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inverse problems

ubiquitous in physics, geosciences, engineering...

w=/m&mﬂm

... are known to be ill-defined problems

— simple parametrization could lead to a biased result for f
examples in particle physics:

e PDFs from DIS/lattice: y; structure function data, f(x) PDFs

e spectral densities: y; Euclidean correlators, f(x) spectral function

multiple approaches: fits to fixed functional forms, NN, Backus-Gilbert
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bayesian approach

e f is promoted to be a stochastic process

o f(z) for x € T is a set of stochastic variables

for any given f, where f; = f(x;), we have a prior p(f)

all a priori knowledge about f is encoded in p (more later)

posterior distribution obtained from Bayes theorem

p(y|f)p(f)

p(f) = p(fly) = o)

knowledge about the solution is encoded in the posterior, eg

central value : Ej[f]

covariance : Cov|f, f']
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gaussian process

GPs are a specific kind of stochastic process

f~GP(m,k),

where
m:ZT—R, k:IxZT—R

for a GP, the vector of stochastic variables f
fi
X:{quZlvaN}7 f:f(X): ERNa fz:f(xz)
In
is distributed as a multidimensional Gaussian

f~N(m,K),
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prior distribution

mean & covariance

=
=
I

m; = m(xl) )
Covlfi, fj] = Kij = k(xi, ;).

specific choices for this work: zero mean and Gibbs kernel
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Gibbs kernel interpretation
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we use in this work
I(x) =1y x (z+9)
hyperparameters : 6 = (o, )
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setting the problem

sampling f at points x = {x;;i =1,...,N}andx* = {z};i=1,..., M}
feRY, feRM,

the prior probability distribution is

1
det (27 K)

X exp {_; ((F —m)T, (£ — m*)T) K1 <ff - m*> } ,

—m

p(f,£710) =

Kisnow an (N + M) x (N + M) matrix

k:(X,XT) k(x,x*T) Kyx  Kyx
K = * 1 «T = :
k(x*,x") k(x*,x*") Kx+x  Kxex+
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data and theory predictions

dataset central values: y = {yr,I = 1,..., Ngat }
dataset fluctuations: € ~ A (0, Cy)

linear dependence on f:

N

7y = [ doCita) @) = S (PR

i=1

NB: applies to both quasi/pseudo-PDFs and spectral densities

E[T] = (FK)1jm;

COV[T],TJ] = (FK)Iz (Kxx) (FK)fJ

ij
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posterior distribution

we want to determine

B(E, %) = p(£, £*]y) = / dop (£, £, 0ly)
p(£,£5,0)y) =p(£,£710,y) p (8ly)

compute each factor independently

p(8.10,0) oxexp { = (€~ m)”, (6 =m0 (70 )

< exp { =L (FIOF - ) O (FR)E - ) |
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posterior distribution

integrating over f* yields

[t .87 oo {36 - )R - ) |

1 _
<o { = (FKOF — ) O (PR~ )
posterior distribution is Gaussian
p (f’07 y) =N <f7 l:fl’ Rxx)

m=m -+ KXX(FK)T C’;% (y — (FK)m)
Kyx = Kxx — Kxx(FK)T Oy (FK) Kyx
Cyr = (FK) Ky (FK)T + Cy
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posterior distribution

integrating over f
P10, ) = N (", K

m* = m* + Ky (FK) Oyt (y — (FK)m) |
RX*X* = KX*X* - KX*X<FK)T C;%—v (FK)KXX* .

e correction to the mean proportional to (y — (FK)m)

e correlations in the prior allow to make predictions for £*
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inference for hyperparameters

using Bayes theorem

__ pWl0)pe (9)
Jdop(yl0)ps (0)°

p(0ly)

on the RHS

e~ % (y—(FK)m)" O3 7.(y—(FK)m)

p(yl0) =

det [QFCYT]

p (0|y) can be sampled by MCMC
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PDF from DIS - closure test

study the triplet PDF T3
Ts = (u+1u) — (d+d)
using DIS structure function from BCDMS
y=Fy —F =0p,®T;s
Cy = Cov [F?, F?] + Cov [de, de] — 2Cov [Fg’, Fg]

test the methodology using synthetic data
y=(FK)fo+n, with n ~N(0,Cy)

where fj is taken from a known PDF set (NNPDF4.0)
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inference for the hyperparameters

starting from flat priors for the hyperparameters, we get for p(6|y)
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0.07714

0.06711

0.05456

0.03766

0.01817

0.00247

and p(f*|0, y) is known analytically
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inference for the PDF

[ 68CL
11 95CL
----- NNPDF4.0

T3
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interpretation of the results - closure test

vanishing exp errors

y=yo = (FK)fy, Cy =0

yields
m=RYf, m =RY f

xX* X

where we introduced the smearing kernel
RY) = Ky (FK)T [(FK) K (FK)T] ' (FK)

the result of Bayesian inference is a smeared version of the 'true’ answer

i —fy = {RS&Z —]1} fo, Kux— (]1 —Rﬁ&) Kox
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in data space, consider bias and variance

B = (FK) (1 — o) = (FK) (R& — 1) fo =0,
V = (FK) K (FK)T = (FK) (11 - R,&‘Q) Fox(FK)T = 0.,
e the GP methodology reconstructs the input data exactly,
independently of the specific values of the hyperparameters
o the model function is not in general reconstructed exactly, i.e. m # £

e in the functional space, a residual reconstruction error is still present
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adding experimental errors
reconstruction kernel

Rux = Kx (FK)T [(FK) Ky (FK)T + Cy] " (FK)
comparison with the ’true’ input

m — fy = [Rex — 1] £y + aln
Kxx = (11 - Rxx) Kyx (11 - Rxx)T + aZxCYaxx

in data space

B = (FK) [Rxx — 1] fy + (FK)aL, 7
V = (FK) (1 — Rux) Kxx (1 — Ryx)” (FK)T + (FK)aZ, Cy axx (FK)T
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e limited reconstruction due to smearing, functional uncertainty
e functional uncertainty is not cured by more precise data

e the term proportional to n is the propagation of the experimental error
in the reconstructed function, experimental uncertainty

[ 68CL experimental
[ 68CL reconstruction
----- NNPDF4.0

Ts
I
o
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conclusions

e bayesian analysis offers an independent tool to look at inverse
problems

e all hypotheses are explicitly spelled out in the prior
o for linear data, we get analytical results useful to build intuition

e Backus-Gilbert methods can be rephrased as GP processes with
specific prior

e interesting connection with NN parametrizations (no time today!)

e being used for PDFs and spectral densities
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