blue and orange bands are the results of the stability
analysis performed independently on the two ensembles.
The other three panels of FIG. 9 show a quantitative
summary of the comparison of R``,C

� (E) on the two vol-
umes for all values of � and all energies. In these panels
the plots on the left show, for both regularizations, the
quantity
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the given flavour quantum numbers, their correlation functions have the least signal/noise
problem in the Monte Carlo evaluation of the path integral [871, 1038].

Still restricting ourselves to isospin-symmetric QCD (isoQCD), we thus take it for
granted that the choice Mi, i � 2 is easy, and we do not need to discuss it in detail: the
pseudoscalar meson masses are very good choices, and some variations for heavy quarks
may provide further improvements.

The choice of M1 is more di�cult. From the point of view of physics, a natural choice
is the nucleon mass, M1 = Mnucl. Unfortunately it has a rather bad signal/noise problem
when quark masses are close to their physical values. The ratio of signal to noise of the
correlation function at time x0 from N measurements behaves as [871]

Rnucl
S/N

x0 large⇠
p

N exp(�(mnucl �
3

2
m⇡) x0) ⇡

p
N exp(�x0/0.27 fm) , (468)

where the numerical value of 0.27 fm uses the experimental masses. The behaviour in
practice, but at still favourably large quark masses, is illustrated in Fig. 51. Because
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Figure 51: E↵ective masses for Mproton [1039], M⌦ [1040], V (⇡ r0), V (⇡ r1) [712] and f⇡ [316]
on Nf = 2 CLS ensemble N6 with a = 0.045 fm, M⇡ = 340 MeV on a 483 96 lattice [316].
All e↵ective “masses” have been scaled such that the errors in the graph reflect directly the
errors of the determined scales. They are shifted vertically by arbitrary amounts. Figure from
Ref. [719]. Note that this example is at still favourably large quark masses. The situation
for Mproton becomes worse closer to the physical point, but may be changed by algorithmic
improvements.

this property leads to large statistical errors and it is further di�cult to control excited-
state contaminations when statistical errors are large, it is useful to search for alternative
physics scales. The community has gone this way, and we discuss some of them below.
For illustration, here we just give one example: the decay constants of leptonic ⇡ or K
decays have mass dimension one and can directly replace M1 above. Figure 51 demon-
strates their long and precise plateaux as a function of the Euclidean time. Advantages
and disadvantages of this choice and others are discussed more systematically in Sec. 11.4.
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FIG. 7. Top-panel : Example of the stability analysis proce-
dure in the case of the light-light connected contribution to
R�(E). The n = 2� data (blue points), that are remarkably
stable in all cases analyzed in this work, have been used to
estimate the central values of R�(E) and the systematic er-
rors �rec

� (E). Other panels: the plots on the left show P�(E)
while those on the right show �rec

� (E) on the di↵erent ensem-
bles at aL ⇠ 5 fm for �1 (second panel), �2 (third panel) and
�3 (bottom panel). Most of the points are in the statistically
dominated regime (|P�(E)| < 1) and none in the systematics
dominated regime (|P�(E)| > 2).
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FIG. 8. Reconstructed kernels at d(g?) on the C80 ensemble
at �3 and E = 0.74 GeV. In both plots the results are shown
for ! > E0 and the vertical lines mark the location of the
peak of the target Gaussian.
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FIG. 9. Top-panel : Example of the comparison of R``,C
� (E)

on the B64 and B96 ensembles corresponding to volumes aL ⇠
5 fm and 3aL/2 ⇠ 7.5 fm. Other panels: on the left we show
P L
� (E) for �1 (second panel), �2 (third panel) and �3 (bottom

panel). On the right we show �L,``,C
� (E), our estimate of the

finite-volume systematic errors.

values and errors for R�(E) from the n = 2� datasets.
In our experience there is no particular advantage in us-
ing the weighting function corresponding to Chebyshev
polynomials.

Volume dependence. In the top-panel of FIG. 9 we
show an example of the comparison of R``,C

� (E) on the
two ensembles B64 and B96 di↵ering only for the spatial
volume and time extension of the lattice. The data corre-
spond to �1, E = 0.79 GeV and to the OS regularization.
The blue and orange bands are the results of the stability
analysis performed independently on the two ensembles.
The other three panels of FIG. 9 show a quantitative
summary of the comparison of R``,C

� (E) on the two vol-
umes for all values of � and all energies. In these panels
the plots on the left show, for both regularizations, the
quantity
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FIG. 7. Top-panel : Example of the stability analysis proce-
dure in the case of the light-light connected contribution to
R�(E). The n = 2� data (blue points), that are remarkably
stable in all cases analyzed in this work, have been used to
estimate the central values of R�(E) and the systematic er-
rors �rec

� (E). Other panels: the plots on the left show P�(E)
while those on the right show �rec

� (E) on the di↵erent ensem-
bles at aL ⇠ 5 fm for �1 (second panel), �2 (third panel) and
�3 (bottom panel). Most of the points are in the statistically
dominated regime (|P�(E)| < 1) and none in the systematics
dominated regime (|P�(E)| > 2).
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on the B64 and B96 ensembles corresponding to volumes aL ⇠
5 fm and 3aL/2 ⇠ 7.5 fm. Other panels: on the left we show
P L
� (E) for �1 (second panel), �2 (third panel) and �3 (bottom

panel). On the right we show �L,``,C
� (E), our estimate of the

finite-volume systematic errors.

values and errors for R�(E) from the n = 2� datasets.
In our experience there is no particular advantage in us-
ing the weighting function corresponding to Chebyshev
polynomials.

Volume dependence. In the top-panel of FIG. 9 we
show an example of the comparison of R``,C

� (E) on the
two ensembles B64 and B96 di↵ering only for the spatial
volume and time extension of the lattice. The data corre-
spond to �1, E = 0.79 GeV and to the OS regularization.
The blue and orange bands are the results of the stability
analysis performed independently on the two ensembles.
The other three panels of FIG. 9 show a quantitative
summary of the comparison of R``,C

� (E) on the two vol-
umes for all values of � and all energies. In these panels
the plots on the left show, for both regularizations, the
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dure in the case of the light-light connected contribution to
R�(E). The n = 2� data (blue points), that are remarkably
stable in all cases analyzed in this work, have been used to
estimate the central values of R�(E) and the systematic er-
rors �rec

� (E). Other panels: the plots on the left show P�(E)
while those on the right show �rec

� (E) on the di↵erent ensem-
bles at aL ⇠ 5 fm for �1 (second panel), �2 (third panel) and
�3 (bottom panel). Most of the points are in the statistically
dominated regime (|P�(E)| < 1) and none in the systematics
dominated regime (|P�(E)| > 2).
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FIG. 9. Top-panel : Example of the comparison of R``,C
� (E)

on the B64 and B96 ensembles corresponding to volumes aL ⇠
5 fm and 3aL/2 ⇠ 7.5 fm. Other panels: on the left we show
P L
� (E) for �1 (second panel), �2 (third panel) and �3 (bottom

panel). On the right we show �L,``,C
� (E), our estimate of the

finite-volume systematic errors.

values and errors for R�(E) from the n = 2� datasets.
In our experience there is no particular advantage in us-
ing the weighting function corresponding to Chebyshev
polynomials.

Volume dependence. In the top-panel of FIG. 9 we
show an example of the comparison of R``,C

� (E) on the
two ensembles B64 and B96 di↵ering only for the spatial
volume and time extension of the lattice. The data corre-
spond to �1, E = 0.79 GeV and to the OS regularization.
The blue and orange bands are the results of the stability
analysis performed independently on the two ensembles.
The other three panels of FIG. 9 show a quantitative
summary of the comparison of R``,C

� (E) on the two vol-
umes for all values of � and all energies. In these panels
the plots on the left show, for both regularizations, the
quantity
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FIG. 7. Top-panel : Example of the stability analysis proce-
dure in the case of the light-light connected contribution to
R�(E). The n = 2� data (blue points), that are remarkably
stable in all cases analyzed in this work, have been used to
estimate the central values of R�(E) and the systematic er-
rors �rec

� (E). Other panels: the plots on the left show P�(E)
while those on the right show �rec

� (E) on the di↵erent ensem-
bles at aL ⇠ 5 fm for �1 (second panel), �2 (third panel) and
�3 (bottom panel). Most of the points are in the statistically
dominated regime (|P�(E)| < 1) and none in the systematics
dominated regime (|P�(E)| > 2).
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on the B64 and B96 ensembles corresponding to volumes aL ⇠
5 fm and 3aL/2 ⇠ 7.5 fm. Other panels: on the left we show
P L
� (E) for �1 (second panel), �2 (third panel) and �3 (bottom

panel). On the right we show �L,``,C
� (E), our estimate of the

finite-volume systematic errors.

values and errors for R�(E) from the n = 2� datasets.
In our experience there is no particular advantage in us-
ing the weighting function corresponding to Chebyshev
polynomials.

Volume dependence. In the top-panel of FIG. 9 we
show an example of the comparison of R``,C

� (E) on the
two ensembles B64 and B96 di↵ering only for the spatial
volume and time extension of the lattice. The data corre-
spond to �1, E = 0.79 GeV and to the OS regularization.
The blue and orange bands are the results of the stability
analysis performed independently on the two ensembles.
The other three panels of FIG. 9 show a quantitative
summary of the comparison of R``,C

� (E) on the two vol-
umes for all values of � and all energies. In these panels
the plots on the left show, for both regularizations, the
quantity
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let’s look at finite volume effects. . .
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FIG. 7. Top-panel : Example of the stability analysis proce-
dure in the case of the light-light connected contribution to
R�(E). The n = 2� data (blue points), that are remarkably
stable in all cases analyzed in this work, have been used to
estimate the central values of R�(E) and the systematic er-
rors �rec

� (E). Other panels: the plots on the left show P�(E)
while those on the right show �rec

� (E) on the di↵erent ensem-
bles at aL ⇠ 5 fm for �1 (second panel), �2 (third panel) and
�3 (bottom panel). Most of the points are in the statistically
dominated regime (|P�(E)| < 1) and none in the systematics
dominated regime (|P�(E)| > 2).
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FIG. 9. Top-panel : Example of the comparison of R``,C
� (E)

on the B64 and B96 ensembles corresponding to volumes aL ⇠
5 fm and 3aL/2 ⇠ 7.5 fm. Other panels: on the left we show
P L
� (E) for �1 (second panel), �2 (third panel) and �3 (bottom

panel). On the right we show �L,``,C
� (E), our estimate of the

finite-volume systematic errors.

values and errors for R�(E) from the n = 2� datasets.
In our experience there is no particular advantage in us-
ing the weighting function corresponding to Chebyshev
polynomials.

Volume dependence. In the top-panel of FIG. 9 we
show an example of the comparison of R``,C

� (E) on the
two ensembles B64 and B96 di↵ering only for the spatial
volume and time extension of the lattice. The data corre-
spond to �1, E = 0.79 GeV and to the OS regularization.
The blue and orange bands are the results of the stability
analysis performed independently on the two ensembles.
The other three panels of FIG. 9 show a quantitative
summary of the comparison of R``,C

� (E) on the two vol-
umes for all values of � and all energies. In these panels
the plots on the left show, for both regularizations, the
quantity
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+
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⇤2 , (41)
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σ (E) =
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2
)2 + ∆̄σ(E;L)2
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∣∣∣∣ erf
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FIG. 7. Top-panel : Example of the stability analysis proce-
dure in the case of the light-light connected contribution to
R�(E). The n = 2� data (blue points), that are remarkably
stable in all cases analyzed in this work, have been used to
estimate the central values of R�(E) and the systematic er-
rors �rec

� (E). Other panels: the plots on the left show P�(E)
while those on the right show �rec

� (E) on the di↵erent ensem-
bles at aL ⇠ 5 fm for �1 (second panel), �2 (third panel) and
�3 (bottom panel). Most of the points are in the statistically
dominated regime (|P�(E)| < 1) and none in the systematics
dominated regime (|P�(E)| > 2).
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on the B64 and B96 ensembles corresponding to volumes aL ⇠
5 fm and 3aL/2 ⇠ 7.5 fm. Other panels: on the left we show
P L
� (E) for �1 (second panel), �2 (third panel) and �3 (bottom

panel). On the right we show �L,``,C
� (E), our estimate of the

finite-volume systematic errors.

values and errors for R�(E) from the n = 2� datasets.
In our experience there is no particular advantage in us-
ing the weighting function corresponding to Chebyshev
polynomials.

Volume dependence. In the top-panel of FIG. 9 we
show an example of the comparison of R``,C

� (E) on the
two ensembles B64 and B96 di↵ering only for the spatial
volume and time extension of the lattice. The data corre-
spond to �1, E = 0.79 GeV and to the OS regularization.
The blue and orange bands are the results of the stability
analysis performed independently on the two ensembles.
The other three panels of FIG. 9 show a quantitative
summary of the comparison of R``,C

� (E) on the two vol-
umes for all values of � and all energies. In these panels
the plots on the left show, for both regularizations, the
quantity
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FIG. 7. Top-panel : Example of the stability analysis proce-
dure in the case of the light-light connected contribution to
R�(E). The n = 2� data (blue points), that are remarkably
stable in all cases analyzed in this work, have been used to
estimate the central values of R�(E) and the systematic er-
rors �rec

� (E). Other panels: the plots on the left show P�(E)
while those on the right show �rec

� (E) on the di↵erent ensem-
bles at aL ⇠ 5 fm for �1 (second panel), �2 (third panel) and
�3 (bottom panel). Most of the points are in the statistically
dominated regime (|P�(E)| < 1) and none in the systematics
dominated regime (|P�(E)| > 2).
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FIG. 8. Reconstructed kernels at d(g?) on the C80 ensemble
at �3 and E = 0.74 GeV. In both plots the results are shown
for ! > E0 and the vertical lines mark the location of the
peak of the target Gaussian.
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FIG. 9. Top-panel : Example of the comparison of R``,C
� (E)

on the B64 and B96 ensembles corresponding to volumes aL ⇠
5 fm and 3aL/2 ⇠ 7.5 fm. Other panels: on the left we show
P L
� (E) for �1 (second panel), �2 (third panel) and �3 (bottom

panel). On the right we show �L,``,C
� (E), our estimate of the

finite-volume systematic errors.

values and errors for R�(E) from the n = 2� datasets.
In our experience there is no particular advantage in us-
ing the weighting function corresponding to Chebyshev
polynomials.

Volume dependence. In the top-panel of FIG. 9 we
show an example of the comparison of R``,C

� (E) on the
two ensembles B64 and B96 di↵ering only for the spatial
volume and time extension of the lattice. The data corre-
spond to �1, E = 0.79 GeV and to the OS regularization.
The blue and orange bands are the results of the stability
analysis performed independently on the two ensembles.
The other three panels of FIG. 9 show a quantitative
summary of the comparison of R``,C

� (E) on the two vol-
umes for all values of � and all energies. In these panels
the plots on the left show, for both regularizations, the
quantity
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� (E), our estimate of the
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values and errors for R�(E) from the n = 2� datasets.
In our experience there is no particular advantage in us-
ing the weighting function corresponding to Chebyshev
polynomials.

Volume dependence. In the top-panel of FIG. 9 we
show an example of the comparison of R``,C

� (E) on the
two ensembles B64 and B96 di↵ering only for the spatial
volume and time extension of the lattice. The data corre-
spond to �1, E = 0.79 GeV and to the OS regularization.
The blue and orange bands are the results of the stability
analysis performed independently on the two ensembles.
The other three panels of FIG. 9 show a quantitative
summary of the comparison of R``,C

� (E) on the two vol-
umes for all values of � and all energies. In these panels
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ID L3 ⇥ T a fm aL fm m⇡ GeV
B64 643 · 128 0.07957(13) 5.09 0.1352(2)
B96 963 · 192 0.07957(13) 7.64 0.1352(2)
C80 803 · 160 0.06821(13) 5.46 0.1349(3)
D96 963 · 192 0.05692(12) 5.46 0.1351(3)

TABLE I. ETMC gauge ensembles used in this work. The
quoted pion masses have been obtained by a direct compu-
tation of the small light-quark mass correction that is nec-
essary to match m⇡ = 135.0 MeV starting from simula-
tions with slightly heavier pions (m⇡ = 0.1402(2) GeV on
the B64 ensemble, m⇡ = 0.1401(1) GeV on the B96 en-
semble, m⇡ = 0.1367(2) GeV on the C80 ensemble and
m⇡ = 0.1408(2) GeV on the D96 ensemble, see Ref. [7] for
more details).

this point and to the supplementary material for the de-
tails of the numerical implementation performed in this
work.

