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This talk is mainly based on the following publications:

1. 2001.03368 (PRD): Rate of photon production in the quark-gluon plasma
from lattice QCD,
Marco Cè, Tim Harris, HM, Aman Steinberg, Arianna Toniato.

2. 2205.02821 (PRD): Photon emissivity of the quark-gluon plasma:
A lattice QCD analysis of the transverse channel,
Marco Cè, Tim Harris, Ardit Krasniqi, HM, Csaba Török.

3. 2309.09884 (PRD): Probing the photon emissivity of the quark-gluon
plasma without an inverse problem in lattice QCD,
Marco Cè, Tim Harris, Ardit Krasniqi, HM, Csaba Török.

Brief advertisement for our recent preprint:

4. 2407.01657: Hot QCD matter around the chiral crossover:
A lattice study with O(a)-improved Wilson fermions,
Ardit Krasniqi, Marco Cè, Renwick Hudspith, HM.
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Motivation (I): heavy-ion collision phenomenology

I direct photons (those not produced via hadronic decays) encode
information about the environment in which they were created

I for 1GeV . pT . 2GeV: expect a dominant contribution from
(quasi-)thermal photons: quark-gluon plasma and hadronic phase

ALICE [2308.16704]

I Used measurement of e+e−

pairs with mee < 30 MeV:
fraction of direct/inclusive
dielectrons is the same as for
photons.
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Photon emissivity and thermal vector spectral functions

ρµν(K) =

∫
d4x eiK·x

1

Z

∑
n

e−En/T 〈n|[jµ(x), jν(0)]|n〉

I Rate of dilepton production per unit volume plasma: [McLerran, Toimela 1985]

dΓ`+`−(K) = α2 d4K
6π3K2

−ρµµ(K)

eβK0 − 1
(K2 ≡ ω2 − k2)

I Rate of photon production per unit volume plasma:

dΓγ(k) = α
d3k

4π2 k

−ρµµ(k,k)

eβk − 1
.

ω < k, K2 < 0 ω > k, K2 > 0 −→ ω
ω = 0 ω = k

photons dileptons
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Predictions for σ(ω = k) = −1
2ρ
µ
µ(k,k) in non-Abelian plasmas:
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QCD leading order αs = 0.25

strong-coupling N=4 SYM

Motivation (II)

intercept = T ·D,

D = diffusion
coefficient.

I σ(ω) vanishes in the vacuum;

I at ω 6= 0 it vanishes for thermal, non-interacting quarks;

I ideal probe of the medium!

Arnold, Moore Yaffe JHEP 11 (2001) 057 and JHEP 12 (2001) 009.

AdS/CFT: Caron-Huot et al. JHEP 12 (2006) 015.
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A one-parameter family of expressions for the photon emissivity

I at finite temperature, there are two independent,
O(3) invariant components: (k ≡ |k|, k̂i = ki/k)

ρL(ω, k) ≡ (k̂ik̂jρij − ρ00), ρT (ω, k) ≡ 1

2
(δij − k̂ik̂j)ρij .

I current conservation: ω2ρ00(ω, k) = kikjρij(ω, k) implies that
ρL vanishes at lightlike kinematics, K2 = 0.

I Introduce (λ ∈ R)

ρ(ω, k, λ) = 2ρT + λ ρL
λ=1
== −ρµµ .

I Photon rate can be written (∀λ)

dΓγ(k) = α
d3k

4π2 k

ρ(k, k, λ)

eβk − 1
.
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Choosing λ: weak and strong coupling spectral fcts

Spatial momentum k = πT : (see hep-th/0607237 and 1310.0164)

ρT
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Free quarks
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I ρT is positive-definite and free of the diffusion pole

I (ρT − ρL) vanishes in the vacuum, is strongly suppressed at large ω
and obeys a superconvergent sum-rule.

I At ω = k, the two channels should be equal:
non-trivial consistency check for lattice-based calculations!
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Lattice QCD and vector correlators

Imaginary-time path-integral representation of QFT (Matsubara formalism).

