

Applications to electroweak processes

Francesco Sanfilippo, INFN Roma Tre Lattice@CERN 2024, 10 July 2024 Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing

Spectral-function determination of complex electroweak amplitudes with lattice QCD

R. Frezzotti, G. Gagliardi, V. Lubicz, F. S, S. Simula, N. Tantalo

[Phys.Rev.D 108 (2023) 7, 074510]

Based on

Spectral-function determination of complex electroweak amplitudes with lattice QCD

R. Frezzotti, G. Gagliardi, V. Lubicz, F. S, S. Simula, N. Tantalo

[Phys.Rev.D 108 (2023) 7, 074510]

The $B_s \to \mu^+ \mu^- \gamma$ decay rate at large q^2 from lattice QCD

R. Frezzotti, G. Gagliardi, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. S, S. Simula, N. Tantalo [Phys.Rev.D 109 (2024) 11, 114506]

Based on

Spectral-function determination of complex electroweak amplitudes with lattice QCD

R. Frezzotti, G. Gagliardi, V. Lubicz, F. S, S. Simula, N. Tantalo

[Phys.Rev.D 108 (2023) 7, 074510]

The $B_s \to \mu^+ \mu^- \gamma$ decay rate at large q^2 from lattice QCD

R. Frezzotti, G. Gagliardi, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. S, S. Simula, N. Tantalo [Phys.Rev.D 109 (2024) 11, 114506]

Bonus!, [gift from N.Tantalo]

"Updates on our calculation of inclusive τ decay into hadrons"

Based on

Spectral-function determination of complex electroweak amplitudes with lattice QCD

R. Frezzotti, G. Gagliardi, V. Lubicz, F. S, S. Simula, N. Tantalo

[Phys.Rev.D 108 (2023) 7, 074510]

The $B_s \to \mu^+ \mu^- \gamma$ decay rate at large q^2 from lattice QCD

R. Frezzotti, G. Gagliardi, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. S, S. Simula, N. Tantalo [Phys.Rev.D 109 (2024) 11, 114506]

Bonus!, [gift from N.Tantalo]

"Updates on our calculation of inclusive τ decay into hadrons"

Don't worry, I have a solution

Hadronic amplitudes

Correlation function, e.g. J_A , J_B currents on state $|P\rangle$

$$C(t) \equiv \langle 0 | T \{ J_A(t) J_B(0) \} | P \rangle \stackrel{t \ge 0}{=} \sum_{n=0}^{\infty} C_n e^{-iE_n t}$$

Hadronic amplitudes

Correlation function, e.g. J_A , J_B currents on state $|P\rangle$

$$C(t) \equiv \langle 0 | T \{ J_A(t) J_B(0) \} | P \rangle \stackrel{t>0}{=} \sum_{n=0}^{\infty} C_n e^{-iE_n t}$$

Extracting Hadronic Amplitude

N

in Minkoskian spacetime:

$$H(E) = i \int_0^\infty dt \, e^{iEt} \, C(t)$$

(inverse Fourier transform)

On the lattice

Analytic continuation to discrete Euclidean spacetime: au=it

 \propto

$$C_e(\tau) \equiv C(-i\tau) = \sum_{n=0}^{\infty} C_n e^{-E_n \tau}$$

On the lattice

Analytic continuation to discrete Euclidean spacetime: au=it

 \propto

$$C_e(\tau) \equiv C(-i\tau) = \sum_{n=0}^{\infty} C_n e^{-E_n \tau}$$

Extracting Hadronic Amplitude

in discrete **Euclidean** spacetime of length T:

A bit too naive...

We are actually taking different paths in the complex plane, do they agree?

$$\int_{0}^{T} d\tau \, e^{E\tau} \, C_e(\tau) = i \int_{0}^{T} dt \, e^{iEt} \, C(t) \quad ????$$

We are actually taking different paths in the complex plane, do they agree?

$$\int_{0}^{T} d\tau \, e^{E\tau} \, C_e(\tau) = i \int_{0}^{T} dt \, e^{iEt} \, C(t) \quad ????$$

Since there are no non-analyticies in a finite lattice, contour integral vanishes

We are actually taking different paths in the complex plane, do they agree?

$$\int_{0}^{T} d\tau \, e^{E\tau} \, C_e(\tau) = i \int_{0}^{T} dt \, e^{iEt} \, C(t) \quad ????$$

Since there are no non-analyticies in a finite lattice, contour integral vanishes

We are actually taking different paths in the complex plane, do they agree?

$$\int_{0}^{T} d\tau \, e^{E\tau} \, C_e(\tau) = i \int_{0}^{T} dt \, e^{iEt} \, C(t) \quad ????$$

Since there are no non-analyticies in a finite lattice, contour integral vanishes

$$H^{T}(E) = \int_{0}^{T} dt \, e^{Et} \, C_{E}(t) = \int_{0}^{T} dt \, e^{Et} \, \sum_{n=0}^{\infty} C_{n} e^{-E_{n}t} = \sum_{n=0}^{\infty} C_{n} \, \frac{1 - e^{-(E_{n} - E)T}}{E_{n} - E}$$

Let us break down two energy regimes

$$H^{T}(E) = \int_{0}^{T} dt \, e^{Et} \, C_{E}(t) = \int_{0}^{T} dt \, e^{Et} \, \sum_{n=0}^{\infty} C_{n} e^{-E_{n}t} = \sum_{n=0}^{\infty} C_{n} \, \frac{1 - e^{-(E_{n} - E)T}}{E_{n} - E}$$

Let us break down two energy regimes

$$H^T(E) \xrightarrow[T \to \infty]{} \sum_{n=0}^{\infty} \frac{C_n}{E_n - E}$$

GOOD!

$$H^{T}(E) = \int_{0}^{T} dt \, e^{Et} \, C_{E}(t) = \int_{0}^{T} dt \, e^{Et} \, \sum_{n=0}^{\infty} C_{n} e^{-E_{n}t} = \sum_{n=0}^{\infty} C_{n} \, \frac{1 - e^{-(E_{n} - E)T}}{E_{n} - E}$$

