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inverse problems

ubiquitous in physics, geosciences, engineering...

yI =

∫
dxCI(x) f(x)

... are known to be ill-defined problems

↪→ simple parametrization could lead to a biased result for f

examples in particle physics:

• PDFs from DIS/lattice: yI structure function data, f(x) PDFs

• spectral densities: yt Euclidean correlators, f(x) spectral function

multiple approaches: fits to fixed functional forms, NN, Backus-Gilbert
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bayesian approach

• f is promoted to be a stochastic process

• f(x) for x ∈ I is a set of stochastic variables

• for any given f , where fi = f(xi), we have a prior p(f)

• all a priori knowledge about f is encoded in p (more later)

• posterior distribution obtained from Bayes theorem

p̃(f) = p(f |y) =
p(y|f)p(f)
p(y)

• knowledge about the solution is encoded in the posterior, eg

central value : Ep̃[f ]

covariance : Covp̃[f , f
′]
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gaussian process

GPs are a specific kind of stochastic process

f ∼ GP (m, k) ,

where
m : I → R , k : I × I → R

for a GP, the vector of stochastic variables f

x = {xi; i = 1, . . . , N} , f = f(x) =

 f1
...
fN

 ∈ RN , fi = f(xi)

is distributed as a multidimensional Gaussian

f ∼ N (m,K) ,
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prior distribution

mean & covariance

m = m(x) , K = k(x,xT ) ,

E[fi] = mi = m(xi) ,

Cov[fi, fj ] = Kij = k(xi, xj) .

specific choices for this work: zero mean and Gibbs kernel

m(x) = 0

k(x, x′) = σ2

√
2l (x) l (y)

l2 (x) + l2 (y)
exp

[
− (x− y)2

l2 (x) + l2 (y)

]
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Gibbs kernel interpretation

we use in this work

l (x) = l0 × (x+ δ)

hyperparameters : θ = (σ, l0)

L Del Debbio Bayesian Inverse Problems CERN, July 2024 7 / 21



setting the problem

sampling f at points x = {xi; i = 1, . . . , N} and x∗ = {x∗i ; i = 1, . . . ,M}

f ∈ RN , f∗ ∈ RM ,

the prior probability distribution is

p(f , f∗|θ) =
1√

det (2πK)

× exp

{
−1

2

(
(f −m)T , (f∗ −m∗)T

)
K−1

(
f −m
f∗ −m∗

)}
,

K is now an (N +M)× (N +M) matrix

K =

(
k(x,xT ) k(x,x∗T )

k(x∗,xT ) k(x∗,x∗T )

)
=

(
Kxx Kxx∗

Kx∗x Kx∗x∗

)
.
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data and theory predictions

dataset central values: y = {yI , I = 1, . . . , Ndat}

dataset fluctuations: ε ∼ N (0, CY )

linear dependence on f :

TI =

∫
I
dxCI(x)f(x) ≈

N∑
i=1

(FK)Iifi

NB: applies to both quasi/pseudo-PDFs and spectral densities

E[TI ] = (FK)Ijmj

Cov[TI , TJ ] = (FK)Ii (Kxx)ij (FK)TjJ
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posterior distribution

we want to determine

p̃(f , f∗) = p(f , f∗|y) =

∫
dθ p (f , f∗, θ|y)

p (f , f∗, θ|y) = p (f , f∗|θ, y) p (θ|y)

compute each factor independently

p(f , f∗|θ, y) ∝ exp

{
−1

2

(
(f −m)T , (f∗ −m∗)T

)
K−1

(
f −m
f∗ −m∗

)}
× exp

{
−1

2
((FK)f − y)TC−1Y ((FK)f − y)

}
.
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posterior distribution
integrating over f∗ yields

∫
df∗ p(f , f∗|θ, y) ∝ exp

{
−1

2
(f −m)TK−1xx (f −m)

}
× exp

{
−1

2
((FK)f − y)TC−1Y ((FK)f − y)