Imaginary-time vector correlators ({γµ, γν} = 2gµν = 2diag(1,−1,−1,−1)),

Gµν(x0,k) =

∫
d3x e−ik·x Tr

{e−βH
Z(β)

jµ(x) jν(0)
}
, jµ =

∑
f

Qf ψ̄fγ
µψf

Spectral representation (u is a real four-vector):  inverse problem

uµG
µνuν(x0,k)=

∫ ∞
0

dω

2π

(uµρ
µνuν)(ω,k)

sinh(βω/2)︸ ︷︷ ︸
≥0

cosh[ω(β/2− x0)].
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Parameters of the lattice calculations

I Nf = 2 flavours of dynamical O(a) improved Wilson fermions
with Wilson gauge action; ensembles generated with the openQCDv1.6
code.

I T ' 254 MeV, L = 4/T ' 3.1 fm; mπ(T = 0) ' 270 MeV.

I Isovector current correlator is computed.

label (6/g2
0 , κ) 1/(aT ) Nconf

MDUs
conf

τint[Q
2(t̄)]

F7 (5.3, 0.13638) 12 482 20 11.3(15)
O7 (5.5, 0.13671) 16 305 20 19(5)
W7 (5.685727, 0.136684) 20 1566 8 81(23)
X7 (5.827160, 0.136544) 24 511 10 490(230)

See 2001.03368 (ρT − ρL), and 2205.02821 (ρT ).
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Continuum extrapolation of the ρT − ρL Euclidean correlator
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Analysis of the (ρT − ρL) channel

‘Hydrodynamics’ prediction at small ω, k: with D the diffusion coefficient,

ρ(ω, k,−2)/ω ≈ 4χsDk
2

ω2 + (Dk2)2
ω, k � D−1.

From the operator-product expansion:

ρ(ω, k, λ = −2)
ω→∞∼ k2/ω4 :

∫ ∞
0

dω ω ρ(ω, k,−2) = 0.

 5-parameter ansatz:

ρ(ω, k,−2) =
A(1 +Bω2) tanh(ωβ/2)

[(ω − ω0)2 + b2][(ω + ω0)2 + b2][ω2 + a2]
.

Analysis strategy: always determine B so as to satisfy the sum rule; scan over
all other parameters to determine the χ2 landscape.

For an early Backus-Gilbert analysis, see

Harris, Steinberg, Brandt, Francis, HM 1710.07050.
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Final result of analysis of the (ρT − ρL) channel

Deff(k) ≡ ρ(ω = k, k, λ)

4χsk
, χs = β

∫
d3x〈V0(x)V0(0)〉.
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Cè et al. 2205.02821 (PRD).
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Comparison of NLO+LPM spectral function to T − L lattice data

I Continuum-extrapolated quenched data from Nt = 20, 24, 30.

I General behaviour reproduced, but differences are visible.

2403.11647 Ali, Bala, Francis, Jackson, Kaczmarek, Turnwald, Ueding, Wink
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The transverse channel

Cè et al. 2205.02821 (PRD).
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Taking the continuum limit of GT (τ, k)

ḠT (τ, k) = GT (τ, k)/(Tχs) χs/T
2
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Three different discretisations, joint continuum extrapolation.

Use treelevel improvement.
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Euclidean correlator: lattice vs. NLO prediction

I NLO prediction lies a few percent higher than the lattice data.

I (For this comparison we set χ
AdS/CFT
s =

N2
cT

2

8

.
= 9T2

8
.)
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(I) Backus-Gilbert spectral function

ρ̄(ω, k)

f(ω)
=

∫ ∞
0

dω′ ∆(ω, ω′)
ρ(ω′)

f(ω′)
=
∑
i

gi(ω)GT(τi).

Choice made here: f(ω) = ω2

tanh(βω/2)
in order to make ρ(ω′)

f(ω′) a ‘slowly varying

function’, since the BG method is exact if ρ(ω′)
f(ω′) is constant.
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(II) Fit ansätze for the spectral functions

ρ(ω) = ρfit(ω)(1−Θ(ω, ω0,∆)) + ρpert(ω)Θ(ω, ω0,∆)

with ω0 ≈ 2.5 GeV the matching frequency,

Θ(ω, ω0,∆) = (1 + tanh[(ω − ω0)/∆])/2

a smooth step function and ρpert(ω) from [Jackson, Laine 1910.09567].