Let us break down two energy regimes

$$H^{T}(E) = \int_{0}^{T} dt \, e^{Et} \, C_{E}(t) = \int_{0}^{T} dt \, e^{Et} \, \sum_{n=0}^{\infty} C_{n} e^{-E_{n}t} = \sum_{n=0}^{\infty} C_{n} \, \frac{1 - e^{-(E_{n} - E)T}}{E_{n} - E}$$

Let us break down two energy regimes

$$H^T(E) \xrightarrow[T \to \infty]{} \sum_{n=0}^{\infty} \frac{C_n}{E_n - E}$$

GOOD!

$$E > E_0$$

$$H^{T}(E) \xrightarrow[T \to \infty]{} \sum_{n=0}^{\infty} \frac{C_{n}}{E_{n} - E} + \sum_{n=0}^{E_{n} < E} C_{n} \frac{e^{(E - E_{n})T}}{E - E_{n}}$$

BAD!!!

- How to subtract the divergent part?
- Needs all C_n to recover the imaginary part!

Problem well known since long time:

"Electromagnetic pion form $F_{\pi}(q^2)$ factor in the time region $q^2 > (2m_{\pi})^2$ " [Maiani L., Testa M., 1990]

Problem well known since long time:

"Electromagnetic pion form $F_{\pi}(q^2)$ factor in the time region $q^2 > (2m_{\pi})^2$ " [Maiani L., Testa M., 1990]

Colloquially generalized as the No-Go-Theorem for scattering amplitudes above thresholds.

Problem well known since long time:

"Electromagnetic pion form $F_{\pi}(q^2)$ factor in the time region $q^2 > (2m_{\pi})^2$ " [Maiani L., Testa M., 1990]

Colloquially generalized as the No-Go-Theorem for scattering amplitudes above thresholds.

Various solutions proposed:

"Particle scattering in Euclidean lattice field theories" [Barata and Fredenhagen, 1991]

"Scattering amplitudes from finite-volume spectral functions" [Bulava and Hansen, 2019]

"Variations on the Maiani-Testa approach and the inverse problem" [Bruno and Hansen, 2021]

Problem well known since long time:

"Electromagnetic pion form $F_{\pi}(q^2)$ factor in the time region $q^2 > (2m_{\pi})^2$ " [Maiani L., Testa M., 1990]

Colloquially generalized as the No-Go-Theorem for scattering amplitudes above thresholds.

Various solutions proposed:

"Particle scattering in Euclidean lattice field theories" [Barata and Fredenhagen, 1991]

"Scattering amplitudes from finite-volume spectral functions" [Bulava and Hansen, 2019]

"Variations on the Maiani-Testa approach and the inverse problem" [Bruno and Hansen, 2021]

Several applications, e.g. $P_{\ell_4}~$ decays $P\to \overline{l}'l'\overline{l}\nu_l~$ where P~ is e.g. a $~D_s~$ meson

(see second part of the talk)

Introducing the spectral density

$$\rho(E') = 2\pi \langle 0 | J_A(0) \, \delta(\mathbb{H} - E') \, J_B(0) | P \rangle$$

[= hamiltonian, δ - function restricts the correlator to the states of energy E'

Introducing the spectral density $\rho(E') = 2\pi \langle 0 | J_A(0) \, \delta(\mathbb{H} - E') \, J_B(0) | P \rangle$

= hamiltonian, δ - function restricts the correlator to the states of energy E'

Provides similar representations of the correlator in Minkowskian & Euclidean spacetime

$$C(t) \stackrel{t \ge 0}{=} \int_0^\infty \frac{dE'}{2\pi} \,\rho(E') \, e^{-iE't}, \qquad C_E(t) \stackrel{t \ge 0}{=} \int_0^\infty \frac{dE'}{2\pi} \,\rho(E') \, e^{-E't}$$

Introducing the spectral density $\rho(E') = 2\pi \langle 0 | J_A(0) \, \delta(\mathbb{H} - E') \, J_B(0) | P \rangle$

= hamiltonian, δ - function restricts the correlator to the states of energy E'

Provides similar representations of the correlator in Minkowskian & Euclidean spacetime

$$C(t) \stackrel{t>0}{=} \int_0^\infty \frac{dE'}{2\pi} \,\rho(E') \, e^{-iE't}, \qquad C_E(t) \stackrel{t>0}{=} \int_0^\infty \frac{dE'}{2\pi} \,\rho(E') \, e^{-E't}$$

In particular, in the Euclidean we represent the correlator $C_E(t)$ as the Laplace Transform of the spectral density $\rho(E)$

Hadronic amplitude via spectral density

Expressing the correlator in terms of the spectral density:

$$H(E) = \int_0^\infty dt \, e^{iEt} \, C(t) = \lim_{\epsilon \to 0^+} \int_0^\infty \frac{dE'}{2\pi} \, \rho(E') \int_0^\infty dt \, e^{-i(E'-E)t} e^{-\epsilon t}$$

Hadronic amplitude via spectral density

Expressing the correlator in terms of the spectral density:

$$H(E) = \int_0^\infty dt \, e^{iEt} \, C(t) = \lim_{\epsilon \to 0^+} \int_0^\infty \frac{dE'}{2\pi} \, \rho(E') \int_0^\infty dt \, e^{-i(E'-E)t} e^{-\epsilon t}$$

The term $e^{-\epsilon t}$ is introduced to guarantee the time integral convergence:

$$H(E) = \lim_{\epsilon \to 0^+} \int_0^\infty \frac{dE'}{2\pi} \, \frac{\rho(E')}{E' - E - i\epsilon}$$

Hadronic amplitude via spectral density

Expressing the correlator in terms of the spectral density:

$$H(E) = \int_0^\infty dt \, e^{iEt} \, C(t) = \lim_{\epsilon \to 0^+} \int_0^\infty \frac{dE'}{2\pi} \, \rho(E') \int_0^\infty dt \, e^{-i(E'-E)t} e^{-\epsilon t}$$