Materials. The lattice gauge ensembles used in this
work, generated by the ETMC, are listed in TABLE I
and described in full details in Ref. [7] together with
the lattice correlators V (t), used there to compute the
short and intermediate window contributions to aHVP

µ

and here to compute R�(E). In particular, in order to
better estimate the systematics associated with contin-
uum extrapolations, we use the same mixed-action setup
described in Ref. [7, 22] and analyze both the so-called
Twisted Mass (TM) and Osterwalder-Seiler (OS) lattice
regularized correlators V (t). The results for R�(E) ob-
tained in the two regularizations di↵er by O(a2) cuto↵
e↵ects [23, 24] and must coincide within errors in the
continuum limit.

In order to compare our theoretical results with experi-
ments, we rely on the KNT19 compilation [2] of Rexp(E),
providing data in the range E 2 [0.216, 11.1985] GeV to-
gether with the full covariance matrix that takes into ac-
count the correlation between the di↵erent experiments,
see FIG. 1. The central values and errors of Rexp

� (E)
quoted below have been obtained by generating boot-
strap samples of R(E), each of which simulating an inde-
pendent measurement, from a multivariate Gaussian dis-
tribution using the Rexp(!) central values and covariance
matrix. Each sample is then integrated with G�(E �!),
see the supplementary material for more details.

RESULTS

In our lattice calculation we considered three values for
the smearing parameter, � = {0.44, 0.53, 0.63} GeV, and
central energies in the range E 2 [0.21, 2.54] GeV. A de-
tailed discussion of the analysis procedure, including the
break-down of R�(E) into the contributions coming from
the di↵erent flavours and from connected and discon-
nected fermionic Wick contractions, together with a care-
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FIG. 1. The grey band shows Rexp(E) from the KNT19
compilation [2]. The red points are the results of the smear-
ing of Rexp(E) with a Gaussian of � = 0.44 GeV according
to Eq. (1). The smearing Gaussian corresponding to center
energy E = 1.5 GeV is shown in blue.
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FIG. 2. Continuum extrapolations of the di↵erent contribu-
tions to R�(E) at E = 0.79 GeV and � = 0.63 GeV. From
top to bottom, the plots correspond to the connected light-
light (R``,C

� (E)), the connected strange-strange (Rss,C
� (E)),

the connected charm-charm (Rcc,C
� (E)) and the disconnected

(RD
� (E)) contributions. The blue and green points correspond

respectively to the OS and TM lattice regularizations. In
the case of the connected contributions we performed both
correlated-constrained (red) and uncorrelated-unconstrained
linear extrapolations in a2 and found them to be compatible
within errors in all cases. The disconnected contribution has
been computed in the OS regularization only and extrapo-
lated linearly in a2. In the case of R``,C

� (E) and Rss,C
� (E)

there are two points for each regularization at the coarsest
lattice spacing (slightly displaced on the x-axis to help the
eye) corresponding to the ensembles B64 and B96 and, there-
fore, to di↵erent volumes. No significant finite-volume e↵ects
have been observed for all considered values of E and �.

ful study of the systematic uncertainties a↵ecting each
contribution, can be found in the supplementary mate-
rial. Here, in FIG. 2, we show an example (E = 0.79 GeV
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quoted pion masses have been obtained by a direct compu-
tation of the small light-quark mass correction that is nec-
essary to match m⇡ = 135.0 MeV starting from simula-
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regularized correlators V (t). The results for R�(E) ob-
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e↵ects [23, 24] and must coincide within errors in the
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within errors in all cases. The disconnected contribution has
been computed in the OS regularization only and extrapo-
lated linearly in a2. In the case of R``,C
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there are two points for each regularization at the coarsest
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Figure 9. Left: numerical results for ρε(E) for the Gaussian kernel and the spectral density
including up to six-particle contributions (solid lines) smeared with the same kernel at different
values of ε/(E − 2m"). Right: results for ρ(E) after extrapolation ε→ 0, together with the exact
two-particle contribution (light dashed line), the two-, four-, and six-particle contributions (dark
solid line), and the 2-loop perturbative result (dark dotted line). Statistical and systematic errors
due to the finite volume, continuum limit, and ε→ 0 extrapolation are combined in quadrature as
described in the text.

6 Conclusions

The aim of the preceding sections is to verify the procedure of ref. [1] for numerically
computing smeared spectral densities (with an a priori specified smearing kernel) from
lattice field theory correlation functions. In this regard the two-dimensional O(3) model
usefully provides exact results against which the estimates can be checked. These checks,
which are presented in figures 6 and 9, are satisfied and compare both ρε(E) at finite ε

and the results from ε→ 0 extrapolations to determine ρ(E) deep into the inelastic region
where finite-volume methods have not yet been developed. The highest energy considered
here is E = 40m", at which ρ(E) is determined with a relative accuracy of 5% and differs
significantly from the exact two-particle contribution ρ(2)(E) given in eq. (2.6).

Apart from the ‘usual’ sources of systematic error due to the finite lattice spacing and
finite-volume spacetime, we must also consider the imperfect reconstruction of the smearing
kernel due to the finite number of input time slices and their associated statistical errors.
All sources of systematic error have been estimated and included in figures 6 and 9 where
the statistical and systematic errors are added in quadrature. Generally the errors due to
the finite lattice extent are the largest source of systematic uncertainty, and are typically
less than or comparable to the statistical errors.

The determination of ρε(E) becomes increasingly difficult for smaller smearing widths
ε at fixed energy E, and increasing E with fixed ε. As is evident from the right two panels
of figure 6, it is difficult to achieve precise results outside of the elastic region for ε ! m/2
with the Gaussian smearing kernel. Better is to exploit the smoothness of ρ(E) and scale
ε ∝ (E − 2m), so that an equal proportion of the smearing kernel ‘leaks’ down to the two
particle threshold at each energy. This enables the determination of ρ(E) in figure 9, which
is the main result of this work.
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FIG. 3. Comparison of R�(E) (blue points) and Rexp
� (E)

(red points) as functions of E for � = 0.44 GeV (first row),
� = 0.53 GeV (second row) and � = 0.63 GeV (third row).

and � = 0.63 GeV) of the continuum extrapolations of
the di↵erent contributions to R�(E) and, in the follow-
ing, concentrate on the comparison of our first-principles
determination with the experimental results Rexp

� (E).

This is done in FIG. 3 where the plots show R�(E)
(blue points) and Rexp

� (E) (red points) as functions of
E for � = 0.44 GeV (first row), � = 0.53 GeV (second
row) and � = 0.63 GeV (third row). Our quoted final
errors include the estimates of the systematics associ-
ated with continuum extrapolations, with finite-volume
e↵ects and also the ones coming from the spectral re-
construction algorithm, see FIG. 4. In order to properly
interpret FIG. 3 it is very important to realize that the
information contained into R�(E) and R�(E0) for central
energies such that |E � E0| ⌧ � is essentially the same.
Moreover, our theoretical results at di↵erent values of E
and � are obtained from the same correlators and, there-
fore, are correlated (a table with the numerical results
and their correlation matrix is provided in the supple-
mentary material). It is also very important to stress
that our lattice simulations have been calibrated by us-
ing hadron masses to fix the quark masses and the lattice
spacing and, therefore, R�(E) is a theoretical prediction
obtained without using any input coming from Rexp

� (E).
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FIG. 4. Error budget for R�(E) at � = 0.44 GeV (first
row), � = 0.53 GeV (second row) and � = 0.63 GeV (third
row). The red points correspond to the total relative error,
��(E)/R�(E). The black points are the statistical errors
combined in quadrature with the systematics errors coming
from the spectral reconstruction algorithm, �̄�(E), divided
by R�(E). The violet and orange points are, respectively, our
estimates of the relative systematics errors associated with the
continuum extrapolations, �a

�(E)/R�(E), and finite volume
e↵ects, �L

� (E)/R�(E).

In view of these observations, and of the fact that the ex-
traction of spectral densities from Euclidean correlators
is a challenging numerical problem, we consider the over-
all agreement between the theoretical and experimental
data quite remarkable.

Although our theoretical errors, ��(E), are still sub-
stantially larger than the experimental ones, �exp

� (E),
there is a tension between R�(E) and Rexp

� (E) when the
smearing Gaussian is centred in the region around the
⇢ resonance. This can be better appreciated in FIG. 5
where, for E < 1.3 GeV, the plots on the left show the
relative di↵erence R�(E)/Rexp

� (E)�1 while those on the
right show the “pull”

⌃�(E) =
R�(E) � Rexp

� (E)q
[��(E)]

2
+ [�exp

� (E)]
2

. (7)

Before ascribing this tension, of about three standard
deviations, to new physics or to underestimated experi-
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FIG. 5. Left-plots: Relative di↵erence R�(E)/Rexp
� (E) � 1

as a function of the energy for � = 0.44 GeV (first row),
� = 0.53 GeV (second row) and � = 0.63 GeV (third row)
Right-plots: The pull quantity ⌃�(E), see Eq. (7), as function
of the energy for the three values of �.

mental uncertainties a very important remark is in order.

The calculation of R�(E) that we have performed in
this study is an iso-symmetric nf = 2+1+1 lattice QCD
calculation and, therefore, we have not calculated yet,
from first principles, the contributions to R�(E) com-
ing from b-quarks and from the QED and strong isospin
breaking corrections. Concerning the b-quark contribu-
tion, if sizeable, this would represent a positive correction
to R�(E) and thus, given the fact that Rexp

� (E) is below
R�(E) in the region in which these are in tension, it can
only lead to an enhancement of the observed discrep-
ancy. On the other hand, in the supplementary mate-
rial we provide numerical evidence that even the charm
contribution is negligible for E < 1.5 GeV at the cur-
rent level of the theoretical precision. This is evident at
E = 0.79 GeV and � = 0.63 GeV, where we observe the
largest tension, from the comparison of the first and third
panels in FIG. 2. We therefore exclude that the observed
tension can be ascribed to the b-quark contribution.

Isospin breaking e↵ects definitely have to be evaluated
from first principles. Indeed, for very small values of �
very large isospin breaking e↵ects have to be expected
at certain values of E, e.g. at very low energy where
the channel ⇡0 + � opens in QCD+QED and also close
to other thresholds (see Refs. [25, 26]). Nevertheless, we
notice that in order to explain the observed tension at
E ⇠ 0.8 GeV and � ⇠ 0.6 GeV an isospin breaking e↵ect
larger than 2% would be needed and this is hard to recon-
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FIG. 6. The Gaussian kernels with central energy 0.5 GeV
and width 0.53 GeV (red) and central energy 0.8 GeV and
width 0.63 GeV (green) are compared with the intermediate

window kernel ⇥̃W · K̃ ·
⇣

E
mµ

⌘3

(see e.g. Ref. [7] for the ex-

plicit expression). The red Gaussian is centred at the peak
of the intermediate window kernel (vertical red line) that is
shown in blue and normalized such that the heights of the
two peaks coincide. The green Gaussian is centred at the
energy (vertical green line) where we observe the most signifi-
cant tension (about 2.5% and 3 standard deviations) between
R�(E) and Rexp

� (E). Using the red Gaussian we observe in-
stead a 5% tension corresponding to 2.2 standard deviations,
see Figure 3.

cile with the first principle lattice calculation performed
in Ref. [5] of the isospin breaking corrections on closely
related quantities, in particular on aHVP,W

µ . Indeed, the

smearing kernel that in energy space defines aHVP,W
µ is

very similar in shape to the Gaussian kernel with cen-
tral energy E = 0.5 GeV and width � = 0.53 GeV (see
Figure 6) and the isospin breaking e↵ect on aHVP,W

µ is
found to be at the two permille level. We also note that,
when R(E) is convoluted with the quite di↵erent (but
always very much spread out in energy) kernels that de-
fine the long and short distance contributions to aHVP

µ

(see Ref. [27]), the isospin breaking corrections w.r.t. iso-
symmetric QCD remain very small, namely of about one
permille [5] and three permille [28] respectively.

CONCLUSIONS

We presented, for the first time, a non-perturbative
theoretical study of the e+e� cross-section into hadrons.
We have calculated the R-ratio convoluted with Gaus-
sian smearing kernels of widths between 440 MeV and
630 MeV and center energies up to 2.5 GeV. We com-
pared our first-principles theoretical results with the cor-
responding quantity obtained by using the KNT19 com-
pilation [2] of R-ratio experimental data courteously pro-
vided by the authors.

For central energies of the smearing Gaussian in the
region around the ⇢ resonance our results are su�ciently
precise to let us observe a tension of about three standard
deviations with experiments. A solid evidence of a signifi-
cant discrepancy between theory and experiment already
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Fig. 1. Bare e+e≠ æ fi+fi≠ cross section versus centre-
of-mass energy in the fl peak region. The error bars of the
data points include statistical and systematic uncertainties
added in quadrature. The green band shows the HVPTools
combination within its 1‡ uncertainty.

discrepancy was bridged by inflated uncertainties in the
corresponding HVP contribution.

The available e+e≠ æ fi+fi≠ cross-section mea-
surements, zoomed into the fl peak region, are shown
in Fig. 1. Their combination and 1‡ uncertainty, ob-
tained using the DHMZ methodology implemented in
the HVPTools software [26, 27], is indicated by the
green band. The spline-based combination procedure2

takes into account all known correlations and accounts
for measurement tensions. It has been thoroughly vali-
dated through closure tests [26]. Compared to our last
update [8], we added the more recent SND20 [28] and
CMD-3 [16] data, while also employing an updated ver-
sion of the covariance matrix provided by BESIII [29].

Relative comparisons between the most precise in-
dividual measurements and the combination are shown
for the fl resonance region in Fig. 2, and for the BABAR
and CMD-3 data in a wider window in Fig. 3. A
large tension arises between CMD-3 and KLOE, which
provide the, respectively, largest and smallest cross-
section measurements. Tensions are also observed be-
tween BABAR and CMD-3 in the central fl resonance
region, while they agree at low and high energies. The
CMD-3 data also exhibit a 2.8‡ discrepancy with the
older CMD-2 results by the same collaboration [31].
Extensive discussions with CMD-3/2 physicists in the
framework of the Muon g – 2 Theory Initiative [33] did
not reveal any obvious problem in the new results. A
summary of these discussions is available [34].

Figure 4 (top) shows the local combination weights
versus

Ô
s for each data set. They take into account

the uncertainties of the measurements and their cor-
relations, as well as the corresponding point-spacing

2 Since the main purpose of the combination here is to pro-
vide a common reference for comparing the various measure-
ments, we do not employ the analyticity-based constraints
used in Ref. [8].

and binning [26, 27]. While previously the BABAR
and KLOE measurements dominated the combination
over the entire energy range, the more recent CMD-3
and SND20 data receive important weights, too. The
group of experiments labelled “Other exp” corresponds
to older data, often with incomplete radiative correc-
tions, which receive small weights throughout.

The bottom panel of Fig. 4 displays the uncer-
tainty scale factor versus

Ô
s, derived based on the lo-

cal compatibility among the measurements [26, 27].3
Large scale factors due to tensions indicate the pres-
ence of systematic e�ects that are not included in the
measurement uncertainties. They require a conservative
uncertainty treatment in the combination [3, 8].