}
posterior distribution is Gaussian

p (f |θ, y) = N
(
f ; m̃, K̃xx

)
m̃ = m +Kxx(FK)T C−1Y T (y − (FK)m)

K̃xx = Kxx −Kxx(FK)TC−1Y T (FK)Kxx

CY T = (FK)Kxx(FK)T + CY

L Del Debbio Bayesian Inverse Problems CERN, July 2024 11 / 21



posterior distribution

integrating over f

p (f∗|θ, y) = N
(
m̃∗, K̃∗xx

)
m̃∗ = m∗ +Kx∗x(FK)TC−1Y T (y − (FK)m) ,

K̃x∗x∗ = Kx∗x∗ −Kx∗x(FK)T C−1Y T (FK)Kxx∗ .

• correction to the mean proportional to (y − (FK)m)

• correlations in the prior allow to make predictions for f∗
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inference for hyperparameters

using Bayes theorem

p (θ|y) =
p (y|θ) pθ (θ)∫
dθ p (y|θ) pθ (θ)

,

on the RHS

p (y|θ) =
e−

1
2
(y−(FK)m)TC−1

Y T (y−(FK)m)√
det [2πCY T ]

.

p (θ|y) can be sampled by MCMC
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PDF from DIS - closure test

study the triplet PDF T3

T3 = (u+ ū)−
(
d+ d̄

)
using DIS structure function from BCDMS

y = F p2 − F
d
2 = CT3 ⊗ T3

CY = Cov [F p2 , F
p
2 ] + Cov

[
F d2 , F

d
2

]
− 2Cov

[
F p2 , F

d
2

]
test the methodology using synthetic data

y = (FK) f0 + η , with η ∼ N (0, CY )

where f0 is taken from a known PDF set (NNPDF4.0)
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inference for the hyperparameters

starting from flat priors for the hyperparameters, we get for p(θ|y)

and p(f∗|θ, y) is known analytically
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inference for the PDF
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interpretation of the results - closure test

vanishing exp errors

y = y0 = (FK)f0 , CY = 0

yields
m̃ = R

(0)
xx f0 , m̃∗ = R

(0)
x∗x f0

where we introduced the smearing kernel

R
(0)
xx = Kxx (FK)T

[
(FK)Kxx(FK)T

]−1
(FK)

the result of Bayesian inference is a smeared version of the ’true’ answer

m̃− f0 =
[
R

(0)
xx − 1

]
f0 , K̃xx =

(
1−R(0)

xx

)
Kxx
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in data space, consider bias and variance

B = (FK) (m̃− f0) = (FK)
(
R

(0)
xx − 1

)
f0 = 0 ,

V = (FK) K̃ (FK)T = (FK)
(
1−R(0)

xx

)
Kxx(FK)T = 0 .

• the GP methodology reconstructs the input data exactly,
independently of the specific values of the hyperparameters

• the model function is not in general reconstructed exactly, i.e. m̃ 6= f0

• in the functional space, a residual reconstruction error is still present
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adding experimental errors

reconstruction kernel

Rxx = Kxx (FK)T
[
(FK)Kxx(FK)T + CY

]−1
(FK)

comparison with the ’true’ input

m̃− f0 = [Rxx − 1] f0 + aTxxη

K̃xx = (1−Rxx)Kxx (1−Rxx)T + aTxxCY axx

in data space

B = (FK) [Rxx − 1] f0 + (FK)aTxxη

V = (FK) (1−Rxx)Kxx (1−Rxx)T (FK)T + (FK)aTxxCY axx(FK)T
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• limited reconstruction due to smearing, functional uncertainty

• functional uncertainty is not cured by more precise data

• the term proportional to η is the propagation of the experimental error
in the reconstructed function, experimental uncertainty
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conclusions

• bayesian analysis offers an independent tool to look at inverse
problems

• all hypotheses are explicitly spelled out in the prior

• for linear data, we get analytical results useful to build intuition

• Backus-Gilbert methods can be rephrased as GP processes with
specific prior

• interesting connection with NN parametrizations (no time today!)

• being used for PDFs and spectral densities
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