The term $e^{-\epsilon t}$ is introduced to guarantee the time integral convergence:

$$H(E) = \lim_{\epsilon \to 0^+} \int_0^\infty \frac{dE'}{2\pi} \, \frac{\rho(E')}{E' - E - i\epsilon}$$

Energy integral is always well-defined given that $\rho(E) = 0$ if $E < E_0$

Separating the real and imaginary parts

$$\operatorname{Re}\left[H(E)\right] = \lim_{\epsilon \to 0^+} \int_0^\infty \frac{dE'}{2\pi} \,\rho(E') \,\frac{E' - E}{(E - E')^2 + \epsilon^2} = \operatorname{P.V.} \int_0^\infty \frac{dE'}{2\pi} \,\frac{\rho(E')}{E' - E}$$

Im [H(E)] =
$$\lim_{\epsilon \to 0^+} \int_0^\infty \frac{dE'}{2\pi} \rho(E') \frac{\epsilon}{(E - E')^2 + \epsilon^2} = \frac{\rho(E)}{2}$$

Separating the real and imaginary parts

$$\operatorname{Re}\left[H(E)\right] = \lim_{\epsilon \to 0^+} \int_0^\infty \frac{dE'}{2\pi} \,\rho(E') \,\frac{E' - E}{(E - E')^2 + \epsilon^2} = \operatorname{P.V.} \int_0^\infty \frac{dE'}{2\pi} \,\frac{\rho(E')}{E' - E'} \,\frac{dE'}{E' - E'} \,\frac{dE'}{E'} \,\frac{$$

Im [H(E)] =
$$\lim_{\epsilon \to 0^+} \int_0^\infty \frac{dE'}{2\pi} \rho(E') \frac{\epsilon}{(E - E')^2 + \epsilon^2} = \frac{\rho(E)}{2}$$

When studying energies $E < E_0$ one can rewrite: $\frac{1}{E'-E} = \int_0^\infty dt \, e^{-(E'-E)t}$ obtaining:

Re
$$[H(E)] = \int_{E_0}^{\infty} \frac{dE'}{2\pi} \rho(E') \int_0^{\infty} dt \, e^{-(E'-E)t} = \int_0^{\infty} dt \, e^{Et} \, C_E(t)$$

Im [H(E)] = 0 by definition, since $\rho(E) = 0$ if $E < E_0$

Separating the real and imaginary parts

$$\operatorname{Re}\left[H(E)\right] = \lim_{\epsilon \to 0^+} \int_0^\infty \frac{dE'}{2\pi} \,\rho(E') \,\frac{E' - E}{(E - E')^2 + \epsilon^2} = \operatorname{P.V.} \int_0^\infty \frac{dE'}{2\pi} \,\frac{\rho(E')}{E' - E'} \,\frac{dE'}{E' - E'} \,\frac{dE'}{E'} \,\frac{$$

$$\operatorname{Im} \left[\mathrm{H}(\mathrm{E}) \right] = \lim_{\epsilon \to 0^+} \int_0^\infty \frac{\mathrm{d}\mathrm{E}'}{2\pi} \,\rho(\mathrm{E}') \,\frac{\epsilon}{(\mathrm{E} - \mathrm{E}')^2 + \epsilon^2} = \frac{\rho(\mathrm{E})}{2}$$

When studying energies $E < E_0$ one can rewrite: $\frac{1}{E'-E} = \int_0^\infty dt \, e^{-(E'-E)t}$ obtaining:

Re
$$[H(E)] = \int_{E_0}^{\infty} \frac{dE'}{2\pi} \rho(E') \int_0^{\infty} dt \, e^{-(E'-E)t} = \int_0^{\infty} dt \, e^{Et} \, C_E(t)$$

Im [H(E)] = 0 by definition, since $\rho(E) = 0$ if $E < E_0$

But these is **not possible** for $E > E_0$: the $\epsilon \to 0^+$ can be taken only **after integrating** in E

Representing the hadronic matrix element in terms of the spectral density:

$$H(E) = \lim_{\epsilon \to 0^+} \int_{E_0}^{\infty} \frac{dE'}{2\pi} \frac{\rho(E')}{E' - E - i\epsilon} = \lim_{\epsilon \to 0^+} H(E,\epsilon)$$

Representing the hadronic matrix element in terms of the spectral density:

$$H(E) = \lim_{\epsilon \to 0^+} \int_{E_0}^{\infty} \frac{dE'}{2\pi} \frac{\rho(E')}{E' - E - i\epsilon} = \lim_{\epsilon \to 0^+} H(E,\epsilon)$$

one can recognize the convolution of the spectral density with a kernel:

$$H(E,\epsilon) \equiv \int_{E_0}^{\infty} \frac{dE'}{2\pi} \rho(E') K(E'-E,\epsilon) , \qquad K(E'-E,\epsilon) \equiv \frac{1}{E'-E-i\epsilon}$$

Representing the hadronic matrix element in terms of the spectral density:

$$H(E) = \lim_{\epsilon \to 0^+} \int_{E_0}^{\infty} \frac{dE'}{2\pi} \frac{\rho(E')}{E' - E - i\epsilon} = \lim_{\epsilon \to 0^+} H(E,\epsilon)$$

one can recognize the convolution of the spectral density with a kernel:

$$H(E,\epsilon) \equiv \int_{E_0}^{\infty} \frac{dE'}{2\pi} \rho(E') K(E'-E,\epsilon) , \qquad K(E'-E,\epsilon) \equiv \frac{1}{E'-E-i\epsilon}$$

...which allows us to cast the problem in the "usual" inverse Laplace problem solved by HLT!

Representing the hadronic matrix element in terms of the spectral density:

$$H(E) = \lim_{\epsilon \to 0^+} \int_{E_0}^{\infty} \frac{dE'}{2\pi} \frac{\rho(E')}{E' - E - i\epsilon} = \lim_{\epsilon \to 0^+} H(E,\epsilon)$$

one can recognize the convolution of the spectral density with a kernel:

$$H(E,\epsilon) \equiv \int_{E_0}^{\infty} \frac{dE'}{2\pi} \rho(E') K(E'-E,\epsilon) , \qquad K(E'-E,\epsilon) \equiv \frac{1}{E'-E-i\epsilon}$$

...which allows us to cast the problem in the "usual" inverse Laplace problem solved by HLT!