Figure 5 shows the pull magnitude (significance) be-
tween pairs of the three most precise e+e≠ æ fi+fi≠

experiments, computed as the absolute value of the dif-
ference of the contributions to aµ divided by its un-
certainty, in various energy intervals. The three KLOE
measurements [10–12] have been combined into one
data set [13]. The di�erence between BABAR and
CMD-3 rises to a significance of 2–3‡ on the fl peak,
while reasonable agreement is seen at lower and higher
energies. The di�erences between BABAR and KLOE
are also at the 2–3‡ level in the fl peak region, reach-
ing up to 4‡ at higher energy, while good agreement
is seen at lower energy. The largest di�erences are ob-
served between CMD-3 and KLOE, with significance
above 5‡ around the fl peak. When probing the broader
energy interval 0.6–0.975 GeV, covering the fl peak,
the significance of the di�erence between BABAR and
CMD-3 is 2.2‡, that between BABAR and KLOE is
3.0‡, while CMD-3 and KLOE di�er by 5.1‡ (Fig. 5,
bottom). When extending the comparisons to the max-
imal regions of overlap between pairs of experiments,
the di�erences are diluted to 2.1‡ between BABAR
and CMD-3, 1.5‡ between BABAR and KLOE, and
3.3‡ between CMD-3 and KLOE, respectively, owing
to the better inter-experiment agreement and larger
KLOE uncertainties below and above the peak of the
resonance.

3 BABAR study of additional photon
radiation

The BABAR collaboration performed unique measure-
ments of additional photon radiation in the initial state
radiation (ISR) processes e+e≠ æ µ+µ≠“ and e+e≠ æ
fi+fi≠“. Hard NLO radiation with one additional pho-
ton was studied in Refs. [14, 15]. A new analysis [24]
based on the full available data set extended that study
and included for the first time the measurement of hard

3 While the uncertainty rescaling is applied to the com-
bined fi+fi≠ cross-section uncertainty to account for local
inconsistencies among the measurements, a global system-
atic tension must also be taken into account in the HVP
calculation [8].
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Fig. 5. Significance of the di�erence between pairs of the
three most precise e+e≠ æ fi+fi≠ experiments for narrow
energy intervals of 50 MeV or less (top) and larger energy
intervals (bottom) indicated by the horizontal lines.

the e± beams and the outgoing muons, as well as soft
photon emission and virtual corrections. The sum of the
soft and virtual terms is infrared finite and the transi-
tion energy between soft and hard emission is chosen
within a safe range (5 MeV for BABAR) so that both
contributions are under control. From an experimen-
tal point of view, both LO and soft plus virtual NLO
lead to event configurations that are reconstructed in
the ‘LO’ topology and kinematics, whereas su�ciently
hard NLO radiation necessitates a di�erent kinematic
treatment. The lowest energy for NLO photon contri-
butions is experiment dependent. In BABAR a value
of 50 MeV, the energy threshold for a detected photon
included in kinematic fits, is representative, although a
higher threshold (200 MeV) is applied to the final re-
sults.

The e�ects of HO radiative corrections are evaluated
using samples of ISR muon-pair events generated with
Phokhara in the BABAR conditions: ISR (or FSR)
photon at large polar angle (20¶–160¶) in the e+e≠

centre-of-mass (CM) system; two-charged-particle mass
from threshold to 1.4 GeV;

Ô
s = 10.58 GeV CM energy.

Soft and virtual corrections are studied with the use of
samples generated at LO with either ISR only or with
ISR and FSR, and samples generated at NLO with ei-
ther ISR only or the full NLO configuration with ISR,
FSR, and their interference. The fraction of hard pho-
ton radiation turns out to be rather large because NLO
ISR is enhanced by a factor ln(s/m2

e). It strongly de-
pends on the energy threshold of the additional photon:
a fraction of 60% for Eú

“ above 5 MeV in the centre-of-
mass decreases to 38% above 50 MeV and to 25% above
200 MeV. All contributions are dominated by NLO ISR
at small angle with respect to the beam axis. For exam-
ple, with 50 MeV photon energy threshold the NLO ISR
fraction at small angle outside the BABAR acceptance
is 27%, NLO ISR at large angle 8%, and NLO FSR 3%.
These values illustrate the importance of a thorough
understanding and robust correction of e�ects from HO
radiative corrections. The situation is very similar for
the e+e≠ æ fi+fi≠“(“) ISR process.

It is instructive to compare the Phokhara predic-
tions at di�erent orders. For the BABAR conditions
the full NLO (LO) cross section for e+e≠ æ µ+µ≠“(“)
amounts to 17.16 pb (17.45 pb), a reduction by ≠1.7%
at NLO. Since the NLO cross-section contribution with
an additional photon above 50 MeV corresponds to
38% ◊ 17.16/17.45 ƒ 37%, it is almost compensated
by a reduction of 39% due to the soft and virtual con-
tribution. This large cancellation between hard and
soft/virtual e�ects is well-known in QED [38]. It re-
quires a careful assessment of the measured and theo-
retically corrected cross-section fractions.

4.2 Going from NLO to NNLO processes

At present there exists no complete NNLO calculation
of the e+e≠ æ µ+µ≠“(“)(“) process. A behaviour sim-
ilar to NLO is expected, i.e., an overall small e�ect on
the cross section, possibly at the level of a few per mil,
and significantly larger contributions from hard radi-
ation, which may a�ect the fiducial acceptance of the
analyses.

The investigation of hard and soft/virtual radiative
corrections at NNLO is more intricate than at NLO.
The situation is illustrated in Fig. 6, which shows the
relevant generic Feynman diagrams. For each order in
QED, positive contributions with one to three real pho-
tons are separated from contributions from interfering
amplitudes involving soft/virtual photons. The first two
rows correspond to the diagrams considered in the NLO
generator Phokhara. They illustrate the large cancel-
lation occurring at this level as the result of the inter-
ference term within the ‘LO’ topology.

At NNLO, the cancellation occurs between the pos-
itive three real photon emission contribution and the
generic interference contributions leading to an ‘LO’
topology, for the processes labelled (1), or to an ‘NLO’
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Fig. 5. Significance of the di�erence between pairs of the
three most precise e+e≠ æ fi+fi≠ experiments for narrow
energy intervals of 50 MeV or less (top) and larger energy
intervals (bottom) indicated by the horizontal lines.

the e± beams and the outgoing muons, as well as soft
photon emission and virtual corrections. The sum of the
soft and virtual terms is infrared finite and the transi-
tion energy between soft and hard emission is chosen
within a safe range (5 MeV for BABAR) so that both
contributions are under control. From an experimen-
tal point of view, both LO and soft plus virtual NLO
lead to event configurations that are reconstructed in
the ‘LO’ topology and kinematics, whereas su�ciently
hard NLO radiation necessitates a di�erent kinematic
treatment. The lowest energy for NLO photon contri-
butions is experiment dependent. In BABAR a value
of 50 MeV, the energy threshold for a detected photon
included in kinematic fits, is representative, although a
higher threshold (200 MeV) is applied to the final re-
sults.

The e�ects of HO radiative corrections are evaluated
using samples of ISR muon-pair events generated with
Phokhara in the BABAR conditions: ISR (or FSR)
photon at large polar angle (20¶–160¶) in the e+e≠

centre-of-mass (CM) system; two-charged-particle mass
from threshold to 1.4 GeV;

Ô
s = 10.58 GeV CM energy.

Soft and virtual corrections are studied with the use of
samples generated at LO with either ISR only or with
ISR and FSR, and samples generated at NLO with ei-
ther ISR only or the full NLO configuration with ISR,
FSR, and their interference. The fraction of hard pho-
ton radiation turns out to be rather large because NLO
ISR is enhanced by a factor ln(s/m2

e). It strongly de-
pends on the energy threshold of the additional photon:
a fraction of 60% for Eú

“ above 5 MeV in the centre-of-
mass decreases to 38% above 50 MeV and to 25% above
200 MeV. All contributions are dominated by NLO ISR
at small angle with respect to the beam axis. For exam-
ple, with 50 MeV photon energy threshold the NLO ISR
fraction at small angle outside the BABAR acceptance
is 27%, NLO ISR at large angle 8%, and NLO FSR 3%.
These values illustrate the importance of a thorough
understanding and robust correction of e�ects from HO
radiative corrections. The situation is very similar for
the e+e≠ æ fi+fi≠“(“) ISR process.

It is instructive to compare the Phokhara predic-
tions at di�erent orders. For the BABAR conditions
the full NLO (LO) cross section for e+e≠ æ µ+µ≠“(“)
amounts to 17.16 pb (17.45 pb), a reduction by ≠1.7%
at NLO. Since the NLO cross-section contribution with
an additional photon above 50 MeV corresponds to
38% ◊ 17.16/17.45 ƒ 37%, it is almost compensated
by a reduction of 39% due to the soft and virtual con-
tribution. This large cancellation between hard and
soft/virtual e�ects is well-known in QED [38]. It re-
quires a careful assessment of the measured and theo-
retically corrected cross-section fractions.

4.2 Going from NLO to NNLO processes

At present there exists no complete NNLO calculation
of the e+e≠ æ µ+µ≠“(“)(“) process. A behaviour sim-
ilar to NLO is expected, i.e., an overall small e�ect on
the cross section, possibly at the level of a few per mil,
and significantly larger contributions from hard radi-
ation, which may a�ect the fiducial acceptance of the
analyses.

The investigation of hard and soft/virtual radiative
corrections at NNLO is more intricate than at NLO.
The situation is illustrated in Fig. 6, which shows the
relevant generic Feynman diagrams. For each order in
QED, positive contributions with one to three real pho-
tons are separated from contributions from interfering
amplitudes involving soft/virtual photons. The first two
rows correspond to the diagrams considered in the NLO
generator Phokhara. They illustrate the large cancel-
lation occurring at this level as the result of the inter-
ference term within the ‘LO’ topology.

At NNLO, the cancellation occurs between the pos-
itive three real photon emission contribution and the
generic interference contributions leading to an ‘LO’
topology, for the processes labelled (1), or to an ‘NLO’

and then you get this!
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TABLE I. Comparison of lattice and data-driven results for the three main observables of interest in this paper. Each row
contains the results and comparisons for the observable described in the first column. The second column provides the
corresponding lattice result from Ref. [6] and the third, the data-driven one computed here, using the methods of Ref. [3].
The fourth column displays the absolute di↵erence between the two results, the fifth their relative di↵erence, the sixth their
di↵erence in units of combined standard deviations and the last column, the corresponding p-value. The values in parentheses
correspond to the total uncertainties of the corresponding quantities. Note that the powers of 10 in the observable column only
apply to columns two through four. The three remaining columns have units specified in the corresponding column label.

Observable lattice [6] data-driven di↵. % di↵. � p-value [%]

aLO-HVP
µ ⇥ 1010 707.5(5.5) 694.0(4.0) 13.5(6.8) 1.9(1.0) 2.0 4.7

aLO-HVP
µ,win ⇥ 1010 236.7(1.4) 229.2(1.4) 7.5(2.0) 3.2(0.8) 3.8 0.01h
�

(5)
had↵(�10 GeV2) ��

(5)
had↵(�1 GeV2)

i
⇥ 104 48.67(0.32)a 48.02(0.32) 0.65(0.45) 1.3(0.9) 1.4 15.

a This result’s continuum limit does not include the logarithmically-enhanced discretization uncertainties discovered subsequently in
Ref. [79], nor was this quantity the focus of Ref. [6]. However, we include it in the present study to illustrate how using a quantity
which is complementary to aLO-HVP

µ and aLO-HVP
µ,win can provide important information.
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FIG. 2. Comparison of lattice and data-driven results for the contribution aLO-HVP
µ,win to aLO-HVP

µ , from the Euclidean time
interval [0.4, 1.0] fm (see Eqs. (6) and (7) and subsequent text). Left panel: Comparison of lattice results for the isospin-
symmetric, u and d connected contribution to the intermediate-window observable, noted [aLO-HVP

µ,win ]ud
iso (green squares). For

each group, only the most recent results are shown. BMW’20 [6], LM’20 [76], ABGP’22 [78] and FHM’23 [12] are obtained
with di↵erent varieties of staggered fermions; Mainz’22 [9] with O(a)-improved Wilson, ETMC’22 [10] with twisted-mass and
RBC/UKQCD’23 [11] with domain-wall fermions; �QCD’22 [77] with overlap valence quarks on either HISQ or domain-wall
configurations. The filled squares correspond to fully independent results while the open ones are obtained using subsets
of configurations from other calculations. LM’20 relies on a subset of the configurations used in FHM’23 and �QCD’22 on
subsets of those used in FHM’23 and RBC/UKQCD’23. The green band corresponds to a weighted average of the fully-
independent (filled squares) lattice results for [aLO-HVP

µ,win ]ud
iso. The mean is performed without correlations in the determination

of the weights while the uncertainty propagation assumes a 100% correlation between the total systematic error of the di↵erent
calculations. The resulting correlated �2/ndof is 2.3/4. Right panel: Comparison of the weighted average of lattice results
(green filled circle and band) with a number of R-ratio results for the intermediate-window observable (red diamonds), including
the one determined in this paper (filled red diamond and band). The weighted average for aLO-HVP

µ,win is obtained from that for

[aLO-HVP
µ,win ]ud

iso, to which we have added all other quark, QED and strong-isospin contributions from Ref. [6]. The resulting average

is aLO-HVP
µ,win = (235.7 ± 0.8) ⇥ 10�10. The di↵erence of this lattice average with the data-driven one of the present work is 4.0�,

shown as a horizontal arrow. “WA” stands for “world average”.

While the correlations between aLO-HVP
µ and aLO-HVP

µ,win ,
determined in lattice QCD, are obtained as described in
Appendix B, the determination of the running of ↵ is im-
pacted by uncertainties that are, to good approximation,
independent of those of the former. On the other hand,
for the dispersive approach, the correlations among the

uncertainties of the contributions to all moment integrals
are derived as discussed in Appendix A.

We first consider a combined comparison of aLO-HVP
µ

and aLO-HVP
µ,win . The resulting �2/ndof range from

14.4+3.0
�2.1/2 to 18.8+2.0

�1.7/2 when the two most extreme of
the four systematic variations of the lattice covariance

at present, since:

• the tension is at low-energy

• our lattice errors on Rσ(E) are still rather large for E > 1.5 GeV

R[fW
aµ ] makes the same job!



is there any chance to reduce the Gaussian bin size?
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let’s go back to aµ

on the lattice this is estimated by

aHVP−LO,standard
µ = lim

a7→0
lim

L 7→∞
lim

tc 7→∞
a

tc∑
t=0

f̃aµ (at)C(at)

the big difference w.r.t. a Gaussian kernel is that the coefficients f̃aµ (at) do not require smoothing procedures

on the other hand, by using HLT one has a different estimator with different systematic errors

aHVP−LO,HLT
µ = lim

a7→0
lim

L 7→∞
lim
λ7→0

∫ ∞

0
dω fHLT

aµ
(ω)Ra,L(ω)
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summarizing:

R[f ] =

∫ +∞

0

dω f (ω)R(ω)

• from the lattice perspective the best is f(ω) = e−ωt

• from the phenomenological perspective one would like to have f(ω) = δ(ω − E)

• let’s do what we can with reasonable and, more importantly, trustable errors



before closing i’ll take the chance to express my feelings concerning this spectral density business. . .



here (ALGT@CERN 2019 workshop) I presented, during an informal afternoon discussion, the HLT method that, at the
time, was seen as a speculative idea. . .



that idea, together with many other important contributions, opened the way to the calculation of inclusive hadronic
decay rates on the lattice

m.hansen et al. Phys.Rev.D 96 (2017)
s.hashimoto PTEP 2017 (2017)

p.gambino, s.hashimoto Phys.Rev.Lett. 125 (2020)
p.gambino et al. JHEP 07 (2022) 083

ETMC Phys.Rev.D 108 (2023)
ETMC Phys.Rev.Lett. 130 (2023)

a.barone et al. JHEP 07 (2023) 145

ETMC Phys.Rev.Lett. 132 (2024)

see the talks from
f.sanfilippo, p.gambino, a.barone, s.hashimoto

something that has been considered unfeasible for several years. . .



hic et nunc, agostino should be presenting now, hopefully
will present in a couple of days, what I really think is an
important theoretical step forward

a mathematically solid non-perturbative solution to the
theoretical problem of extracting generic scattering
amplitudes from lattice correlators

from the numerical perspective, this must still be seen as a
speculative idea. . .