A) Polynomial ansatz:

ρfit,1(ω)

T 2
=

Np−1∑
n=0

An

(
ω

ω0

)1+2n

,

B) Piecewise polynomial ansatz:

ρfit,2(ω)

T 2
=


A0

ω

ω0
+A1

(
ω

ω0

)3

, if ω ≤ k,

B0
ω

ω0
+B1

(
ω

ω0

)3

, if ω > k.
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Representative lattice-QCD results for the spectral functions

Piecewise polynomial ansatz Polynomial ansatz
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I Piecewise polynomial cannot ‘decide’ between having a min. or max. at
ω = k.

I Qualitatively, both the ‘AdS/CFT’ type and the ‘NLO’ type are
compatible with the lattice data.
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Final result for the photon emissivity
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lattice, transverse channel analysis

Deff ≡ σ(ω)
2χsk

I most fits give a larger photon emissivity than the weak-coupling
prediction, but overall the lattice result is still compatible with it.

I the AdS/CFT prediction is also consistent with the lattice data for
k & πT/2.

2205.02821 Török et al.
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Probing the photon emissivity without an inverse problem

Cè et al. 2309.09884 (PRD, Editor’s Suggestion).
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A dispersion relation for a Euclidean correlator at zero virtuality

I Let σ(ω) ≡ ρT (ω, |k| = ω) be the spectral function proportional to the
photon emissivity;

I let HE(ωn) ≡ GE(ωn, k = iωn) the momentum-space Euclidean
correlator with Matsubara frequency ωn = 2πTn
and imaginary spatial momentum k = iωn;

I once-subtracted dispersion relation: (σ(ω) ∼ ω1/2 at weak coupling)

HE(ωn) = −ω
2
n

π

∫ ∞
0

dω

ω

σ(ω)

ω2 + ω2
n

.

I these energy-moments of σ(ω) are directly accessible without involving an
inverse problem.

HM, 1807.00781 (EPJC).
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How different energy-moments probe σ(ω)

HE(ωn)−HE(ωr) =

∫ ∞
0

dω

π
ω
[ 1

ω2 + ω2
n

− 1

ω2 + ω2
r

]
σ(ω).
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strong-coupling N=4 SYM

I HE(ω1) receives a sizeable contribution from the soft photons;

I HE(ω2)−HE(ω1) probes the emission of hard photons.
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Formulation on the lattice

Our standard representation: [Cè, . . . HM, 2112.00450]

HE(ωn) = −
∫ β

0

dx0

∫
d3x (eiωnx0 − eiωnx2) eωnx3

〈
j1(x)j1(0)

〉
.

The eiωnx2 term subtracts a static contribution which vanishes in the continuum
(for the same reason the polarisation tensor component Π11(q) vanishes at
lightlike virtuality for q1 = 0).

I This representation has the advantage that HE(ωn) vanishes exactly in
the vacuum even at finite lattice spacing;

I as a consequence, cutoff effects at finite temperature are strongly reduced.

NB. similar task to computing hadronic vacuum polarisation in muon (g − 2)!
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Computing HE(ω1)
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I Nf = 2, T = 254 MeV, Nt = 16, 20, 24: Monte-Carlo chains were extended.
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Result for HE(ω1): comparison to strong/weak-coupling predictions

Integrand to obtain HE(ω1)
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Comparison to theory predictions

N=4,SYM

free

AMY[0.2,50]

lattice

0.47 0.67 0.87

∼0.33

-HE(ω1)/χs
free

0.56 0.76 0.96

-HE(ω1)/χs

I −HE(ω1) turns out to be smaller than the value predicted from the AMY
spectral function σ(ω); is it due to its peak around ω = 0?

I for HE(ω2): better control of the large x3 regime needed.

Cè et al, 2309.09884 (PRD).

Harvey Meyer Photon emissivity of QCD matter



Conclusion

I Photon rate: first lattice calculation in dynamical QCD with continuum
limit.