 $H(E,\epsilon)$ can be interpreted as a **smeared amplitude**, let us see why...

Interpretation of the "smeared amplitude"

Using the identity:

$$\frac{1}{E' - E - i\epsilon} = \lim_{\eta \to 0^+} \frac{1}{\pi} \int_{-\infty}^{+\infty} d\omega \ \frac{\epsilon}{(E - \omega)^2 + \epsilon^2} \ \frac{1}{E' - \omega - i\eta}$$

Interpretation of the "smeared amplitude"

Using the identity:

$$\frac{1}{E' - E - i\epsilon} = \lim_{\eta \to 0^+} \frac{1}{\pi} \int_{-\infty}^{+\infty} d\omega \ \frac{\epsilon}{(E - \omega)^2 + \epsilon^2} \ \frac{1}{E' - \omega - i\eta}$$

One can immediately see that:

$$H(E,\epsilon) = \int_{-\infty}^{+\infty} d\omega \ \frac{1}{\pi} \frac{1}{\left(\frac{E-\omega}{\epsilon}\right)^2 + 1} H(\omega)$$

Corresponding to a Lorentzian smearing of H(E) over a region of width 2ϵ .
An example in a toy model

Let us take as an example a simple one-resonance model for $\rho(E)$

$$\rho(E') = \frac{A\Gamma}{\left(E - M\right)^2 + \left(\Gamma/2\right)^2} \,\theta(E) \implies H(E) \simeq \frac{A}{M - E - i\Gamma/2}$$

An example in a toy model

Let us take as an example a simple one-resonance model for $\rho(E)$

$$\rho(E') = \frac{A\Gamma}{\left(E - M\right)^2 + \left(\Gamma/2\right)^2} \,\theta(E) \implies H(E) \simeq \frac{A}{M - E - i\Gamma/2}$$

The smearing corresponds to a simple shift: $\Gamma \rightarrow \Gamma + 2i\epsilon$

Taking the $\epsilon \to 0$ limit

Let us compare smeared and unsmeared amplitudes

$$H(E,\epsilon) \simeq \frac{A}{M-E-i\left(\frac{\Gamma}{2}+\epsilon\right)} \implies \frac{H(E,\varepsilon)}{H(E)} = \left[1 + \frac{i\epsilon}{\Delta(E)}e^{-i\phi(E)}\right]^{-1}$$

with
$$\Delta(E) = \sqrt{(E-M)^2 + (\Gamma/2)^2}$$
 and $\tan \phi(E) = \frac{\Gamma/2}{E-M}$

Taking the $\epsilon \to 0$ limit

Let us compare smeared and unsmeared amplitudes

$$H(E,\epsilon) \simeq \frac{A}{M-E-i\left(\frac{\Gamma}{2}+\epsilon\right)} \implies \frac{H(E,\varepsilon)}{H(E)} = \left[1 + \frac{i\epsilon}{\Delta(E)}e^{-i\phi(E)}\right]^{-1}$$

with
$$\Delta(E) = \sqrt{(E-M)^2 + (\Gamma/2)^2}$$
 and $\tan \phi(E) = \frac{\Gamma/2}{E-M}$

Clearly $H(E,\varepsilon) = H(E) + \mathcal{O}(\epsilon)$ provided that $\epsilon = \sqrt{(E-M)^2 + (\Gamma/2)^2}$

- Far from the resonance peak, $M-E\gg\Gamma/2$ such that one needs just $\epsilon\ll|M-E|$
- Near the peak, $M \sim E$ such that one needs $\epsilon \ll \Gamma/2$

Taking the $\epsilon \to 0$ limit

Let us compare smeared and unsmeared amplitudes

$$H(E,\epsilon) \simeq \frac{A}{M-E-i\left(\frac{\Gamma}{2}+\epsilon\right)} \implies \frac{H(E,\varepsilon)}{H(E)} = \left[1 + \frac{i\epsilon}{\Delta(E)}e^{-i\phi(E)}\right]^{-1}$$

with
$$\Delta(E) = \sqrt{(E-M)^2 + (\Gamma/2)^2}$$
 and $\tan \phi(E) = \frac{\Gamma/2}{E-M}$

Clearly $H(E,\varepsilon) = H(E) + \mathcal{O}(\epsilon)$ provided that $\epsilon = \sqrt{(E-M)^2 + (\Gamma/2)^2}$

- Far from the resonance peak, $M E \gg \Gamma/2$ such that one needs just $\epsilon \ll |M E|$
- Near the peak, $M \sim E$ such that one needs $\epsilon \ll \Gamma/2$

This is in a toy model, but what in real life?

Taking the $\epsilon \to 0$ limit in a generic case

We need to give a general definition of the "width". For sufficiently smooth amplitudes:

$$\frac{1}{\Delta(E)} \equiv \left| \frac{1}{H(E)} \frac{\partial H(E)}{\partial E} \right|$$

For each *E* the value of $\Delta(E)$ is a (linear estimate) of the region where H(E) varies by 100% Not always that simple...

Taking the $\epsilon \to 0$ limit in a generic case

We need to give a general definition of the "width". For sufficiently smooth amplitudes:

$$\frac{1}{\Delta(E)} \equiv \left| \frac{1}{H(E)} \frac{\partial H(E)}{\partial E} \right|$$

For each *E* the value of $\Delta(E)$ is a (linear estimate) of the region where H(E) varies by 100% Not always that simple...