Scattering Amplitudes from Euclidean Correlators:
Haag-Ruelle theory and approximation formulae

Agostino Patellaa,d, Nazario Tantalob,c

a Humboldt Universität zu Berlin, Institut für Physik & IRIS Adlershof,
Zum Grossen Windkanal 6, 12489 Berlin, Germany

b Università di Roma Tor Vergata, Dipartimento di Fisica,
Via della Ricerca Scientifica 1, 00133 Rome, Italy

c INFN, Sezione di Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy

d DESY, Platanenallee 6, D-15738 Zeuthen, Germany

Abstract

In this work we provide a non-perturbative solution to the theoretical problem of extract-
ing scattering amplitudes from Euclidean correlators in infinite volume. We work within
the solid axiomatic framework of the Haag-Ruelle scattering theory and derive formu-
lae which can be used to approximate scattering amplitudes arbitrarily well in terms of
linear combinations of Euclidean correlators at discrete time separations. Our result gen-
eralizes and extends the range of applicability of a result previously obtained by Barata
and Fredenhagen [1]. We provide a concrete procedure to construct such approximations,
making our formulae ready to be used in numerical calculations of non-perturbative QCD
scattering amplitudes. A detailed numerical investigation is needed to assess whether the
proposed strategy can lead to the calculation of scattering amplitudes with phenomeno-
logically satisfactory precision with presently available lattice QCD data. This will be
the subject of future work. Nevertheless, the numerical accuracy and precision of lattice
simulations is systematically improvable, and we have little doubts that our approach will
become useful in the future.

Keywords: Quantum Field Theory, Non-perturbative S-matrix
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i’m optimistic though. . .

and i’ll take inspiration from what chis said at the end of his plenary talk in Villasimius where he presented the
RBC-UKQCD results on K 7→ ππ

“if I were Italian I would be jumping for joy on stage!”

c.t.sachrajda @ lattice2010



who works with me knows that i’m all but a joyful man. . .



but i’m deeply italian!



backup slides



mathematically the problem is reduced to that of an inverse Laplace-transform



mathematically the problem is reduced to that of an inverse Laplace-transform

to be performed numerically
by starting from a finite and noisy set of input data



ρ(E) = ⟨0|ÔF δ
(
Ĥ − E

)
(2π)3δ3

(
P̂ − p

)
ÔI |0⟩

C(t) =

∫
d3x e−ip·x⟨0|ÔF e−tĤ+iP̂ ·xÔI |0⟩ =

∫ ∞

E0

dE e−tE ρ(E)

t = aτ , τ = 1, · · · , T
a



ρ(E) contains an infinite amount of information



ρ(E) contains an infinite amount of information

the problem, to be addressed numerically, has to be discretized



C(aτ) =

∫ ∞

E0

dE e−τaE ρ(E) 7→ σ

NE−1∑
m=0

e−τaEm ρ̂(Em)
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Êτm ≡ e−τaEm , Ĝnm ≡
[
ÊT Ê

]
nm
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C(aτ) =

∫ ∞

E0

dE e−τaE ρ(E) 7→ σ

NE−1∑
m=0

e−τaEm ρ̂(Em)

Ĝ ρ̂ =
1

σ
ÊT C , ρ̂ =

1

σ
Ĝ−1 ÊT C

ρ̂(En) =

NT−1∑
τ=1

gτ (En)C(aτ) =

∫ ∞

E0

dωK(En, ω) ρ(ω)

K(En, Em) =
δnm

σ
, K(En, ω) ̸= δ(En − ω)

4

and the associated “metric matrix” in energy space,

Ĝnm ⌘
h
ÊT Ê

i
nm

=

NT �1X

⌧=1

e�⌧a(En+Em) =
e�a(En+Em) � e�T (En+Em)

1 � e�a(En+Em)
,

(9)

Eq. (6) is then solved,

⇢̂(En) =

NT �1X

⌧=1

g⌧ (En) Ĉ(a⌧) ,

g⌧ (En) =
1

�

NE�1X

m=0

Ĝ�1
nmÊ⌧m . (10)

By using the previous expressions we can now explain
why the problem is particularly challenging and in which
sense it is numerically ill-posed.

On the numerical side, the metric matrix Ĝ is very
badly conditioned in the limit of large NE and small
�. Consequently, the coe�cients g⌧ (En) become huge
in magnitude and oscillating in sign in this limit and
even a tiny distortion of the input data gets enormously
amplified,

NT �1X

⌧=1

g⌧ (En)�(a⌧)
� 7!07�! 1 . (11)

In this sense the numerical solution becomes unstable
and the problem ill-posed.

Another important observation concerning Eqs. (10),
usually left implicit, concerns the intepretation of ⇢̂(En)
as a smeared spectral density. By introducing the smear-
ing kernel

K(En, !) =

NT �1X

⌧=1

g⌧ (En) e�a⌧! , (12)

and by noticing that, as a matter of fact, the spectral
density has to be obtained by using the correlator C(a⌧)

(and not its approximation Ĉ(a⌧), to be considered just
as a theoretical device introduced in order to formalize
the problem), we have

⇢̂(En) =

Z 1

E0

d!K(En, !) ⇢(!) . (13)

Consistency would require that K(En, !) = �(En � !)
but this cannot happen at finite T and/or NE . In fact
K(En, !) can be considered a numerical approximation
of �(En�!) that, as can easily be understood by noticing
that

K(En, Em) =
�nm

�
, (14)
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FIG. 4. Top panel : Smearing kernel of Eq. 12 at En = 5
for three values of �. The reconstruction is performed by
setting E0 = 1 and Emax = 10 as UV cuto↵ in Eq. 5 and by
working in lattice units with a = 1. The kernel is smooth for
! � En while it presents huge oscillations for ! < En. In the
case � = 0.1 these oscillations range from �10126 to +10121.
Bottom panel : Corresponding coe�cients g⌧ (En) (see Eq. 10)
in absolute value for the first 20 discrete times. Extended-
precision arithmetic is mandatory to invert the matrix Ĝnm.
This test, in which det(Ĝ) = O

�
10�15700

�
for � = 0.1, has

been performed by using 600-digits arithmetics.

has an intrinsic energy-resolution proportional to the dis-
cretization interval � of the Riemann’s sum. A numerical
study of K(En, !) at fixed En reveals that for ! � En

the kernel behaves smoothly while it oscillates wildly for
! < En and small values of �. A numerical example is
provided in FIG. 4.

Once the fact that a smearing operation is unavoid-
able in any numerical approach to the inverse Laplace-
transform problem has been recognized, the smearing
discretization approach that we are now going to dis-
cuss appears more natural. Indeed, the starting point of
the smearing approach is precisely the introduction of a
smearing kernel and this allows to cope with the prob-
lem also in the case, relevant for our QFT applications,
in which spectral densities are distributions.

By reversing the logic of the standard approach, that
led us to Eq. (12), in the smearing approach the prob-
lem is discretized by representing the possible smearing
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C
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C(t) = −1

3

3∑
i=1

∫
d3xT ⟨0|Ji(x)Ji(0)|0⟩ =

1

12π2

∫ ∞

0
dE E2R(E) e−Et



Axiom W1: For each test function f , i.e. for a function with a compact support and continuous derivatives of any order,
there exists a set of operators O1(f), · · · , On(f) which, together with their adjoints, are defined on a dense subset of the
Hilbert state space, containing the vacuum. The fields O are operator-valued tempered distributions. The Hilbert state
space is spanned by the field polynomials acting on the vacuum (cyclicity condition).

spectral densities must be smeared, in particular on finite volumes where

ρL(E) =
∑
n

wn(L) δ (En(L)− E) , ρ(E) 7→ ρ[∆]



Example

⇢�,L(E) =

Z 1

0

d! ��(!, E)⇢L(!) ��(!, E) = G�(!, E) =
1p
2⇡�

exp

 
� (E � !)2

2�2
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Extraction of spectral densities from lattice correlators
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Hadronic spectral densities are important quantities whose nonperturbative knowledge allows for
calculating phenomenologically relevant observables, such as inclusive hadronic cross sections and
nonleptonic decay rates. The extraction of spectral densities from lattice correlators is a notoriously difficult
problem because lattice simulations are performed in Euclidean time and lattice data are unavoidably
affected by statistical and systematic uncertainties. In this paper we present a new method for extracting
hadronic spectral densities from lattice correlators. The method allows for choosing a smearing function at
the beginning of the procedure and it provides results for the spectral densities smeared with this function
together with reliable estimates of the associated uncertainties. The same smearing function can be used
in the analysis of correlators obtained on different volumes, such that the infinite-volume limit can be
studied in a consistent way. While the method is described by using the language of lattice simulations, in
reality it is completely general and can profitably be used to cope with inverse problems arising in different
fields of research.

DOI: 10.1103/PhysRevD.99.094508

I. INTRODUCTION

Hadronic spectral densities are crucial ingredients in the
calculation of physical observables associated with the
continuum spectrum of the QCD Hamiltonian. A notable
classical example is provided by the differential cross
section for the process eþe− ↦ hadrons that, at leading
order in the electromagnetic coupling, is proportional to the
QCD spectral density evaluated between hadronic electro-
magnetic currents,

dΣðEÞ
dE

∝ h0jJkemð0ÞδðH − EÞδ3ðPÞJkemð0Þj0i; ð1Þ

where E is the energy of the electron-positron pair in the
center-of-mass frame, H and P are respectively the QCD
Hamiltonian and total momentum operators and JμemðxÞ is
the hadronic electromagnetic current. Other important
examples of observables, in which spectral densities play
a crucial role, are the flavor-changing nonleptonic decay
rates of kaons and heavy flavored mesons, the deep
inelastic scattering cross section, and thermodynamic

observables arising in the study of QCD at finite temper-
ature and of the quark-gluon plasma.
It is notoriously difficult to obtain model-independent

nonperturbative theoretical predictions for hadronic spec-
tral densities. In principle this is a problem that can be
addressed from first principles within the solid framework
of lattice QCD. However, in practice, one has to face highly
nontrivial numerical and theoretical problems in order to
extract spectral densities from lattice simulations.
The origin of these problems can be traced back to the

fact that lattice results unavoidably are affected by stat-
istical and systematic errors. More precisely, the primary
observables computed in a lattice simulation are Euclidean
time-ordered correlators at discrete values of the space-time
coordinates and on a finite volume, e.g.,

CðtÞ ¼ 1

L3

X

x

Th0jOðxÞŌð0Þj0iL; ð2Þ

where L is the linear extent of the spatial volume V ¼ L3

while O and Ō are generic hadronic operators. In the
following we shall not discuss cutoff effects and, therefore,
we shall not indicate the dependence of the different
quantities upon the lattice spacing. We shall however
always assume that the correlators are known only for
discrete values of the space-time coordinates. At positive
Euclidean times t ≥ 0 the previous correlator can be
rewritten as

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.
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having this in mind, we developed a method (that my friend j.bulava then called HLT) that allows to extract smeared
spectral densities from lattice correlators

ρ̂σ(E;L) =

∫ ∞

E0

dω∆σ(E,ω)ρL(ω) , ρ(E)
?
= lim

σ 7→0
lim

L7→∞
ρ̂σ(E;L)



Kernel reconstruction
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The effect of the noise regulator (B[g] functional)
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• we didn’t know it (again john) but the mathematics of the HLT method was already known
f.pijpers, m.thompson Astron.Astrophys. 262 (1992)

• it is a generalization of the Backus-Gilbert method that I learnt by reading
m.t.hansen, h.b.meyer, d.robaina Phys.Rev.D 96 (2017) 9
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• moreover, the HLT method can also be interpreted within the Bayesian language of the Gaussian Processes
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• what we call the HLT method is the procedure to estimate reliably the errors
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Figure 9. Left: numerical results for ρε(E) for the Gaussian kernel and the spectral density
including up to six-particle contributions (solid lines) smeared with the same kernel at different
values of ε/(E − 2m"). Right: results for ρ(E) after extrapolation ε→ 0, together with the exact
two-particle contribution (light dashed line), the two-, four-, and six-particle contributions (dark
solid line), and the 2-loop perturbative result (dark dotted line). Statistical and systematic errors
due to the finite volume, continuum limit, and ε→ 0 extrapolation are combined in quadrature as
described in the text.

6 Conclusions

The aim of the preceding sections is to verify the procedure of ref. [1] for numerically
computing smeared spectral densities (with an a priori specified smearing kernel) from
lattice field theory correlation functions. In this regard the two-dimensional O(3) model
usefully provides exact results against which the estimates can be checked. These checks,
which are presented in figures 6 and 9, are satisfied and compare both ρε(E) at finite ε

and the results from ε→ 0 extrapolations to determine ρ(E) deep into the inelastic region
where finite-volume methods have not yet been developed. The highest energy considered
here is E = 40m", at which ρ(E) is determined with a relative accuracy of 5% and differs
significantly from the exact two-particle contribution ρ(2)(E) given in eq. (2.6).

Apart from the ‘usual’ sources of systematic error due to the finite lattice spacing and
finite-volume spacetime, we must also consider the imperfect reconstruction of the smearing
kernel due to the finite number of input time slices and their associated statistical errors.
All sources of systematic error have been estimated and included in figures 6 and 9 where
the statistical and systematic errors are added in quadrature. Generally the errors due to
the finite lattice extent are the largest source of systematic uncertainty, and are typically
less than or comparable to the statistical errors.

The determination of ρε(E) becomes increasingly difficult for smaller smearing widths
ε at fixed energy E, and increasing E with fixed ε. As is evident from the right two panels
of figure 6, it is difficult to achieve precise results outside of the elastic region for ε ! m/2
with the Gaussian smearing kernel. Better is to exploit the smoothness of ρ(E) and scale
ε ∝ (E − 2m), so that an equal proportion of the smearing kernel ‘leaks’ down to the two
particle threshold at each energy. This enables the determination of ρ(E) in figure 9, which
is the main result of this work.
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and � = 0.63 GeV) of the continuum extrapolations of
the di↵erent contributions to R�(E) and, in the follow-
ing, concentrate on the comparison of our first-principles
determination with the experimental results Rexp

� (E).

This is done in FIG. 3 where the plots show R�(E)
(blue points) and Rexp

� (E) (red points) as functions of
E for � = 0.44 GeV (first row), � = 0.53 GeV (second
row) and � = 0.63 GeV (third row). Our quoted final
errors include the estimates of the systematics associ-
ated with continuum extrapolations, with finite-volume
e↵ects and also the ones coming from the spectral re-
construction algorithm, see FIG. 4. In order to properly
interpret FIG. 3 it is very important to realize that the
information contained into R�(E) and R�(E0) for central
energies such that |E � E0| ⌧ � is essentially the same.
Moreover, our theoretical results at di↵erent values of E
and � are obtained from the same correlators and, there-
fore, are correlated (a table with the numerical results
and their correlation matrix is provided in the supple-
mentary material). It is also very important to stress
that our lattice simulations have been calibrated by us-
ing hadron masses to fix the quark masses and the lattice
spacing and, therefore, R�(E) is a theoretical prediction
obtained without using any input coming from Rexp

� (E).
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FIG. 4. Error budget for R�(E) at � = 0.44 GeV (first
row), � = 0.53 GeV (second row) and � = 0.63 GeV (third
row). The red points correspond to the total relative error,
��(E)/R�(E). The black points are the statistical errors
combined in quadrature with the systematics errors coming
from the spectral reconstruction algorithm, �̄�(E), divided
by R�(E). The violet and orange points are, respectively, our
estimates of the relative systematics errors associated with the
continuum extrapolations, �a

�(E)/R�(E), and finite volume
e↵ects, �L

� (E)/R�(E).