I The transverse and the transverse-minus-longitudinal channels show small
but statistically significant deviations from the state-of-the-art
weak-coupling calculations at T = 254 MeV;

I Treatment of the inverse problem with Backus-Gilbert method or with an
explicit fit ansatz for σ(ω) leads to consistent results for the photon
emissivity for πT . ω . 2πT .

I Those results are still compatible with weak-coupling prediction and
AdS/CFT.

I Dispersion relation at fixed photon virtuality q2 = 0: HE(ω1) is lower than
the value derived from the weak-coupling spectral function σ(ω);
the perturbative uncertainty is now the limiting factor.
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Thermal modification of vector spectral function [Krasniqi et al. 2407.01657]

I Quasi physical-mass Nf = 2 + 1 simulations, mπ(T = 0) = 130 MeV;
parameters of CLS ensemble E250, L = 6.1 fm, a ' 0.064 fm.

I 3 ensembles: Nt = 24, 20, 16 corresponding to temperatures 128, 154 and
192 MeV.

I among other observables, we studied (at p = 0; isovector vector and
axial-vector channels)

G(x0,p, T )−
∑
n∈Z

G(|x0 + nβ|,p, 0)

=

∫ ∞
0

dω
(
ρ(ω,p, T )− ρ(ω,p, 0)︸ ︷︷ ︸

≡∆ρ(ω,p,T )

)cosh[ω(β
2
− x0)]

sinh[β
2
ω]

.

Used Backus-Gilbert method with rescaling function f(ω) = ω to constrain
∆ρ(ω,p, T ).

NB. ∆ρ(ω,p, T )
ω→∞∼ 1/ω2.
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Reminder: vacuum spectral functions from τ decays

NB. ρV (ω,0, T ) = ω2

4π2 v1(ω2)

Fig. from Davier, Höcker, Zhang, doi:10.1103/RevModPhys.78.1043
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Results of BG analysis
Vector Axial-vector
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Spectral sum rules

∫ ∞
0

dω

ω
∆ρV (ω,0, T ) = 0. [1107.4388]

I generically, a transport peak appears in the spectral function at ω = 0,
and therefore the contribution of the ρ meson must be reduced in order to
satisfy the sum rule [Brandt, Francis, Jäger, HM 1512.07249]

∫ ∞
0

dω

ω
∆ρA(ω,0, T ) = GA(ωn = 0,p = 0, T )−GA(0,0, 0)

= f2
π(T = 0)− f2

π(T ) + O(m2
q)

I fπ(T ), the decay constant of the ‘static screening pion’, falls off
monotonously with increasing temperature;
it is O(mq) in the chirally restored phase.

I Thus the RHS
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Ensembles used for computing HE(ω1) and HE(ω2)

label 6/g2
0 κ Lt/a Nconf

MDUs
conf

O7 5.5 0.13671 16 1500 20
W7 5.685727 0.136684 20 1600 8
X7 5.827160 0.136544 24 2012 10

2309.09884
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Motivation: some heavy-ion collision phenomenology

I direct photons (those not produced via hadronic decays) encode
information about the environment in which they were created

I for 1GeV . pT . 2GeV: expect a sizeable contribution from thermal
photons: quark-gluon plasma and hadronic phase

I RHIC,
√
sNN = 200 GeV:

I PHENIX measurement of pT < 3 GeV photons shows clear excess over
Ncoll-scaled pp measurement [PRL 104, 132301 (2010)]

I PHENIX: large photon anisotropy wrt reaction plane [PRL 109, 122302 (2012)]

I STAR: photon yield ∼ 3 times smaller than PHENIX: unresolved tension

I PHENIX: higher-statistics study [PRC 109, 044912 (2024)]

I LHC,
√
sNN = 2760 GeV: ALICE measured photon yield

[PLB 754, 235 (2016)].

I recently, ALICE measured dileptons at
√
sNN = 5020 GeV, in particular

determining direct photon yield [2308.16704]

Phenomenology: Gale et al. [2106.11216]. Review G. David [1907.08893].
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Lattice papers on the photon rate

I Karsch, Laermann, Petreczky, Stickan, Wetzorke 2002; S. Gupta 2004; Aarts,
Allton, Foley, Hands, Kim 2007: quenched calculations, k = 0.