- In less trivial cases, many features might be present
- In this cases more care must be taken to take the extrapolation
- Some degree of modelling might be required
- Observing the asymptotic ϵ^n regime might require very small ϵ

Resonances in a finite volume

At finite-volume the spectral density $\rho(E,L)$ is always a set of <u>discrete states</u>

$$\rho(E,L) = \sum_{n} c_n(L) \,\delta(E - E_n(L))$$

Resonances in a finite volume

At finite-volume the spectral density $\rho(E,L)$ is always a set of <u>discrete states</u>

$$\rho(E,L) = \sum_{n} c_n(L) \,\delta(E - E_n(L))$$

Quantization conditions – 2 particles toy model

We must be sure not to undersmear!

Quantization conditions – 2 particles toy model

We must be sure not to undersmear!

Quantization conditions – 2 particles toy model

We must be sure not to undersmear!

Small FVE guaranteed if $\epsilon L \gg 1$ [Bulava et al. 2021]

HLT method at work

We have a specific kernel to reconstruct, the HLT method offers the possibility to do it

$$K_{\mathrm{I}}(E'-E,\epsilon) \simeq \sum_{n=1}^{N} g_n^{\mathrm{I}}(E) e^{-aE'n}, \quad \mathrm{I} = \{\mathrm{Re},\mathrm{Im}\}$$

HLT method at work

We have a specific kernel to reconstruct, the HLT method offers the possibility to do it

$$K_{\mathbf{I}}(E'-E,\epsilon) \simeq \sum_{n=1}^{N} g_n^{\mathbf{I}}(E) e^{-aE'n}, \quad \mathbf{I} = \{\text{Re}, \text{Im}\}$$

From the knowledge of the coefficients, one reconstructs the real and imaginary parts:

$$\sum_{n=1}^{N} g_n^{\text{Re}}(E) C_E(na) = \int_0^\infty \frac{\mathrm{d}E'}{2\pi} \left(\sum_{n=1}^{N} g_n^{\text{Re}}(E) e^{-naE'} \right) \rho(E') \simeq \text{Re}[H(E,\epsilon)]$$
$$\sum_{n=1}^{N} g_n^{\text{Im}}(E) C_E(na) = \int_0^\infty \frac{\mathrm{d}E'}{2\pi} \left(\sum_{n=1}^{N} g_n^{\text{Im}}(E) e^{-naE'} \right) \rho(E') \simeq \text{Im}[H(E,\epsilon)]$$

Minimize the L²-distance between target and reconstructed function

$$A^{\mathbf{I}}[g] \equiv \int_0^\infty \frac{\mathrm{d}E'}{2\pi} \left| K_{\mathbf{I}}(E' - E, \varepsilon) - \sum_{n=1}^N g_n e^{-naE'} \right|^2$$

Minimize the L²-distance between target and reconstructed function

$$A^{\mathbf{I}}[g] \equiv \int_0^\infty \frac{\mathrm{d}E'}{2\pi} \left| K_{\mathbf{I}}(E' - E, \varepsilon) - \sum_{n=1}^N g_n e^{-naE'} \right|^2$$

Can be analytically minimized, leading to a "simple" closed form $g_n^{\rm I}(E) = \sum_{m=1}^N \left(H_N^{-1}\right)_{nm} f_m^{\rm I}, \qquad f_n^{\rm I} \equiv \int_0^\infty \mathrm{d}E' \, K_{\rm I}(E' - E, \epsilon) \, e^{-naE'}$

Minimize the L²-distance between target and reconstructed function

$$A^{\mathbf{I}}[g] \equiv \int_0^\infty \frac{\mathrm{d}E'}{2\pi} \left| K_{\mathbf{I}}(E' - E, \varepsilon) - \sum_{n=1}^N g_n e^{-naE'} \right|^2$$

Can be analytically minimized, leading to a "simple" closed form $g_n^{\rm I}(E) = \sum_{m=1}^N \left(H_N^{-1}\right)_{nm} f_m^{\rm I}, \qquad f_n^{\rm I} \equiv \int_0^\infty \mathrm{d}E' \, K_{\rm I}(E' - E, \epsilon) \, e^{-naE'}$

Unfortunately the Hilbert matrix is a textbook example of poorly conditioned matrix

$$(H_N)_{nm} = \frac{1}{n+m-1}, \qquad \det H_N \approx N^{-1/4} (2\pi)^N 4^{-N^2}$$

Minimize the L²-distance between target and reconstructed function

$$A^{\mathbf{I}}[g] \equiv \int_0^\infty \frac{\mathrm{d}E'}{2\pi} \left| K_{\mathbf{I}}(E' - E, \varepsilon) - \sum_{n=1}^N g_n e^{-naE'} \right|^2$$

Can be analytically minimized, leading to a "simple" closed form $g_n^{\rm I}(E) = \sum_{m=1}^N \left(H_N^{-1}\right)_{nm} f_m^{\rm I}, \qquad f_n^{\rm I} \equiv \int_0^\infty \mathrm{d}E' \, K_{\rm I}(E' - E, \epsilon) \, e^{-naE'}$

Unfortunately the Hilbert matrix is a textbook example of poorly conditioned matrix

$$(H_N)_{nm} = \frac{1}{n+m-1}, \qquad \det H_N \approx N^{-1/4} (2\pi)^N 4^{-N^2}$$

E.g. det $H_{10} \simeq \mathcal{O}(10^{-53})$, det $H_{20} \simeq \mathcal{O}(10^{-226})$

Two particle toy model

$$\rho(E) = \frac{1}{\pi} \sum_{n=1,2} \frac{\Gamma_n/2}{(E - E_n)^2 + (\Gamma_n/2)^2}, \qquad \begin{array}{l} E_1 = 0.10, \ \Gamma_1 = 10^{-2} \\ E_2 = 0.15, \ \Gamma_2 = 2 \cdot 10^{-2} \end{array}$$

Let us construct the correlator and reconstruct amplitude via HLT...

Two particle toy model

$$\rho(E) = \frac{1}{\pi} \sum_{n=1,2} \frac{\Gamma_n/2}{(E - E_n)^2 + (\Gamma_n/2)^2}, \qquad \begin{array}{l} E_1 = 0.10, \ \Gamma_1 = 10^{-2} \\ E_2 = 0.15, \ \Gamma_2 = 2 \cdot 10^{-2} \end{array}$$

Let us construct the correlator and reconstruct amplitude via HLT...