In view of these observations, and of the fact that the ex-
traction of spectral densities from Euclidean correlators
is a challenging numerical problem, we consider the over-
all agreement between the theoretical and experimental
data quite remarkable.

Although our theoretical errors, ��(E), are still sub-
stantially larger than the experimental ones, �exp

� (E),
there is a tension between R�(E) and Rexp

� (E) when the
smearing Gaussian is centred in the region around the
⇢ resonance. This can be better appreciated in FIG. 5
where, for E < 1.3 GeV, the plots on the left show the
relative di↵erence R�(E)/Rexp

� (E)�1 while those on the
right show the “pull”

⌃�(E) =
R�(E) � Rexp

� (E)q
[��(E)]

2
+ [�exp

� (E)]
2

. (7)

Before ascribing this tension, of about three standard
deviations, to new physics or to underestimated experi-
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and � = 0.63 GeV) of the continuum extrapolations of
the di↵erent contributions to R�(E) and, in the follow-
ing, concentrate on the comparison of our first-principles
determination with the experimental results Rexp
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This is done in FIG. 3 where the plots show R�(E)
(blue points) and Rexp

� (E) (red points) as functions of
E for � = 0.44 GeV (first row), � = 0.53 GeV (second
row) and � = 0.63 GeV (third row). Our quoted final
errors include the estimates of the systematics associ-
ated with continuum extrapolations, with finite-volume
e↵ects and also the ones coming from the spectral re-
construction algorithm, see FIG. 4. In order to properly
interpret FIG. 3 it is very important to realize that the
information contained into R�(E) and R�(E0) for central
energies such that |E � E0| ⌧ � is essentially the same.
Moreover, our theoretical results at di↵erent values of E
and � are obtained from the same correlators and, there-
fore, are correlated (a table with the numerical results
and their correlation matrix is provided in the supple-
mentary material). It is also very important to stress
that our lattice simulations have been calibrated by us-
ing hadron masses to fix the quark masses and the lattice
spacing and, therefore, R�(E) is a theoretical prediction
obtained without using any input coming from Rexp
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row), � = 0.53 GeV (second row) and � = 0.63 GeV (third
row). The red points correspond to the total relative error,
��(E)/R�(E). The black points are the statistical errors
combined in quadrature with the systematics errors coming
from the spectral reconstruction algorithm, �̄�(E), divided
by R�(E). The violet and orange points are, respectively, our
estimates of the relative systematics errors associated with the
continuum extrapolations, �a

�(E)/R�(E), and finite volume
e↵ects, �L

� (E)/R�(E).

In view of these observations, and of the fact that the ex-
traction of spectral densities from Euclidean correlators
is a challenging numerical problem, we consider the over-
all agreement between the theoretical and experimental
data quite remarkable.

Although our theoretical errors, ��(E), are still sub-
stantially larger than the experimental ones, �exp

� (E),
there is a tension between R�(E) and Rexp

� (E) when the
smearing Gaussian is centred in the region around the
⇢ resonance. This can be better appreciated in FIG. 5
where, for E < 1.3 GeV, the plots on the left show the
relative di↵erence R�(E)/Rexp

� (E)�1 while those on the
right show the “pull”

⌃�(E) =
R�(E) � Rexp

� (E)q
[��(E)]
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+ [�exp

� (E)]
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. (7)

Before ascribing this tension, of about three standard
deviations, to new physics or to underestimated experi-



ETMC Phys.Rev.Lett. 130 (2023)

3

ID L3 ⇥ T a fm aL fm m⇡ GeV
B64 643 · 128 0.07957(13) 5.09 0.1352(2)
B96 963 · 192 0.07957(13) 7.64 0.1352(2)
C80 803 · 160 0.06821(13) 5.46 0.1349(3)
D96 963 · 192 0.05692(12) 5.46 0.1351(3)

TABLE I. ETMC gauge ensembles used in this work. The
quoted pion masses have been obtained by a direct compu-
tation of the small light-quark mass correction that is nec-
essary to match m⇡ = 135.0 MeV starting from simula-
tions with slightly heavier pions (m⇡ = 0.1402(2) GeV on
the B64 ensemble, m⇡ = 0.1401(1) GeV on the B96 en-
semble, m⇡ = 0.1367(2) GeV on the C80 ensemble and
m⇡ = 0.1408(2) GeV on the D96 ensemble, see Ref. [7] for
more details).

this point and to the supplementary material for the de-
tails of the numerical implementation performed in this
work.

Materials. The lattice gauge ensembles used in this
work, generated by the ETMC, are listed in TABLE I
and described in full details in Ref. [7] together with
the lattice correlators V (t), used there to compute the
short and intermediate window contributions to aHVP

µ

and here to compute R�(E). In particular, in order to
better estimate the systematics associated with contin-
uum extrapolations, we use the same mixed-action setup
described in Ref. [7, 22] and analyze both the so-called
Twisted Mass (TM) and Osterwalder-Seiler (OS) lattice
regularized correlators V (t). The results for R�(E) ob-
tained in the two regularizations di↵er by O(a2) cuto↵
e↵ects [23, 24] and must coincide within errors in the
continuum limit.

In order to compare our theoretical results with experi-
ments, we rely on the KNT19 compilation [2] of Rexp(E),
providing data in the range E 2 [0.216, 11.1985] GeV to-
gether with the full covariance matrix that takes into ac-
count the correlation between the di↵erent experiments,
see FIG. 1. The central values and errors of Rexp

� (E)
quoted below have been obtained by generating boot-
strap samples of R(E), each of which simulating an inde-
pendent measurement, from a multivariate Gaussian dis-
tribution using the Rexp(!) central values and covariance
matrix. Each sample is then integrated with G�(E �!),
see the supplementary material for more details.

RESULTS

In our lattice calculation we considered three values for
the smearing parameter, � = {0.44, 0.53, 0.63} GeV, and
central energies in the range E 2 [0.21, 2.54] GeV. A de-
tailed discussion of the analysis procedure, including the
break-down of R�(E) into the contributions coming from
the di↵erent flavours and from connected and discon-
nected fermionic Wick contractions, together with a care-

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

E [GeV]

0

1

2

3

4

R
�
(E

)

Rexp(E) by KNT19

G�(E � 1.5 GeV), � = 0.44 GeV

Rexp
� (E)

FIG. 1. The grey band shows Rexp(E) from the KNT19
compilation [2]. The red points are the results of the smear-
ing of Rexp(E) with a Gaussian of � = 0.44 GeV according
to Eq. (1). The smearing Gaussian corresponding to center
energy E = 1.5 GeV is shown in blue.
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FIG. 2. Continuum extrapolations of the di↵erent contribu-
tions to R�(E) at E = 0.79 GeV and � = 0.63 GeV. From
top to bottom, the plots correspond to the connected light-
light (R``,C

� (E)), the connected strange-strange (Rss,C
� (E)),

the connected charm-charm (Rcc,C
� (E)) and the disconnected

(RD
� (E)) contributions. The blue and green points correspond

respectively to the OS and TM lattice regularizations. In
the case of the connected contributions we performed both
correlated-constrained (red) and uncorrelated-unconstrained
linear extrapolations in a2 and found them to be compatible
within errors in all cases. The disconnected contribution has
been computed in the OS regularization only and extrapo-
lated linearly in a2. In the case of R``,C

� (E) and Rss,C
� (E)

there are two points for each regularization at the coarsest
lattice spacing (slightly displaced on the x-axis to help the
eye) corresponding to the ensembles B64 and B96 and, there-
fore, to di↵erent volumes. No significant finite-volume e↵ects
have been observed for all considered values of E and �.

ful study of the systematic uncertainties a↵ecting each
contribution, can be found in the supplementary mate-
rial. Here, in FIG. 2, we show an example (E = 0.79 GeV
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FIG. 3. Comparison of R�(E) (blue points) and Rexp
� (E)

(red points) as functions of E for � = 0.44 GeV (first row),
� = 0.53 GeV (second row) and � = 0.63 GeV (third row).

and � = 0.63 GeV) of the continuum extrapolations of
the di↵erent contributions to R�(E) and, in the follow-
ing, concentrate on the comparison of our first-principles
determination with the experimental results Rexp

� (E).

This is done in FIG. 3 where the plots show R�(E)
(blue points) and Rexp

� (E) (red points) as functions of
E for � = 0.44 GeV (first row), � = 0.53 GeV (second
row) and � = 0.63 GeV (third row). Our quoted final
errors include the estimates of the systematics associ-
ated with continuum extrapolations, with finite-volume
e↵ects and also the ones coming from the spectral re-
construction algorithm, see FIG. 4. In order to properly
interpret FIG. 3 it is very important to realize that the
information contained into R�(E) and R�(E0) for central
energies such that |E � E0| ⌧ � is essentially the same.
Moreover, our theoretical results at di↵erent values of E
and � are obtained from the same correlators and, there-
fore, are correlated (a table with the numerical results
and their correlation matrix is provided in the supple-
mentary material). It is also very important to stress
that our lattice simulations have been calibrated by us-
ing hadron masses to fix the quark masses and the lattice
spacing and, therefore, R�(E) is a theoretical prediction
obtained without using any input coming from Rexp

� (E).
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FIG. 4. Error budget for R�(E) at � = 0.44 GeV (first
row), � = 0.53 GeV (second row) and � = 0.63 GeV (third
row). The red points correspond to the total relative error,
��(E)/R�(E). The black points are the statistical errors
combined in quadrature with the systematics errors coming
from the spectral reconstruction algorithm, �̄�(E), divided
by R�(E). The violet and orange points are, respectively, our
estimates of the relative systematics errors associated with the
continuum extrapolations, �a

�(E)/R�(E), and finite volume
e↵ects, �L

� (E)/R�(E).

In view of these observations, and of the fact that the ex-
traction of spectral densities from Euclidean correlators
is a challenging numerical problem, we consider the over-
all agreement between the theoretical and experimental
data quite remarkable.

Although our theoretical errors, ��(E), are still sub-
stantially larger than the experimental ones, �exp

� (E),
there is a tension between R�(E) and Rexp

� (E) when the
smearing Gaussian is centred in the region around the
⇢ resonance. This can be better appreciated in FIG. 5
where, for E < 1.3 GeV, the plots on the left show the
relative di↵erence R�(E)/Rexp

� (E)�1 while those on the
right show the “pull”

⌃�(E) =
R�(E) � Rexp

� (E)q
[��(E)]

2
+ [�exp

� (E)]
2

. (7)

Before ascribing this tension, of about three standard
deviations, to new physics or to underestimated experi-
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FIG. 5. Left-plots: Relative di↵erence R�(E)/Rexp
� (E) � 1

as a function of the energy for � = 0.44 GeV (first row),
� = 0.53 GeV (second row) and � = 0.63 GeV (third row)
Right-plots: The pull quantity ⌃�(E), see Eq. (7), as function
of the energy for the three values of �.

mental uncertainties a very important remark is in order.

The calculation of R�(E) that we have performed in
this study is an iso-symmetric nf = 2+1+1 lattice QCD
calculation and, therefore, we have not calculated yet,
from first principles, the contributions to R�(E) com-
ing from b-quarks and from the QED and strong isospin
breaking corrections. Concerning the b-quark contribu-
tion, if sizeable, this would represent a positive correction
to R�(E) and thus, given the fact that Rexp

� (E) is below
R�(E) in the region in which these are in tension, it can
only lead to an enhancement of the observed discrep-
ancy. On the other hand, in the supplementary mate-
rial we provide numerical evidence that even the charm
contribution is negligible for E < 1.5 GeV at the cur-
rent level of the theoretical precision. This is evident at
E = 0.79 GeV and � = 0.63 GeV, where we observe the
largest tension, from the comparison of the first and third
panels in FIG. 2. We therefore exclude that the observed
tension can be ascribed to the b-quark contribution.

Isospin breaking e↵ects definitely have to be evaluated
from first principles. Indeed, for very small values of �
very large isospin breaking e↵ects have to be expected
at certain values of E, e.g. at very low energy where
the channel ⇡0 + � opens in QCD+QED and also close
to other thresholds (see Refs. [25, 26]). Nevertheless, we
notice that in order to explain the observed tension at
E ⇠ 0.8 GeV and � ⇠ 0.6 GeV an isospin breaking e↵ect
larger than 2% would be needed and this is hard to recon-
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FIG. 6. The Gaussian kernels with central energy 0.5 GeV
and width 0.53 GeV (red) and central energy 0.8 GeV and
width 0.63 GeV (green) are compared with the intermediate

window kernel ⇥̃W · K̃ ·
⇣

E
mµ

⌘3

(see e.g. Ref. [7] for the ex-

plicit expression). The red Gaussian is centred at the peak
of the intermediate window kernel (vertical red line) that is
shown in blue and normalized such that the heights of the
two peaks coincide. The green Gaussian is centred at the
energy (vertical green line) where we observe the most signifi-
cant tension (about 2.5% and 3 standard deviations) between
R�(E) and Rexp

� (E). Using the red Gaussian we observe in-
stead a 5% tension corresponding to 2.2 standard deviations,
see Figure 3.

cile with the first principle lattice calculation performed
in Ref. [5] of the isospin breaking corrections on closely
related quantities, in particular on aHVP,W

µ . Indeed, the

smearing kernel that in energy space defines aHVP,W
µ is

very similar in shape to the Gaussian kernel with cen-
tral energy E = 0.5 GeV and width � = 0.53 GeV (see
Figure 6) and the isospin breaking e↵ect on aHVP,W

µ is
found to be at the two permille level. We also note that,
when R(E) is convoluted with the quite di↵erent (but
always very much spread out in energy) kernels that de-
fine the long and short distance contributions to aHVP

µ

(see Ref. [27]), the isospin breaking corrections w.r.t. iso-
symmetric QCD remain very small, namely of about one
permille [5] and three permille [28] respectively.

CONCLUSIONS

We presented, for the first time, a non-perturbative
theoretical study of the e+e� cross-section into hadrons.
We have calculated the R-ratio convoluted with Gaus-
sian smearing kernels of widths between 440 MeV and
630 MeV and center energies up to 2.5 GeV. We com-
pared our first-principles theoretical results with the cor-
responding quantity obtained by using the KNT19 com-
pilation [2] of R-ratio experimental data courteously pro-
vided by the authors.

For central energies of the smearing Gaussian in the
region around the ⇢ resonance our results are su�ciently
precise to let us observe a tension of about three standard
deviations with experiments. A solid evidence of a signifi-
cant discrepancy between theory and experiment already
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FIG. 3: The reconstructed smearing kernels K̃�
T(x) obtained using the coe�cients g�★

T employed in the reconstruction of

R
(⌧,TA)
ud (�) in the “OS” regularization. The di↵erent colors correspond to the di↵erent choices of the algorithmic parameters

↵ and rmax shown in Fig. 2. In the top figure the black line corresponds to the exact kernel K�
T(x) of Eq. (30). In the bottom

figure we show instead x �K̃�
T(x) −K�

T(x)�. The data correspond to � = 0.02.

and indicated with ��reg
I
(�) its relative statistical uncertainty. Thus, ⌃FSE

I (�) is the spread between the results

obtained on the B96 and B64 ensembles, weighted by the probability that the spread is not due to a statistical
fluctuation, and maximized over the two regularizations “tm” and “OS”. In the following subsection, we will carry out
the continuum limit extrapolation using the results on the B64, C80 and D96 ensembles, which after including the
systematic uncertainty ⌃FSE

I (�) due to FSEs, are considered as infinite-volume quantities.