I hep-lat/0610061 (LAT06): Aarts, Allton, Foley, Hands: quenched, k 6= 0

I 1012.4963 (PRD): Ding, Francis, Kaczmarek, Karsch, Laermann, Soeldner,
quenched calculation with continuum limit, k = 0.

I 1212.4200 (JHEP): Brandt, Francis, HM, Wittig: Nf = 2, Nt = 16, k = 0,
mπ = 270, T = 250MeV.

I 1307.6763 (PRL), 1412.6411 (JHEP): Aarts, Allton, Amato,Giudice, Hands,
Skullerud: Nf = 2 + 1, k = 0, anisotropic, fixed-scale temperature scan,
mπ = 384 MeV

I 1512.07249 (PRD): Brandt, Francis, Jäger, HM, Nf = 2, k = 0, Nt = 12→ 24,
mπ = 270, fixed-scale scan across the phase transition.

I 1604.07544 (PRD): Ghiglieri, Kaczmarek, Laine, F. Meyer: quenched calculation
with continuum limit, k 6= 0.

I 2001.03368 (PRD): Cè, Harris, HM, Steinberg, Toniato, Nf = 2 calculation with
continuum limit at T = 250MeV, k 6= 0; transv-minus-longitud. channel.

I 2205.02821 (PRD): idem, but transverse channel.

I 2309.09884 (PRD): Cè, Harris, Krasniqi, HM, Török, calculation of
energy-moments at zero virtuality.

I 2403.11647: Ali, . . . Francis, Kaczmarek et al.: analysis of transv-minus-longitud.
channel.
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Results for the effective diffusion coefficient Deff ≡ ρT (ω=k,k)
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I left panel: comparison with results of (T − L) channel analysis:
piecewise-polynomial ansatz with max. at ω = k is disfavoured for
k ≥ πT .

I right panel: forbidding a max. at the 1σ level, predictivity is much
stronger.

I polynomial ansatz favours values even larger than the N = 4 SYM
prediction from AdS/CFT (hep-th/0607237).
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Representation through non-static screening masses

G̃E(ωr, x3) = −2

∫ β

0

dx0 e
iωrx0

∫
dx1dx2 〈J1(x)J1(0)〉 =

∑
n

|A(r)
n |2e−E

(r)
n |x3|

⇒ HE(ωr)︸ ︷︷ ︸
=O(g2)

≡
∫ ∞
−∞

dx3 G̃E(ωr, x3) eωrx3 = 2ω2
r

∞∑
n=0

|An|2︸ ︷︷ ︸
=O(g4)

1

E
(r)
n (E

(r)
n

2 − ω2
r)︸ ︷︷ ︸

=O(g−2)

.

This helps explain the connection observed in [Brandt et al, 1404.2404] between
non-static screening masses and the LPM-resummation contributions to the
photon emission rate [Aurenche et al, hep-ph/0211036].
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Sketch of the (standard) derivation of the dispersion relation

GR(ω, k) = i(δil − kikl
k2

)
∫
d4x eiK·xθ(x0)

〈
[ji(x), jl(0)]

〉
. But

[jµ(x), jν(0)] = 0 for x2 < 0,

⇒ the retarded correlator HR(ω) ≡ GR(ω, k = ω) at lightlike momentum is
analytic for Im (ω) > 0. Similarly, the advanced correlator HA(ω) is analytic
for Im (ω) < 0.

Define the function H(ω) =

{
HR(ω) Im (ω) > 0
HA(ω) Im (ω) < 0

.

It is analytic everywhere, except for a discontinuity on the real axis:

H(ω + iε)−H(ω − iε) = HR(ω)−HA(ω) = iσ(ω),

Write a Cauchy contour-integral representation (using two half-circles) of H(ω)
just above the real axis, where it coincides with HR(ω):

HR(ω) = HR(ωr) +

∫ ∞
−∞

dω′

2π
σ(ω′)

[ 1

ω′ − ω − iε −
1

ω′ − ωr − iε

]
.

The dispersion relation for the Euclidean correlator follows from the
observation GE(ωn, k

2) = GR(iωn, k
2), n > 0.
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