The problem with the coefficients

This giant coefficients will make the error on the amplitude EXPLODE once used on real data

$$\Delta H(E,\epsilon) = \sqrt{\sum_{n} \left[g_n^{\text{Re}}(E)\,\delta C_E(na)\right]^2} + i\sqrt{\sum_{n} \left[g_n^{\text{Im}}(E)\,\delta C_E(na)\right]^2}$$

Cure the problem with the HLT

Include the error weight in the functional to be minimized

$$W^{\mathbf{I}}[g] = \frac{A^{\mathbf{I}}[g]}{A^{\mathbf{I}}[0]} + \lambda B[g]$$

Cure the problem with the HLT

Include the error weight in the functional to be minimized

$$W^{\mathbf{I}}[g] = \frac{A^{\mathbf{I}}[g]}{A^{\mathbf{I}}[0]} + \lambda B[g]$$

$$A^{\rm I}[g] = \int_{E_{\rm min}}^{\infty} \frac{{\rm d}E'}{2\pi} \left| K_{\rm I}(E' - E, \epsilon) - \sum_{n=1}^{N} g_n e^{-naE'} \right|^2$$

Systematic error due to reconstruction

$$B[g] \propto \sum_{n_1, n_2=1}^{N} g_{n_1} g_{n_2} \operatorname{Cov} \left(C_E(an_1), C_E(an_2) \right)$$

Statistical error due to correlator fluctuations

Cure the problem with the HLT

Include the error weight in the functional to be minimized

$$W^{\mathbf{I}}[g] = \frac{A^{\mathbf{I}}[g]}{A^{\mathbf{I}}[0]} + \lambda B[g]$$

$$A^{\rm I}[g] = \int_{E_{\rm min}}^{\infty} \frac{{\rm d}E'}{2\pi} \left| K_{\rm I}(E' - E, \epsilon) - \sum_{n=1}^{N} g_n e^{-naE'} \right|^2$$

Systematic error due to reconstruction

$$B[g] \propto \sum_{n_1, n_2=1}^{N} g_{n_1} g_{n_2} \operatorname{Cov} \left(C_E(an_1), C_E(an_2) \right)$$

Statistical error due to correlator fluctuations

 λ balances between the two error contributions

A practical test: the $D_s \rightarrow \bar{\ell}' \ell' \ell \nu_\ell$ decay

Rare electroweak decay of a flavoured, charged meson into a dilepton $\bar{\ell}'\ell'$ and a lepton pair $\nu_{\ell}\ell$

Decay rates suppressed by $\mathcal{O}(G_F^2 \alpha_{em}^2)$, interesting probe of NP beyond the SM

Mediated by virtual photon emission, two diagrams at LO in α_{em} :

A practical test: the $D_s \rightarrow \bar{\ell}' \ell' \ell \nu_\ell$ decay

Rare electroweak decay of a flavoured, charged meson into a dilepton $\bar{\ell}'\ell'$ and a lepton pair $\nu_{\ell}\ell$

Decay rates suppressed by $\mathcal{O}(G_F^2 \alpha_{em}^2)$, interesting probe of NP beyond the SM

Mediated by virtual photon emission, two diagrams at LO in α_{em} :

Bremsstrahlung contribution,

A practical test: the $D_s \rightarrow \bar{\ell}' \ell' \ell \nu_\ell$ decay

Rare electroweak decay of a flavoured, charged meson into a dilepton $\bar{\ell}'\ell'$ and a lepton pair $\nu_{\ell}\ell$

Decay rates suppressed by $\mathcal{O}(G_F^2 \alpha_{em}^2)$, interesting probe of NP beyond the SM

Mediated by virtual photon emission, two diagrams at LO in α_{em} :

Bremsstrahlung contribution,

Structure-dependent contribution

Hadronic tensor

Both quarks can emit the photon

$$H_W^{\mu\nu}(k) = i \int dt \, e^{iEt} \, \mathrm{T} \left\langle 0 \left| J_{\mathrm{em}}^{\mu}(t,k) J_W^{\nu}(0) \right| P \right\rangle$$

Vector and Axial part of the Weak current take part

Hadronic tensor

Both quarks can emit the photon

$$H_W^{\mu\nu}(k) = i \int dt \, e^{iEt} \, \mathrm{T} \left\langle 0 \left| J_{\mathrm{em}}^{\mu}(t,k) J_W^{\nu}(0) \right| P \right\rangle$$

Vector and Axial part of the Weak current take part

$$\begin{split} H_W^{\mu\nu}(k) &= i \int_{-\infty}^{\infty} dt \, e^{iEt} \, \mathrm{T} \left\langle 0 \big| J_{\mathrm{em}}^{\mu}(t,k) J_W^{\nu}(0) \big| P \right\rangle = & \text{let us analyse separately the positive and negative times} \\ &= i \underbrace{\int_{-\infty}^{0} dt \, e^{iEt} \left\langle 0 \big| J_W^{\nu}(0) J_{\mathrm{em}}^{\mu}(t,k) \big| P \right\rangle}_{H_{W,1}^{\mu\nu}(k)} + i \underbrace{\int_{0}^{\infty} dt \, e^{iEt} \left\langle 0 \big| J_{\mathrm{em}}^{\mu}(t,k) J_W^{\nu}(0) \big| P \right\rangle}_{H_{W,2}^{\mu\nu}(k)} \end{split}$$

Hadronic tensor

Both quarks can emit the photon

$$H_W^{\mu\nu}(k) = i \int dt \, e^{iEt} \, \mathrm{T} \left\langle 0 \left| J_{\mathrm{em}}^{\mu}(t,k) J_W^{\nu}(0) \right| P \right\rangle$$