B. Continuum limit extrapolation and the limit of vanishing �

We now turn into the discussion of the remaining extrapolations that need to be performed to obtain R
(⌧)
ud , namely the

continuum limit extrapolation at fixed � (that we perform first), and the final extrapolation to vanishing �. For the
continuum extrapolation, we perform combined fits to the data corresponding to the two regularizations “tm” and
“OS”, employing the following fit Ansatz

R
(⌧,I),tm
ud (�, a) = RI(�) +Dtm

I (�)a
2 , R

(⌧,I),OS
ud (�, a) = RI(�) +DOS

I (�)a
2 , (45)

where RI(�),D
tm
I (�), and DOS

I (�) are �−dependent free fit parameters. A common continuum limit value, RI(�),
is thus enforced. The fit is performed minimizing a correlated �2

−variable. The corresponding covariance matrix
has a 2 × 2 block-diagonal form, since the data corresponding to di↵erent ensembles are uncorrelated, and the only
non-vanishing correlation is the one between the “tm” and “OS” data corresponding to the same ensemble. We carry
out, for each contribution, a total of four di↵erent fits, which di↵er on whether for each regularization we perform a
linear or a constant fit in a2 (i.e. we selectively set Dtm

I (�) and/or DOS
I (�) to zero). In order to combine the results

obtained in the di↵erent continuum fits, and provide our final determination of R
(⌧,I)
ud (�), we make use of the Bayesian

model average (BMA) procedure developed in Ref. [31]: starting from the values {xk}k=1,...,N obtained by fitting the
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FIG. 2: Stability-analysis plot for the three di↵erent contributions R
(⌧,TV )
ud (�) (top figure), R

(⌧,TA)
ud (�) (middle figure), and

R
(⌧,L)
ud (�) (bottom figure). The data refer to the results obtained on the B64 ensemble for � = 0.02, using the “OS” regu-

larization. In each figure, the di↵erent colors correspond to di↵erent values of the algorithmic parameters ↵ and rmax. The
vertical dashed lines correspond, from the right to the left, to the position of the values of �★ and �★★ (see Eq. (38) and the
text around it) for the case ↵ = 4 and rmax = 4 (data points in red).

using ↵ = 4 and rmax = 4. As the figure shows, for all contributions and regularizations, the di↵erence between the
results on the two volumes is reasurringly small. However, in order to be conservative, we associate to the results
obtained on the B64, C80 and D96 ensembles an additional systematic uncertainty, due to FSEs, given by

⌃FSE
I (�) = max

reg={tm,OS}
�
��
�
��
�

�reg
I (�) erf

�

�

1
√

2��reg
I
(�)
�

�

�
��
�
��
�

, (43)

where we have defined

�reg
I (�) = �R

(⌧,I),reg
ud (�,B64) −R

(⌧,I),reg
ud (�,B96)� , (44)
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FIG. 6: �−dependence of the continuum extrapolated values of R
(⌧,L)
ud (�), R

(⌧,TA)
ud (�), R

(⌧,TV )
ud (�), and R

(⌧)
ud (�), as obtained

after applying the BMA procedure of Eqs. (46)-(47). We show the results corresponding to di↵erent values of the algorithmic
parameters ↵ and rmax, which have been slightly shifted horizontally for better visibility. In the top-left panel, the blue band
corresponds to the pion-pole prediction of Eq. (49). Finally, the gray bands represent the result of the � � 0 extrapolation
using the Ansatz in Eq. (50).

Finally, let us now discuss the issue of the � � 0 extrapolation. Under the assumption that the form factors ⇢T and ⇢L

are regular at the end-point of the phase-space, i.e. for E =m⌧ , we show in Appendix B that the corrections to the
� � 0 limit are even functions of �, starting at O��4

�, i.e.

R
(⌧,I)
ud (�) −R

(⌧,I)
ud = O(�4

) . (48)

The assumption of regularity is expected to hold true in the infinite-volume limit, where the form factors ⇢I should
be smooth functions of the energy around E =m⌧ . The result of Eq. (48) is important since it allows to carry out
a controlled extrapolation to vanishing �. In addition, since the leading order corrections are of order O(�4

), one

expects a rather fast convergence of R
(⌧)
ud (�) towards R

(⌧)
ud . In Fig. 6, we show as a function of the smearing parameter

� our results for R
(⌧,I)
ud (�) after applying the BMA procedure of Eqs. (46)-(47). As it is clear from the figure, the

results are remarkably stable under modification of the algorithmic parameters ↵ and rmax. Moreover, for � < 0.04, no
dependence on � can be appreciated within errors, a remarkable finding that allows us to take the � � 0 limit with

confidence. For the longitudinal contribution R
(⌧,L)
ud (�) the dependence on � is practically absent over all range of �

explored. This behaviour is somehow expected, since, as highlighted in the figure, ⇢L(E
2
) turns out to be dominated

by the pion-pole contribution, which is given by

⇢L(E
2
)�
⇡−pole

= ⇡�(E −m⇡)
f2
⇡

m⇡
�⇒ R

(⌧,L)
ud �

⇡−pole
= 12⇡2SEW �Vud�

2 f2
⇡

m2
⌧

�1 −
m2

⇡

m2
⌧

�

2

� 0.643 (2)�Vud�
2 , (49)

and is thus less sensitive to the smearing, which mostly a↵ects the behaviour of the kernel functions around E �m⌧ ,
where the spectral function ⇢L(E

2
) is thus presumably small.

In light of the asymptotic-expansion formula of Eq. (48), we have carried out the � � 0 extrapolation employing the
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FIG. 7: Comparison between the lattice results obtained in this work and the experimental measurements by the ALEPH [33]

and OPAL [34] Collaboration. We show, from the left to the right, the vector contribution R
(⌧,V )
ud , the axial contribution

R
(⌧,A)
ud , and the total R

(⌧)
ud . In the rightmost panel, the data point in magenta corresponds to the HFLAV average [2] of the

experimental results. For this comparison, we divided the experimental results for R
(⌧,V )
ud ,R

(⌧,A)
ud and R

(⌧)
ud by �Vud�2 using the

value [1] �Vud� = 0.97373 (31).
L TA TV T A tot

This work 0.645 (13) 1.094 (27) 1.903 (12) 2.996 (33) 1.746 (22) 3.650 (28)
TABLE III: The main results obtained in this work. We give, in order from left to right, our predictions for R

(⌧,W )
ud ��Vud�2

with W = L,TA,TV ,T,A. The value in the last column corresponds to the total R
(⌧)
ud ��Vud�2.

following linear Ansatz in �4

R
(⌧,I)
ud (�) = RI +AI�

4 , (50)

where RI and AI are free fit parameters. The extrapolation has been performed using our preferred analysis branch, i.e.
the one with ↵ = 4 and rmax = 4, which leads to slightly smaller errors. We found that for all contributions the data
up to � = 0.14 are well described by the fit Ansatz, and stable within errors under removal of few data points at the
largest �-values as well as under variation of the fit Ansatz by inclusion of a �6 term. The result of the extrapolations,
which basically coincide with the results obtained at the smallest value of � we simulated (i.e. � = 0.004), are indicated
by the gray bands in Fig. (6).

Our main results are summarized in Tab. III, where we provide also the axial contribution R
(⌧,A)
ud given by

R
(⌧,A)
ud ≡ R

(⌧,TA)
ud +R

(⌧,L)
ud , (51)

while, as already mentioned, the vector contribution R
(⌧,V )
ud coincides, in the limit of degenerate up and down quarks

in which we work, with R
(⌧,TV )
ud . The overall accuracy that we obtained for the di↵erent contributions is very good,

typically of order O(1%) or smaller, and motivates us to undertake the task of computing the leading isospin breaking
corrections for this quantity, which, given that ↵em � (md −mu)�⇤QCD � O(1%), are expected to be of the same order
of magnitude as our present total (statistical and systematic) uncertainty.

In Fig. 7 we compare our lattice results, with the experimental data from the ALEPH [33] and OPAL [34] collaborations.

As the figure shows, we find for R
(⌧)
ud ��Vud�

2 a good agreement between our results and the experimental measurements.
For the vector and axial contributions, we observe some di↵erences with respect to the experimental data, which are
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FIG. 1. Examples of mock spectral functions reconstructed via our neural network approach for the cases of one, two and three
Breit-Wigner peaks. The chosen functions mirror the desired locality of suggested reconstructions around the original function
(red line). Additive, Gaussian noise of width 10�3 is added to the discretised analytic form of the associated propagator of
the same original spectral function multiple times. The shaded area depicts for each frequency ! the distribution of resulting
outcomes, while the dashed green line corresponds to the mean. The results are obtained from the FC parameter network
optimised with the parameter loss. The network is trained on the largest defined parameter space which corresponds to the
volume Vol O. The uncertainty for reconstructions decreases for smaller volumes as illustrated in Figure 4. A detailed discussion
on the properties and problems of a neural network based reconstruction is given in Section IV A.

encountered in many other fields, such as medical imag-
ing or the calibration of option pricing methods. Typical
errors on the input data G(pi) are on the order of 10�2

to 10�5 when the propagator at zero momentum is of the
order of unity.

To appreciate the problems arising in such a recon-
struction more clearly, let us assume we have a sugges-
tion for the spectral function ⇢sug and its corresponding
propagator Gsug. The di↵erence to the measured data is
encoded in

kG(p)�Gsug(p)k =
����
Z 1

0

d!

⇡

!

!2 + p2

h
⇢(!) � ⇢sug(!)

i���� , (3)

with a suitable norm k.k. Evidently, even if this expres-
sion vanishes point-wise, i.e. kG(pi) � Gsug(pi)k = 0 for
all pi, the spectral function is not uniquely fixed. Experi-
ence has shown that with typical numerical errors on the
input data, qualitatively very di↵erent spectral functions
can lead to in this sense equivalent propagators. This
situation can often be improved on by taking more prior
knowledge into account, c.f. the discussion in [27]. This
includes properties such as:

1. Normalisation and positivity of spectral functions
of asymptotic states. For gauge theories, this may
reduce to just the normalisation to zero, expressed
in terms of the Oehme-Zimmermann superconver-
gence [28, 29].

2. Asymptotic behaviour of the spectral function at
low and high frequencies.

3. The absence of clearly unphysical features, such as
drastic oscillations in the spectral function and the
propagator.

Additionally, the parametrisation of the spectral func-
tion in terms of frequency bins is just one particular ba-
sis. In order to make reconstructions more feasible, other
choices, and in particular physically motivated ones, may
be beneficial, c.f. again the discussion in [27]. In this
work, we consider a basis formulated in terms of physical
resonances, i.e. Breit-Wigner peaks.

B. Existing methods

The inverse problem as defined in (1) has an exact so-
lution in the case of exactly known, discrete correlator
data [30]. However, as soon as noisy inputs are con-
sidered, this approach turns out to be impractical [31].
Therefore, the most common strategy to treat this prob-
lem is via Bayesian inference. This approach is based
on Bayes’ theorem, which states that the posterior prob-
ability is essentially given by two terms, the likelihood
function and prior probability:

P (⇢|D, I) / P (D|⇢, I) P (⇢|I) . (4)

It explicitly includes additionally available prior infor-
mation on the spectral function in order to regularise the
inversion task. The likelihood P (D|⇢) encodes the prob-
ability for the input data D to have arisen from the test
spectral function ⇢, while P (⇢) quantifies how well this
test function agrees with the available prior information.
The two probabilities fully specify the posterior distri-
bution in principle, however they may be known only
implicitly. In order to gain access to the full distribu-
tion, one may sample from the posterior, e.g. through
a Markov Chain Monte Carlo process in the parameter
space of the spectral function. However, in practice one
is often content with the maximum a posteriori (MAP)
solution. Given a uniform prior, the Maximum Likeli-
hood Estimate (MLE) corresponds to an estimate of the
MAP.
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FIG. 2. Sketch of our strategy for reconstructing (a) the pa-
rameters using the PaNet and (b) the discretised data points
using the PoNet (and by extension also the PoNetVar). De-
tails on the architectures are given in Appendix C.

propagator data G(p). The output for the first type is
an estimate of the parameters of the associated ⇢ in the
chosen basis, which we denote as parameter net (PaNet).
For the second type, the network is trained directly on
the discretised representation of the spectral function.
This network will be referred to as point net (PoNet).
A consideration of a variable number of Breit-Wigners is
feasible per construction by the point-like representation
of the spectral function within the output layer. This
kind of network will in the following be abbreviated by
PoNetVar. See Figure 2 for a schematic illustration of our
strategy. Note that in all cases a basis for the spectral
function is provided either explicitly through the struc-
ture of the network or implicitly through the choice of
the training data. If not stated otherwise, the numerical
results presented in the following always correspond to
results from the PaNet.

We compare the performance of fully-connected (FC)
and convolutional (Conv) layers as well as the impact of
their depth and width. In general, choosing the numbers
of layers and neurons is a trade-o↵ between the expressive
power of the network, the available memory and the issue
of overfitting. The latter strongly depends on the num-
ber of available training samples w.r.t. the expressivity.
For fully parametrised spectral functions, new samples
can be generated very e�ciently for each training epoch,
which implies an, in principle, infinite supply of data.
Therefore, in this case, the risk of overfitting is practi-
cally non-existent. The specific dimensions and hyperpa-
rameters used for this work are provided in Appendix C.
Numerical results can be found in Section IV.

B. Training strategy

The neural network is trained with appropriately la-
belled input data in a supervised manner. This approach
allows to implicitly impose a prior distribution in the
Bayesian sense. The challenge lies in constructing a train-
ing dataset that is exhaustive enough to contain the rel-
evant structures that may constitute the actual spectral

functions in practical applications.
From our past experience with hadronic spectral func-

tions in lattice QCD and the functional renormalisa-
tion group, the most relevant structures are peaks of
the Breit-Wigner type, as well as thresholds. The for-
mer present a challenge from the point of view of inverse
problems, as they contain significant tail contributions,
contrary e.g. to Gaussian peaks, which approach zero ex-
ponentially fast. Thresholds on the other hand set in at
finite frequencies, often involving a non-analytic kink be-
havior. In this work, we only consider Breit-Wigner type
structures as a first step for the application of neural
networks to this family of problems.

Mock spectral functions are constructed using a su-
perposed collection of Breit-Wigner peaks based on a
parametrisation obtained directly from one-loop pertur-
bative quantum field theory. Each individual Breit-
Wigner is given by

⇢(BW )(!) =
4A�!

(M2 + �2 � !2)2 + 4�2!2
. (7)

Here, M denotes the mass of the corresponding state,
� its width and A amounts to a positive normalisation
constant.

Spectral functions for the training and test set are con-
structed from a combination of at most NBW = 3 di↵er-
ent Breit-Wigner peaks. Depending on which type of
network is considered, the Euclidean propagator is ob-
tained either by inserting the discretised spectral func-
tion into (2), or by a computation of the propagator’s
analytic representation from the given parameters. The
propagators are salted both for the training and test set
with additive, Gaussian noise

Gnoisy
i = Gi + ✏ . (8)

This is a generic choice which allows to quantify the per-
formance of our method at di↵erent noise levels.

The advantage of neural networks to have direct access
to di↵erent representations of a spectral function implies
a free choice of objective functions in the solution space.
We consider three simple loss functions and combinations
thereof. The (pure) propagator loss LG(⇢sug) defined in
(5) represents the most straightforward approach. This
objective function is accessible also in already existing
frameworks, such as Bayesian Reconstruction (BR) or
Hamiltonian Monte Carlo (HMC) methods, in particular
the GrHMC framework (referring to the retarded prop-
agator Gr) developed in [27]. It is implemented in this
work to facilitate a quantitative comparison. In contrast,
the loss functions that follow are only accessible in the
neural network based reconstruction framework. This
unique property is owed to the possibility that a neural
network can be trained in advance on a dataset of known
input and output pairs. As pointed out in Section IIC, a
loss function can e.g. be defined directly on a discretised
representation of the spectral function ⇢. This approach
is implemented through L⇢(⇢sug), see (6). The optimisa-
tion of the parameters ✓ = {Ai, Mi,�i | 0  i < NBW}
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the importance of these questions can hadrdly be underestimated

• under the working assumption that a sufficiently large neural network can perform any task, limiting either the
size of the network or the information to which it is exposed during the training process means limiting its ability to
solve the problem in full generality

• addressing the second question makes the difference between providing a possibly efficient but qualitative solution to
the problem and providing a scientific numerical tool to be used in order to derive theoretical predictions for
phenomenological analyses
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parametrizing the space of possible unsmeared spectral densities

Nb = 4
Nρ = 12

Nb = 6
Nρ = ∞

Nb = ∞
Nρ = 30

Nb = ∞
Nρ = ∞

1



• we have chosen Chebyshev polynomials as basis
functions
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building the training sets

• we wanted to analyze a lattice correlator already used in ETMC Phys.Rev.Lett. 130 (2023) to extract the R-ratio
with the HLT method

• therefore, also in the case of mock data we measured energies in GeV and set

C(t) =

∫ ∞

E0

dω
ω2

12π2

[
e−tω + e−(T−t)ω

]
ρ(ω) , T = 64a

ρ̂σ(E) =

∫ ∞

E0

dωKσ(E,ω)ρ(ω) ,

Kσ(E,ω) =
1√
2πσ

e
− (E−ω)2

2σ2 , σ = {0.44, 0.63} GeV



the ensemble of machines

• the answer of a machine with finite Nn neurons, trained over a
finite set Tσ(Nb, Nρ) cannot be exact

• to quantify the network error we therefore introduced Nr replica
machines at fixed N = (Nn, Nb, Nρ)



training the ensemble of machines
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quoting predictions
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let’s now repeat the previous experiment 2000 times, with
random Nb

pσ(E) =
ρ̂predσ (E)− ρ̂trueσ (E)
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ID L3 ⇥ T a fm aL fm m⇡ GeV
B64 643 · 128 0.07957(13) 5.09 0.1352(2)

TABLE I. ETMC gauge ensemble used in this work. See
Ref. [35] for more details).