Vector and Axial part of the Weak current take part

$$\begin{aligned} H_W^{\mu\nu}(k) &= i \int_{-\infty}^{\infty} dt \, e^{iEt} \, \mathrm{T}\left\langle 0 \big| J_{\mathrm{em}}^{\mu}(t,k) J_W^{\nu}(0) \big| P \right\rangle = & \text{let us analyse separately the positive and negative times} \\ &= i \underbrace{\int_{-\infty}^{0} dt \, e^{iEt} \big\langle 0 \big| J_W^{\nu}(0) J_{\mathrm{em}}^{\mu}(t,k) \big| P \big\rangle}_{H_{W,1}^{\mu\nu}(k)} + i \underbrace{\int_{0}^{\infty} dt \, e^{iEt} \big\langle 0 \big| J_{\mathrm{em}}^{\mu}(t,k) J_W^{\nu}(0) \big| P \big\rangle}_{H_{W,2}^{\mu\nu}(k)} \end{aligned}$$

Evolving the e.m current to zero time $J^{\mu}_{em}(t,k) = e^{i(\mathbb{H}-i\varepsilon)t} J^{\mu}_{em}(0,k) e^{-i(\mathbb{H}-i\varepsilon)t}$ and integrating...

 $\begin{aligned} & \quad \text{Minkoswy!} \end{pmatrix} \text{...} \\ & \quad H_{W,1}^{\mu\nu}(k) = \langle 0 | J_W^{\nu}(0) \frac{1}{\mathbb{H} + E - M_P - i\epsilon} J_{\text{em}}^{\mu}(0,k) | P \rangle \\ & \quad H_{W,2}^{\mu\nu}(k) = \langle 0 | J_{\text{em}}^{\mu}(0,k) \frac{1}{\mathbb{H} - E - i\epsilon} J_W^{\nu}(0) | P \rangle \end{aligned}$

 $\begin{aligned} & \quad \text{Minkoswy!}, \dots \\ & \quad H_{W,1}^{\mu\nu}(k) = \langle 0 | J_W^{\nu}(0) \frac{1}{\mathbb{H} + E - M_P - i\epsilon} J_{\text{em}}^{\mu}(0,k) | P \rangle \\ & \quad H_{W,2}^{\mu\nu}(k) = \langle 0 | J_{\text{em}}^{\mu}(0,k) \frac{1}{\mathbb{H} - E - i\epsilon} J_W^{\nu}(0) | P \rangle \end{aligned}$

Inserting a complete set of states, one gets

$$H_{W,1}^{\mu\nu}(k) = \sum_{r} \frac{\langle 0|J_{W}^{\nu}(0)|r\rangle \langle r|J_{\rm em}^{\mu}(0,k)|P\rangle}{E_{r} + E - M_{P} - i\epsilon}, \quad p_{r} = -k ,$$

 $|r\rangle$ states have same flavor and are not lighter than $|P\rangle$, **no issue** with analytic continuation

 $H_{W,1}^{\mu\nu}(k) = \langle 0|J_W^{\nu}(0) \frac{1}{\mathbb{H} + E - M_P - i\epsilon} J_{em}^{\mu}(0,k)|P\rangle$ $H_{W,2}^{\mu\nu}(k) = \langle 0|J_{em}^{\mu}(0,k) \frac{1}{\mathbb{H} - E - i\epsilon} J_W^{\nu}(0)|P\rangle$

Inserting a complete set of states, one gets

$$H_{W,1}^{\mu\nu}(k) = \sum_{r} \frac{\langle 0|J_{W}^{\nu}(0)|r\rangle \langle r|J_{\rm em}^{\mu}(0,k)|P\rangle}{E_{r} + E - M_{P} - i\epsilon}, \quad p_{r} = -k ,$$

 $|r\rangle$ states have same flavor and are not lighter than $|P\rangle$, **no issue** with analytic continuation

$$H_{W,2}^{\mu\nu}(k) = \sum_{n} \frac{\langle 0|J_{\rm em}^{\mu}(0,k)|n\rangle \langle n|J_{W}^{\nu}(0)|P(0)\rangle}{E_{n} - E - i\epsilon}, \ p_{n} = +k$$

 $|n\rangle$ states are unflavored and vectorial: $|\phi\rangle$, **issue** with analytic continuation above $|k^2| = M_{\phi}$

Proof-of-principle calculation

We computed the needed three-points correlator:

 $C_W^{\mu\nu}(t,k) \equiv T\langle 0|J_{\rm em}^{\mu}(t,k) J_W^{\nu}(0)|D_s(0)\rangle$

...and extracted the hadronic matrix elements.

Proof-of-principle calculation

We computed the needed three-points correlator:

 $C_W^{\mu\nu}(t,k) \equiv T\langle 0|J_{\rm em}^{\mu}(t,k) J_W^{\nu}(0)|D_s(0)\rangle$

...and extracted the hadronic matrix elements.

Single N_f=2+1+1 Wilson-clover twisted-mass ETMC gauge ensemble at the physical point

Ensemble	$a [\mathrm{fm}]$	L/a	T/a	$N_{\rm confs}$	$N_{\rm sources}$
cB211.072.64	0.079	64	128	302	4

Proof-of-principle calculation

We computed the needed three-points correlator:

 $C_W^{\mu\nu}(t,k) \equiv T\langle 0|J_{\rm em}^{\mu}(t,k) J_W^{\nu}(0)|D_s(0)\rangle$

...and extracted the hadronic matrix elements.

Single N_f=2+1+1 Wilson-clover twisted-mass ETMC gauge ensemble at the physical point

Ensemble	$a [\mathrm{fm}]$	L/a	T/a	$N_{\rm confs}$	N_{sources}
cB211.072.64	0.079	64	128	302	4

Let's study the problematic time ordering, for V channel, and to $\vec{k} = k\hat{z}$, for $C_E(t) = C_V^{12}(t,k)$

Extracting
$$H(E,\epsilon) = \int_0^\infty \frac{dE'}{2\pi} \rho(E') K(E'-E,\epsilon)$$
 from $C_E(t) = \int_0^\infty \frac{dE'}{2\pi} e^{-E't} \rho(E')$
Proof-of-principle calculation

We computed the needed three-points correlator:

 $C_W^{\mu\nu}(t,k) \equiv T\langle 0|J_{\rm em}^{\mu}(t,k) J_W^{\nu}(0)|D_s(0)\rangle$

...and extracted the hadronic matrix elements.

Single N_f=2+1+1 Wilson-clover twisted-mass ETMC gauge ensemble at the physical point

Ensemble	$a [\mathrm{fm}]$	L/a	T/a	$N_{\rm confs}$	N_{sources}
cB211.072.64	0.079	64	128	302	4

Let's study the problematic time ordering, for V channel, and to $\vec{k} = k\hat{z}$, for $C_E(t) = C_V^{12}(t,k)$

Extracting
$$H(E,\epsilon) = \int_0^\infty \frac{dE'}{2\pi} \rho(E') K(E'-E,\epsilon)$$
 from $C_E(t) = \int_0^\infty \frac{dE'}{2\pi} e^{-E't} \rho(E')$
Let's go...

Stability plot analysis

Extract at small A[g]/A[0] (used as a proxy for λ) where stability is seen, before error explodes Systematic error of the choice estimated by varying the chosen point of A[g]/A[0]

Real part of the amplitude

Band: comparison with Vector Meson Dominance model tuned on the correlator

Decreasing ϵ

For $E > E_{\phi} = \sqrt{M_{\phi}^2 + |k|^2}$ the error increases when decreasing ϵ

Decreasing ϵ

Below threshold one can use **standard methods** (no analytic continuation issue)

Divergence at $E = M_{\phi}$ damped only by finite width of the ϕ meson, but $\Gamma_{\phi} \sim 4 \text{ MeV}!$

Imaginary part of the amplitude

The imaginary part of the amplitude is the (smeared) spectral density itself

Decreasing ϵ

Decreasing the smearing size, one should see the very narrow resonance

Can we see the resonance...?

...not really... indeed, the width of the ϕ meson has just $\Gamma_{\phi} \sim 4 \text{ MeV}$! This is a though case, but illustrates well the various regimes

Extrapolating to $\epsilon = 0$ at $E < E_{\phi}$

Expected LO for real part: ϵ^2

Expected LO for imaginary part: ϵ^1

Extrapolating to $\epsilon = 0$ at $E > E_{\phi}$

Basically independent on the smearing parameter, different ansatze used to test systematics

Extrapolating to $\epsilon = 0$ at $E \sim E_{\phi}$

Needs to use a Breit Wegner model to extrapolate...

Putting all energies together

FCNC process useful for NP searches, like $B_s \rightarrow \mu^+ \mu^-$, suppressed by α_{em} but helicity enhanced A really hard job, combining many contributions, extrapolating from $m_c \rightarrow m_b$ on 4 lattice spacings

FCNC process useful for NP searches, like $B_s \rightarrow \mu^+ \mu^-$, suppressed by α_{em} but helicity enhanced A really hard job, combining many contributions, extrapolating from $m_c \rightarrow m_b$ on 4 lattice spacings

Wow!, cool, but why discussing it here?

FCNC process useful for NP searches, like $B_s \rightarrow \mu^+ \mu^-$, suppressed by α_{em} but helicity enhanced A really hard job, combining many contributions, extrapolating from $m_c \rightarrow m_b$ on 4 lattice spacings

Wow!, cool, but why discussing it here?

Because it suffer from the same analytic continuation issue!

FCNC process useful for NP searches, like $B_s \rightarrow \mu^+ \mu^-$, suppressed by α_{em} but helicity enhanced A really hard job, combining many contributions, extrapolating from $m_c \rightarrow m_b$ on 4 lattice spacings

Wow!, cool, but why discussing it here?

Because it suffer from the same analytic continuation issue!

More specifically, on this diagram: (which is far subdominant)

FCNC process useful for NP searches, like $B_s \rightarrow \mu^+ \mu^-$, suppressed by α_{em} but helicity enhanced A really hard job, combining many contributions, extrapolating from $m_c \rightarrow m_b$ on 4 lattice spacings

Wow!, cool, but why discussing it here?

Because it suffer from the same analytic continuation issue!

More specifically, on this diagram: (which is far subdominant)

...so we decided to apply the method to compute the diagram, let me give you just a flash on it

Extrapolating in $\epsilon \to 0$ at several heavy mass

Much more controlled behaviour: no resonances present. A low degree polynomial or a simple model works well, allowing to take easily the vanishing smearing limit

A bit descouraging results from LHCb

LHCb published this year only upper limit [preprint arXiv:2404.03375]

Conclusions _of this set of slides_...

THEORETICAL IDEA

- New method to extract complex electroweak amplitudes
- Here applied to the case of two EW-currents, an hadronic state and the vacuum
- Can be generalized to other classes of process

Conclusions _of this set of slides_...

THEORETICAL IDEA

- New method to extract complex electroweak amplitudes
- Here applied to the case of two EW-currents, an hadronic state and the vacuum
- Can be generalized to other classes of process

NUMERICAL WORK

- Proof-of-concept study on the $D_s \rightarrow \bar{l}' l' \bar{l} \nu_l$, [PRD 108 (2023) 7]
- Used to estimate a subdominant contribution to $B_s \rightarrow \mu^+ \mu^- \gamma$, [PRD 109 (2024) 11]
- Different regimes in different problems and at different energies

Conclusions _of this set of slides_...

THEORETICAL IDEA

- New method to extract complex electroweak amplitudes
- Here applied to the case of two EW-currents, an hadronic state and the vacuum
- Can be generalized to other classes of process

NUMERICAL WORK

- Proof-of-concept study on the $D_s \rightarrow \bar{l}' l' \bar{l} \nu_l$, [PRD 108 (2023) 7]
- Used to estimate a subdominant contribution to $B_s \rightarrow \mu^+ \mu^- \gamma$, [PRD 109 (2024) 11]
- Different regimes in different problems and at different energies

UPCOMING

- Continuum limit extrapolation for $K \to \overline{l'} l' l \nu_{\ell}$ where no narrow resonance is present
- To be presented at Lattice 2024 by Roberto Di Palma