For this reason it might be numerically convenient to
choose NT < T/a and discard the correlator at large
times where the noise-to-signal ratio is bigger than one.
According to our experience with the HLT method, that
inherits the original Backus-Gilbert regularization mech-
anism, it is numerically inconvenient to discard part
of the information available on the correlator provided
that the information contained in the noise is used to
conveniently regularize the numerical problem. Also in
this new method, as we are going to explain in subsec-
tion IV B, we use the information contained in the noise
of the lattice correlator during the training process and
this, as shown in Appendix B, allows us to convenienlty
use all the available information on the lattice correlator,
i.e. to set NT = T/a, in order to extract the smeared
spectral density. Similar results have been found also in
Ref. [23].

We treat �, the width of the smearing Gaussian, as a
fixed parameter by including in the corresponding train-
ing sets only spectral functions that are smeared with the
chosen value of �. This is a rather demanding numerical
strategy because in order to change � the neural net-
works have to be trained anew, by replacing the smeared
spectral densities in the training sets with those corre-
sponding to the new value of �. Architectures that give
the possibility to take into account a variable input pa-
rameter, and a corresponding variable output at fixed in-
put vector, have been extensively studied in the machine
learning literature and we leave a numerical investiga-
tion of this option to future work on the subject. In this
work we considered two di↵erent values, � = 0.44 GeV
and � = 0.63 GeV, that correspond respectively to the
smallest and largest values used in Ref. [35].

B. Architectures

By reading the discussion on the data layout presented
in the previous subsection from the machine-learning
point of view, we are in fact implementing neural net-
works to solve a RNT 7! RNE regression problem with
NT = 64 and NE = 47 which, from now on, fix the
dimension of the input and output layers of the neural
networks.

There are no general rules to prefer a given network
architecture among the di↵erent possibilities that have
been considered within the machine-learning literature
and it is common practice to make the choice by taking
into account the details of the problem at hand. For our
analysis we designed feed-forward convolutional neural

Type Maps Size Kernel size Stride Activation
Input 64
Conv1D 2 32x2 3 2 LeakyReLu
Conv1D 4 16x4 3 2 LeakyReLu
Conv1D 8 8x8 3 2 LeakyReLu
Flatten 384
Fully conn. 256 LeakyReLu
Fully conn. 256 LeakyReLu
Output 47
Parameters 94651

TABLE II. arcS : the smallest neural network architecture
used in this work. The architecture is of the type feedforward
and the structure can be read from top to bottom of the table.
It consist of three 1D convolutional layers with an increasing
number of maps followed by two fully connected layers. The
two blocks are intermediated by one flatten layer. The column
denoted by “Size” reports the shape of the signal produced
by the corresponding layer. The stride of the filters is set to
2 in such a way that the dimension of the signal is halved at
1D convolutional layer thus favouring the neural network to
learn a more abstract representation of the input data. As ac-
tivation functions we use the LeakyReLu with negative slope
coe�cient set to �0.2. The neurons with activation functions
are also provided with biases. The output is devoid of acti-
vation function in order not to limit the output range. The
bottom line reports the total number of trainable parameters.

network architectures, based on the LeNet architecture
introduced in Ref. [36], and we leave to further work on
the subject a comparative study of the performances of
di↵erent architectures.

We do instead study in details the dependence of the
output of the neural networks upon their size Nn and,
to this end, we implemented three architectures that
we called arcS, arcM and arcL. These architectures, de-
scribed in full details in TABLEs II, III and IV, di↵er only
for the number of maps in the convolutional layers. The
number of maps are chosen so that the number of param-
eters of arcS:arcM:arcL are approximately in the propor-
tion 1 : 2 : 3. For the implementation and the training
we employed both Keras [37] and TensorFlow [38].

Type Maps Size Kernel size Stride Activation
Input 64
Conv1D 12 32x12 3 2 LeakyReLu
Conv1D 24 16x24 3 2 LeakyReLu
Conv1D 48 8x48 3 2 LeakyReLu
Flatten 384
Fully conn. 256 LeakyReLu
Fully conn. 256 LeakyReLu
Output 47
Parameters 180871

TABLE III. arcM : the medium-size architecture used in this
work. See TABLE II for the description.

let’s now look at true lattice data, the connected
strange-strange contribution to the R-ratio, and at
the comparison with the HLT method
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it is now possible to extract smeared spectral densities from lattice correlators

these can be used to compute (smeared) inclusive hadronic decay rates from
first-principles

getting unsmeared spectral densities, with a precision relevant for phenomenology, is
much more challenging, but not impossible

the next step are exclusive hadronic decays. . .



backup slides



so, why another method?



so, why another method?

well, why not. . .
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linear algorithms such as the
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• what about the dependence of
the results upon the training
set?
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FIG. 1. Examples of mock spectral functions reconstructed via our neural network approach for the cases of one, two and three
Breit-Wigner peaks. The chosen functions mirror the desired locality of suggested reconstructions around the original function
(red line). Additive, Gaussian noise of width 10�3 is added to the discretised analytic form of the associated propagator of
the same original spectral function multiple times. The shaded area depicts for each frequency ! the distribution of resulting
outcomes, while the dashed green line corresponds to the mean. The results are obtained from the FC parameter network
optimised with the parameter loss. The network is trained on the largest defined parameter space which corresponds to the
volume Vol O. The uncertainty for reconstructions decreases for smaller volumes as illustrated in Figure 4. A detailed discussion
on the properties and problems of a neural network based reconstruction is given in Section IV A.

encountered in many other fields, such as medical imag-
ing or the calibration of option pricing methods. Typical
errors on the input data G(pi) are on the order of 10�2

to 10�5 when the propagator at zero momentum is of the
order of unity.

To appreciate the problems arising in such a recon-
struction more clearly, let us assume we have a sugges-
tion for the spectral function ⇢sug and its corresponding
propagator Gsug. The di↵erence to the measured data is
encoded in

kG(p)�Gsug(p)k =
����
Z 1

0

d!

⇡

!

!2 + p2

h
⇢(!) � ⇢sug(!)

i���� , (3)

with a suitable norm k.k. Evidently, even if this expres-
sion vanishes point-wise, i.e. kG(pi) � Gsug(pi)k = 0 for
all pi, the spectral function is not uniquely fixed. Experi-
ence has shown that with typical numerical errors on the
input data, qualitatively very di↵erent spectral functions
can lead to in this sense equivalent propagators. This
situation can often be improved on by taking more prior
knowledge into account, c.f. the discussion in [27]. This
includes properties such as:

1. Normalisation and positivity of spectral functions
of asymptotic states. For gauge theories, this may
reduce to just the normalisation to zero, expressed
in terms of the Oehme-Zimmermann superconver-
gence [28, 29].

2. Asymptotic behaviour of the spectral function at
low and high frequencies.

3. The absence of clearly unphysical features, such as
drastic oscillations in the spectral function and the
propagator.

Additionally, the parametrisation of the spectral func-
tion in terms of frequency bins is just one particular ba-
sis. In order to make reconstructions more feasible, other
choices, and in particular physically motivated ones, may
be beneficial, c.f. again the discussion in [27]. In this
work, we consider a basis formulated in terms of physical
resonances, i.e. Breit-Wigner peaks.

B. Existing methods

The inverse problem as defined in (1) has an exact so-
lution in the case of exactly known, discrete correlator
data [30]. However, as soon as noisy inputs are con-
sidered, this approach turns out to be impractical [31].
Therefore, the most common strategy to treat this prob-
lem is via Bayesian inference. This approach is based
on Bayes’ theorem, which states that the posterior prob-
ability is essentially given by two terms, the likelihood
function and prior probability:

P (⇢|D, I) / P (D|⇢, I) P (⇢|I) . (4)

It explicitly includes additionally available prior infor-
mation on the spectral function in order to regularise the
inversion task. The likelihood P (D|⇢) encodes the prob-
ability for the input data D to have arisen from the test
spectral function ⇢, while P (⇢) quantifies how well this
test function agrees with the available prior information.
The two probabilities fully specify the posterior distri-
bution in principle, however they may be known only
implicitly. In order to gain access to the full distribu-
tion, one may sample from the posterior, e.g. through
a Markov Chain Monte Carlo process in the parameter
space of the spectral function. However, in practice one
is often content with the maximum a posteriori (MAP)
solution. Given a uniform prior, the Maximum Likeli-
hood Estimate (MLE) corresponds to an estimate of the
MAP.
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input data
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could perform better than
linear algorithms such as the
HLT method

• what about the dependence of
the results upon the training
set?
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FIG. 2. Sketch of our strategy for reconstructing (a) the pa-
rameters using the PaNet and (b) the discretised data points
using the PoNet (and by extension also the PoNetVar). De-
tails on the architectures are given in Appendix C.

propagator data G(p). The output for the first type is
an estimate of the parameters of the associated ⇢ in the
chosen basis, which we denote as parameter net (PaNet).
For the second type, the network is trained directly on
the discretised representation of the spectral function.
This network will be referred to as point net (PoNet).
A consideration of a variable number of Breit-Wigners is
feasible per construction by the point-like representation
of the spectral function within the output layer. This
kind of network will in the following be abbreviated by
PoNetVar. See Figure 2 for a schematic illustration of our
strategy. Note that in all cases a basis for the spectral
function is provided either explicitly through the struc-
ture of the network or implicitly through the choice of
the training data. If not stated otherwise, the numerical
results presented in the following always correspond to
results from the PaNet.

We compare the performance of fully-connected (FC)
and convolutional (Conv) layers as well as the impact of
their depth and width. In general, choosing the numbers
of layers and neurons is a trade-o↵ between the expressive
power of the network, the available memory and the issue
of overfitting. The latter strongly depends on the num-
ber of available training samples w.r.t. the expressivity.
For fully parametrised spectral functions, new samples
can be generated very e�ciently for each training epoch,
which implies an, in principle, infinite supply of data.
Therefore, in this case, the risk of overfitting is practi-
cally non-existent. The specific dimensions and hyperpa-
rameters used for this work are provided in Appendix C.
Numerical results can be found in Section IV.

B. Training strategy

The neural network is trained with appropriately la-
belled input data in a supervised manner. This approach
allows to implicitly impose a prior distribution in the
Bayesian sense. The challenge lies in constructing a train-
ing dataset that is exhaustive enough to contain the rel-
evant structures that may constitute the actual spectral

functions in practical applications.
From our past experience with hadronic spectral func-

tions in lattice QCD and the functional renormalisa-
tion group, the most relevant structures are peaks of
the Breit-Wigner type, as well as thresholds. The for-
mer present a challenge from the point of view of inverse
problems, as they contain significant tail contributions,
contrary e.g. to Gaussian peaks, which approach zero ex-
ponentially fast. Thresholds on the other hand set in at
finite frequencies, often involving a non-analytic kink be-
havior. In this work, we only consider Breit-Wigner type
structures as a first step for the application of neural
networks to this family of problems.

Mock spectral functions are constructed using a su-
perposed collection of Breit-Wigner peaks based on a
parametrisation obtained directly from one-loop pertur-
bative quantum field theory. Each individual Breit-
Wigner is given by

⇢(BW )(!) =
4A�!

(M2 + �2 � !2)2 + 4�2!2
. (7)

Here, M denotes the mass of the corresponding state,
� its width and A amounts to a positive normalisation
constant.

Spectral functions for the training and test set are con-
structed from a combination of at most NBW = 3 di↵er-
ent Breit-Wigner peaks. Depending on which type of
network is considered, the Euclidean propagator is ob-
tained either by inserting the discretised spectral func-
tion into (2), or by a computation of the propagator’s
analytic representation from the given parameters. The
propagators are salted both for the training and test set
with additive, Gaussian noise

Gnoisy
i = Gi + ✏ . (8)

This is a generic choice which allows to quantify the per-
formance of our method at di↵erent noise levels.

The advantage of neural networks to have direct access
to di↵erent representations of a spectral function implies
a free choice of objective functions in the solution space.
We consider three simple loss functions and combinations
thereof. The (pure) propagator loss LG(⇢sug) defined in
(5) represents the most straightforward approach. This
objective function is accessible also in already existing
frameworks, such as Bayesian Reconstruction (BR) or
Hamiltonian Monte Carlo (HMC) methods, in particular
the GrHMC framework (referring to the retarded prop-
agator Gr) developed in [27]. It is implemented in this
work to facilitate a quantitative comparison. In contrast,
the loss functions that follow are only accessible in the
neural network based reconstruction framework. This
unique property is owed to the possibility that a neural
network can be trained in advance on a dataset of known
input and output pairs. As pointed out in Section IIC, a
loss function can e.g. be defined directly on a discretised
representation of the spectral function ⇢. This approach
is implemented through L⇢(⇢sug), see (6). The optimisa-
tion of the parameters ✓ = {Ai, Mi,�i | 0  i < NBW}
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the importance of these questions can hadrdly be underestimated

• under the working assumption that a sufficiently large neural network can perform any task, limiting either the
size of the network or the information to which it is exposed during the training process means limiting its ability to
solve the problem in full generality

• addressing the second question makes the difference between providing a possibly efficient but qualitative solution to
the problem and providing a scientific numerical tool to be used in order to derive theoretical predictions for
phenomenological analyses
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• the introduction of a functional-basis to parametrize the correlators and the smeared spectral densities of the
training sets in a model independent way

• the introduction of the ensemble of machines, the broad audience mentioned in the title, to estimate the
systematic errors
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parametrizing the space of possible unsmeared spectral densities

Nb = 4
Nρ = 12

Nb = 6
Nρ = ∞

Nb = ∞
Nρ = 30

Nb = ∞
Nρ = ∞

1



• we have chosen Chebyshev polynomials as basis functions

ρ(E;Nb) = θ(E − E0)

Nb∑
n=0

cn [Tn (x(E))− Tn (x(E0))] , x(E) = 1− 2e−E

c0 = r0 ; cn =
rn

n1+ε
, n > 0 , rn ∈ [−1, 1] , E0 ∈ [0.2, 1.3] GeV
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ρ̂σ(E) =

∫ ∞

E0

dωGσ(E,ω)ρ(ω)

= ∆E
∞∑

n=0

Gσ(E,ωn)ρ(ωn) + Σσ,∆E(E)

=

∫ ∞

E0

dωGσ(E,ω)ρδ(ω) + Σσ,∆E(E)
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building the training sets

• we wanted to analyze a lattice correlator already used in ETMC Phys.Rev.Lett. 130 (2023) to extract the R-ratio
with the HLT method

• therefore, also in the case of mock data we measured energies in GeV and set

C(t) =

∫ ∞

E0

dω
ω2

12π2

[
e−tω + e−(T−t)ω

]
ρ(ω) , T = 64a

ρ̂σ(E) =

∫ ∞

E0

dωKσ(E,ω)ρ(ω) ,

Kσ(E,ω) =
1√
2πσ

e
− (E−ω)2

2σ2 , σ = {0.44, 0.63} GeV



building the training sets

• we taught to the networks to distinguish the physical information from the noise by injecting the noise of the lattice
correlator in our training sets as follows

ρi(E;Nb) 7→ (C, ρ̂σ)
i

G

[
Ci,

(
Ci(a)

Clatt(a)

)2

Σ̂latt

]
7→ Ci

noisy

(Cnoisy, ρ̂σ)
i ∈ Tσ(Nb, Nρ) , i = 1, · · · , Nρ



• we considered 3 architectures with sizes in the
proportion

NarcS
n : NarcM

n : NarcL
n = 1 : 2 : 3

7

ID L3 ⇥ T a fm aL fm m⇡ GeV
B64 643 · 128 0.07957(13) 5.09 0.1352(2)

TABLE I. ETMC gauge ensemble used in this work. See
Ref. [35] for more details).

For this reason it might be numerically convenient to
choose NT < T/a and discard the correlator at large
times where the noise-to-signal ratio is bigger than one.
According to our experience with the HLT method, that
inherits the original Backus-Gilbert regularization mech-
anism, it is numerically inconvenient to discard part
of the information available on the correlator provided
that the information contained in the noise is used to
conveniently regularize the numerical problem. Also in
this new method, as we are going to explain in subsec-
tion IV B, we use the information contained in the noise
of the lattice correlator during the training process and
this, as shown in Appendix B, allows us to convenienlty
use all the available information on the lattice correlator,
i.e. to set NT = T/a, in order to extract the smeared
spectral density. Similar results have been found also in
Ref. [23].

We treat �, the width of the smearing Gaussian, as a
fixed parameter by including in the corresponding train-
ing sets only spectral functions that are smeared with the
chosen value of �. This is a rather demanding numerical
strategy because in order to change � the neural net-
works have to be trained anew, by replacing the smeared
spectral densities in the training sets with those corre-
sponding to the new value of �. Architectures that give
the possibility to take into account a variable input pa-
rameter, and a corresponding variable output at fixed in-
put vector, have been extensively studied in the machine
learning literature and we leave a numerical investiga-
tion of this option to future work on the subject. In this
work we considered two di↵erent values, � = 0.44 GeV
and � = 0.63 GeV, that correspond respectively to the
smallest and largest values used in Ref. [35].

B. Architectures

By reading the discussion on the data layout presented
in the previous subsection from the machine-learning
point of view, we are in fact implementing neural net-
works to solve a RNT 7! RNE regression problem with
NT = 64 and NE = 47 which, from now on, fix the
dimension of the input and output layers of the neural
networks.

There are no general rules to prefer a given network
architecture among the di↵erent possibilities that have
been considered within the machine-learning literature
and it is common practice to make the choice by taking
into account the details of the problem at hand. For our
analysis we designed feed-forward convolutional neural

Type Maps Size Kernel size Stride Activation
Input 64
Conv1D 2 32x2 3 2 LeakyReLu
Conv1D 4 16x4 3 2 LeakyReLu
Conv1D 8 8x8 3 2 LeakyReLu
Flatten 384
Fully conn. 256 LeakyReLu
Fully conn. 256 LeakyReLu
Output 47
Parameters 94651

TABLE II. arcS : the smallest neural network architecture
used in this work. The architecture is of the type feedforward
and the structure can be read from top to bottom of the table.
It consist of three 1D convolutional layers with an increasing
number of maps followed by two fully connected layers. The
two blocks are intermediated by one flatten layer. The column
denoted by “Size” reports the shape of the signal produced
by the corresponding layer. The stride of the filters is set to
2 in such a way that the dimension of the signal is halved at
1D convolutional layer thus favouring the neural network to
learn a more abstract representation of the input data. As ac-
tivation functions we use the LeakyReLu with negative slope
coe�cient set to �0.2. The neurons with activation functions
are also provided with biases. The output is devoid of acti-
vation function in order not to limit the output range. The
bottom line reports the total number of trainable parameters.

network architectures, based on the LeNet architecture
introduced in Ref. [36], and we leave to further work on
the subject a comparative study of the performances of
di↵erent architectures.

We do instead study in details the dependence of the
output of the neural networks upon their size Nn and,
to this end, we implemented three architectures that
we called arcS, arcM and arcL. These architectures, de-
scribed in full details in TABLEs II, III and IV, di↵er only
for the number of maps in the convolutional layers. The
number of maps are chosen so that the number of param-
eters of arcS:arcM:arcL are approximately in the propor-
tion 1 : 2 : 3. For the implementation and the training
we employed both Keras [37] and TensorFlow [38].

Type Maps Size Kernel size Stride Activation
Input 64
Conv1D 12 32x12 3 2 LeakyReLu
Conv1D 24 16x24 3 2 LeakyReLu
Conv1D 48 8x48 3 2 LeakyReLu
Flatten 384
Fully conn. 256 LeakyReLu
Fully conn. 256 LeakyReLu
Output 47
Parameters 180871

TABLE III. arcM : the medium-size architecture used in this
work. See TABLE II for the description.



the ensemble of machines

• the answer of a machine with finite Nn neurons, trained over a
finite set Tσ(Nb, Nρ) cannot be exact

• to quantify the network error we therefore introduced Nr replica
machines at fixed N = (Nn, Nb, Nρ)



training the ensemble of machines
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quoting predictions
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let’s now consider a new ρ, again extracted on the Chebyshev basis but never seen during the trainings and this time with

Nb = 2×Nmax
b = 1024
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let’s now repeat the previous experiment 2000 times, with
random Nb

pσ(E) =
ρ̂predσ (E)− ρ̂trueσ (E)
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let’s now consider another 2000 random unsmeared spectral
densities mimicking what we can get on finite volumes

ρ(E) =

Npeaks∑
n=1

cnδ(E − En)

Npeaks = 5000 , E0 ∈ [0.3, 1.3] GeV

En ∈ [E0, 15] GeV , cn ∈ [−0.01, 0.01]
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let’s now consider another 2000 random unsmeared spectral
densities mimicking what we can get on finite volumes

ρ(E) =

Npeaks∑
n=1

cnδ(E − En)

Npeaks = 5000 , E0 ∈ [0.3, 1.3] GeV

En ∈ [E0, 15] GeV , cn ∈ [−0.01, 0.01]

we observe deviations less than 1:2:3 standard deviations
in about 80% : 95% : 99% of the cases!
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let’s now consider mock data
inspired by physics models
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ID L3 ⇥ T a fm aL fm m⇡ GeV
B64 643 · 128 0.07957(13) 5.09 0.1352(2)

TABLE I. ETMC gauge ensemble used in this work. See
Ref. [35] for more details).

For this reason it might be numerically convenient to
choose NT < T/a and discard the correlator at large
times where the noise-to-signal ratio is bigger than one.
According to our experience with the HLT method, that
inherits the original Backus-Gilbert regularization mech-
anism, it is numerically inconvenient to discard part
of the information available on the correlator provided
that the information contained in the noise is used to
conveniently regularize the numerical problem. Also in
this new method, as we are going to explain in subsec-
tion IV B, we use the information contained in the noise
of the lattice correlator during the training process and
this, as shown in Appendix B, allows us to convenienlty
use all the available information on the lattice correlator,
i.e. to set NT = T/a, in order to extract the smeared
spectral density. Similar results have been found also in
Ref. [23].

We treat �, the width of the smearing Gaussian, as a
fixed parameter by including in the corresponding train-
ing sets only spectral functions that are smeared with the
chosen value of �. This is a rather demanding numerical
strategy because in order to change � the neural net-
works have to be trained anew, by replacing the smeared
spectral densities in the training sets with those corre-
sponding to the new value of �. Architectures that give
the possibility to take into account a variable input pa-
rameter, and a corresponding variable output at fixed in-
put vector, have been extensively studied in the machine
learning literature and we leave a numerical investiga-
tion of this option to future work on the subject. In this
work we considered two di↵erent values, � = 0.44 GeV
and � = 0.63 GeV, that correspond respectively to the
smallest and largest values used in Ref. [35].

B. Architectures

By reading the discussion on the data layout presented
in the previous subsection from the machine-learning
point of view, we are in fact implementing neural net-
works to solve a RNT 7! RNE regression problem with
NT = 64 and NE = 47 which, from now on, fix the
dimension of the input and output layers of the neural
networks.

There are no general rules to prefer a given network
architecture among the di↵erent possibilities that have
been considered within the machine-learning literature
and it is common practice to make the choice by taking
into account the details of the problem at hand. For our
analysis we designed feed-forward convolutional neural

Type Maps Size Kernel size Stride Activation
Input 64
Conv1D 2 32x2 3 2 LeakyReLu
Conv1D 4 16x4 3 2 LeakyReLu
Conv1D 8 8x8 3 2 LeakyReLu
Flatten 384
Fully conn. 256 LeakyReLu
Fully conn. 256 LeakyReLu
Output 47
Parameters 94651

TABLE II. arcS : the smallest neural network architecture
used in this work. The architecture is of the type feedforward
and the structure can be read from top to bottom of the table.
It consist of three 1D convolutional layers with an increasing
number of maps followed by two fully connected layers. The
two blocks are intermediated by one flatten layer. The column
denoted by “Size” reports the shape of the signal produced
by the corresponding layer. The stride of the filters is set to
2 in such a way that the dimension of the signal is halved at
1D convolutional layer thus favouring the neural network to
learn a more abstract representation of the input data. As ac-
tivation functions we use the LeakyReLu with negative slope
coe�cient set to �0.2. The neurons with activation functions
are also provided with biases. The output is devoid of acti-
vation function in order not to limit the output range. The
bottom line reports the total number of trainable parameters.

network architectures, based on the LeNet architecture
introduced in Ref. [36], and we leave to further work on
the subject a comparative study of the performances of
di↵erent architectures.

We do instead study in details the dependence of the
output of the neural networks upon their size Nn and,
to this end, we implemented three architectures that
we called arcS, arcM and arcL. These architectures, de-
scribed in full details in TABLEs II, III and IV, di↵er only
for the number of maps in the convolutional layers. The
number of maps are chosen so that the number of param-
eters of arcS:arcM:arcL are approximately in the propor-
tion 1 : 2 : 3. For the implementation and the training
we employed both Keras [37] and TensorFlow [38].

Type Maps Size Kernel size Stride Activation
Input 64
Conv1D 12 32x12 3 2 LeakyReLu
Conv1D 24 16x24 3 2 LeakyReLu
Conv1D 48 8x48 3 2 LeakyReLu
Flatten 384
Fully conn. 256 LeakyReLu
Fully conn. 256 LeakyReLu
Output 47
Parameters 180871

TABLE III. arcM : the medium-size architecture used in this
work. See TABLE II for the description.

let’s now look at true lattice data, the connected
strange-strange contribution to the R-ratio, and at
the comparison with the HLT method

Clatt(t) = −1

3

3∑
i=1

∫
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what we have learned?



• supervised deep learning techniques can be used to
extract smeared hadronic spectral densities from lattice
correlators in a model-independent way

• the systematic errors can be reliably quantified and the
predictions can be used in phenomenological analyses

• admittedly, the procedure that we propose to do that
might end up to be numerically demanding and can
possibly be simplified, but there is no free-lunch in
physics!

• here we taught a lesson to a broad audience of learning
machines

• the subject of the lesson is just a particular topic. . .

• the idea of teaching systematically to a broad audience
of machines is much more general and can be used to
estimate reliably the systematic errors in many other
applications
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a major impact in the machine-learning performance is
played by the way the data are presented to the neural
network

we standardized input data at fixed training set Tσ(Nb, Nρ)
as follows

µ(t) =
1

Nρ

Nρ∑
i=1

Ci(t)

γ(t) =

√√√√∑Nρ

i=1 (Ci(t)− µ(t))2

Nρ

Cnoisy(t) 7→ C′
noisy(t) =

Cnoisy(t)− µ(t)

γ(t)
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2. For each Ggt(⌧) we add a Gaussian noise constructing the stochastic data G(⌧) to be fed to the “Encoder 2”
(cf. Fig. 2). Thus G(⌧) is sampled from a Gaussian distribution with its mean value Ggt and its variance having
the following form 7,

b(⌧) ⇥ Ggt(⌧). (26)

Here b(⌧) = �lat(⌧)/Glat(⌧) and the variance is chosen to mimic the noise level of the lattice QCD data, i.e.
b(⌧) becomes larger as |⌧ �N⌧/2| becomes smaller and the largest relative error is b(N⌧/2) = 1.5%. 8. Note the
values of the noise level b(N⌧/2) in the training data are the same as used in the mock data tests for consistency.

3. The feeding process in each training epoch described in procedures 1 and 2 is performed simultaneously with
one mini-batch containing 100 training samples.

4. For each value of N⌧ we repeat the training process described in procedures 1, 2 and 3.

Figure 4. ⇢i with i = 1, 2, 3, 4, 5 are shown as examples of spectral functions used in the training which are sampled randomly
according to Eq. ((24)) with parameters listed in Table II. The grey shadow area shows the full sampled range of ⇢train according
to Eq. (24) and Table II.

In our current study we set N!=10000, ⌧min=4, Ng=5, N̂g = 50 and Nz=50, and train the SVAE with two values
of N⌧ , i.e. 48 and 96.

For the tests of the neural network in SVAE we construct spectral functions consisting of following two di↵erent
kinds of physics motivated spectral functions. They are listed as follows:

1. One resonance peak combined with a continuum spectral function

⇢res+cont =⇣(!,Mres,�)⇢res(!,Cres, Mres,�)(1 � ⇣(!,Mres + �,�))

+ ⇣(!,Mres + �,�)⇢cont(Ccont, Mcont) ,
(27)

where ⇣(!,Mres,�) = 1/(1 + e
M2

res�!2

!� ) is a cut-o↵ function smoothing out the constructed spectral function,
and the resonance peak and the continuum part of the spectral function, ⇢res and ⇢cont, are expressed as follows

⇢res = Cres
!2

( !2

Mres�
� Mres

� )2 + 1
, (28)

⇢cont = Ccont
3!2

8⇡
✓(!2 � 4M2

cont) tanh
⇣ !

4T

⌘r
1 �

⇣2Mcont

!

⌘2 ⇣
2 +

⇣2Mcont

!

⌘2⌘
. (29)

7 Here we followed the strategy used in Ref. [63] and adopted a Gaussian noise to the correlator. We also tried a log-normal noise [70]
and the corresponding results are shown in Appendix B.

8 The dependence of the reconstruction on the noise level is given in Appendix A

the approach closest in spirit to the one that we propose is that of s.chen et al. arXiv:2110.13521
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Figure 6. Mock data test with input spectral function containing a resonance peak and a continuum part (cf. Eq. (27) with
N⌧ = 96. The black dashed line denotes the input spectral function. From left to right the width of the resonance peak in the
input spectral function, �, is increased with the peak location of the resonance peak, Mres, fixed in the each row, while from
bottom to top Mres is increased with � fixed in the each column. The red solid line and purple band represent the mean values
and uncertainties of spectral functions reconstructed from the SVAE, respectively. The black solid line and blue band denote
the mean values and uncertainties of spectral functions reconstructed from the MEM with the blue dotted line the default
model.

di↵erent combinations: either Gaussian noise or log-normal is used in the training or test process. We found that
results of spectral functions obtained in following cases have minor di↵erence compared to our current results with
Gaussian noise used in both training and tests. These cases are: 1) the log-normal noise is used in both the training
and tests; 2) a mismatch in the noise model: Gaussian noise is used in the training while log-normal noise is used in
the tests and vice versa and 3) the multivariate Gaussian noise, i.e. including correlations among di↵erent time slices,

the approach closest in spirit to the one that we propose is that of s.chen et al. arXiv:2110.13521


